Inositol phosphate metabolism (Homo sapiens)

From WikiPathways

Revision as of 19:55, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
6, 21, 26, 41, 428, 33, 49-51, 53...12, 47, 57, 625747, 57, 6247, 573, 4, 32, 44, 60...27, 66, 6812, 52, 59, 62, 6448, 71612, 47, 572, 5727, 352510, 52, 68486616, 58, 63, 723, 4, 32, 44, 60...30, 372, 5748, 717, 29, 48, 71343, 4, 32, 44, 60...6114, 20, 7227, 354831, 732, 47, 5757, 623, 4, 32, 44, 60...6140, 7427, 459, 11, 15, 17, 22...27, 66, 681827, 35, 464527, 48, 715, 1312, 52, 59, 6227, 4535, 4648, 7110, 52, 68661848, 712, 47, 576657, 62410, 52, 6827, 6616, 24, 38, 39, 46...57, 62756647, 572, 47, 571, 14, 20, 7248, 715930, 3718, 2325, 707570cytosolendoplasmic reticulum lumenendoplasmic reticulum lumennucleoplasmATPNUDT11 PLCbzADPATPATP1-PP-IP4NUDT3 IPMKI(3,4,5,6)P4H2OOCRL 1,5-(PP)2-IP4PLCG2 IP6K3 ATPH2OIMPA1 PiADPADPINPP4A IP6IP6K2 ATPISYNA1:NAD+INPP5A/BITPK1:Mg2+1-PP-IP5 InsPP-IP4ADPPiIP6K1 I(1,3,4,5,6)P5INPP4B OCRL MIOX:2xFe2+Mg2+ NUDT3 ADPINPP4B IMPA1/2IP6K1 GlycosaminoglycanmetabolismI(1,3,4,5,6)P5H2OH2OH2OCa2+ SYNJ1 PLCdeghIMPA2 IMPA2 INPP5(3)/ITPK1NUDT10 H2OH2OPiATPIP6K2 H2OADPADPNUDT(1)IP6K1/2Mg2+ ATPDAG1-PP-IP5IP6K1 NUDT11 Mn2+ I(1,3,4,5,6)P5DAG and IP3signaling5-PP-IP5I(1,2,4,5,6)P55-PP-IP4 MINPP1Mg2+ Mg2+ INPP5J I3PH2ONAD+ NUDT4 ATPPLCH1 PLCB1 Mg2+ H2ONUDT3 NUDT4 INPP1 INPP1:Mg2+PiH2OATPH2O(PP)2-IP4I4PINPP5D PL(C)D4:3xCa2+1,5-(PP)2-IP3NUDT4 ADPNUDT3 ITPK1 I(1,3,4,5)P41/3-PP-IP5Mn2+ PTEN ATPO2IP6K1/3NUDT(1)NUDT4 5-PP-IP5NUDT10 PiNUDT(1)ITPK1 PiPLCG1 ITPKA/B/CDAGI(1,4,5)P3H2OPI(4,5)P2ATPIPMKISYNA1 Ca2+ ITPKA H2OMg2+ PiCa2+ 5-PPP-IP5IP6K1/3PPIP5K1/21/3-PP-IP5PLCH2 I(1,4,5,6)P4H2OPiIP6K1 INPP1 Glc6PINPP4A I(1,4,5)P3NUDT(1)PI(4,5)P21-PP-IP4 5-PPP-IP5PiNUDT4 MTMR7 ADPSYNJ1 INPP5A Mn2+ ATPH2OMg2+ ATPIP6K1/3IP6K1 Fe2+ INPP4A/BI(1,4)P2IP6K1 PLCB3 INPP5(4)PLCB4 H2OIP6K3 ITPK1:Mg2+Mg2+ I(3,4,6)P33,5-(PP)2-IP4 ADPATPPiADPPiNUDT11 ADPCALM1 ADPMINPP1INPP1:Mg2+ATPMn2+ ADP3-PP-IP5 1,5-(PP)2-IP4PPIP5K2 ADPIP6K3 PTEN:Mg2+NUDT10 MIOX ADPI(1,4,5)P3I(1,3,4,5)P4NUDT11 5-PP-IP4PiH2O(PP)2-IP4MTMR7ITPK1 ATPH2OMTMR9IPPKINPP4A/B1,5-(PP)2-IP4 NUDT4:Mg2+/Mn2+Mg2+ PLCE1 1,5-(PP)2-IP3PiITPK1:Mg2+H2OADPINPPL1 I(1,3)P2I(1,3,4)P3OCRL Mn2+ PLD4(1-762) I(1,3,4,6)P4NUDT10 H2OIP6K3 PPIP5K1 I(1,3,4,5)P4I(1,4,5,6)P4PiI1PADPINPP5B(321-993) IPPKInositolpolyphosphate5-phosphataseH2OADPATPPLCD4 PLCZ1 ATP1,5-(PP)2-IP4 IP6K2 ITPKC 5-PP-IP4INPP5J MTMR9 PLCB2 1-PP-IP5 IP6ADPI(3,4)P2I(1,3,4,6)P43-PP-IP4 Ca2+ GlcAMg2+ H2OCa2+ IP6K1/3Mg2+ IP6Mg2+ ITPK1:Mg2+MTMR7:MTMR93-PP-IP5 PiITPK1 IP6K1/2IPMKMg2+ PiADPIP6K1 Mg2+ PiIMPA1 H+PiMg2+ PLD4(1-762) PLCD3 IMPA1/2H2OINPP5B(321-993) 3,5-(PP)2-IP4 PiIP6K1/2PiPLCD1 ITPKB 1-PP-IP5PLD4:Ca2+ITPK1 ATP19, 366128


Description

Inositol phosphates (IPs) are molecules involves in signalling processes in eukaryotes. myo-Inositol consists of a six-carbon cyclic alcohol with an axial 2-hydroxy and five equatorial hydroxyls. Mono-, di-, and triphosphorylation of the inositol ring generates a wide variety of stereochemically distinct signalling entities. Inositol 1,4,5-trisphosphate (I(1,4,5)P3), is formed when the phosphoinositide phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is hydrolysed by a phospholipase C isozyme. An array of inositol trisphosphate (IP3) and tetrakisphosphate (IP4) molecules are synthesised by the action of various kinases and phosphatases in the cytosol. These species then transport between the cytosol and the nucleus where they are acted on by inositol polyphosphate multikinase (IPMK), inositol-pentakisphosphate 2-kinase (IPPK), inositol hexakisphosphate kinase 1 (IP6K1) and 2 (IP6K2), to produce IP5, IP6, IP7, and IP8 molecules. Some of these nuclear produced IPs transport back to the cytosol where they are converted to an even wider variety of IPs, by kinases and phosphatases, including the di- and triphospho inositol phosphates aka pyrophosphates (Irvine & Schell 2001, Bunney & Katan 2010, Alcazar-Romain & Wente 2008, York 2006, Monserrate and York 2010). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 1483249
Reactome-version 
Reactome version: 63
Reactome Author 
Reactome Author: Williams, MG

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Ross TS, Jefferson AB, Mitchell CA, Majerus PW.; ''Cloning and expression of human 75-kDa inositol polyphosphate-5-phosphatase.''; PubMed Europe PMC Scholia
  2. Dewaste V, Moreau C, De Smedt F, Bex F, De Smedt H, Wuytack F, Missiaen L, Erneux C.; ''The three isoenzymes of human inositol-1,4,5-trisphosphate 3-kinase show specific intracellular localization but comparable Ca2+ responses on transfection in COS-7 cells.''; PubMed Europe PMC Scholia
  3. Mochizuki Y, Majerus PW.; ''Characterization of myotubularin-related protein 7 and its binding partner, myotubularin-related protein 9.''; PubMed Europe PMC Scholia
  4. Ju S, Shaltiel G, Shamir A, Agam G, Greenberg ML.; ''Human 1-D-myo-inositol-3-phosphate synthase is functional in yeast.''; PubMed Europe PMC Scholia
  5. Alvarez RA, Ghalayini AJ, Xu P, Hardcastle A, Bhattacharya S, Rao PN, Pettenati MJ, Anderson RE, Baehr W.; ''cDNA sequence and gene locus of the human retinal phosphoinositide-specific phospholipase-C beta 4 (PLCB4).''; PubMed Europe PMC Scholia
  6. Maehama T, Dixon JE.; ''The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.''; PubMed Europe PMC Scholia
  7. Mochizuki Y, Takenawa T.; ''Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles.''; PubMed Europe PMC Scholia
  8. Hidaka K, Caffrey JJ, Hua L, Zhang T, Falck JR, Nickel GC, Carrel L, Barnes LD, Shears SB.; ''An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode two new isoforms of diphosphoinositol polyphosphate phosphohydrolase.''; PubMed Europe PMC Scholia
  9. Safrany ST, Ingram SW, Cartwright JL, Falck JR, McLennan AG, Barnes LD, Shears SB.; ''The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein.''; PubMed Europe PMC Scholia
  10. Fridy PC, Otto JC, Dollins DE, York JD.; ''Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases.''; PubMed Europe PMC Scholia
  11. Verbsky JW, Wilson MP, Kisseleva MV, Majerus PW, Wente SR.; ''The synthesis of inositol hexakisphosphate. Characterization of human inositol 1,3,4,5,6-pentakisphosphate 2-kinase.''; PubMed Europe PMC Scholia
  12. Yang X, Safrany ST, Shears SB.; ''Site-directed mutagenesis of diphosphoinositol polyphosphate phosphohydrolase, a dual specificity NUDT enzyme that attacks diadenosine polyphosphates and diphosphoinositol polyphosphates.''; PubMed Europe PMC Scholia
  13. Nogimori K, Hughes PJ, Glennon MC, Hodgson ME, Putney JW, Shears SB.; ''Purification of an inositol (1,3,4,5)-tetrakisphosphate 3-phosphatase activity from rat liver and the evaluation of its substrate specificity.''; PubMed Europe PMC Scholia
  14. Clarke LA.; ''The mucopolysaccharidoses: a success of molecular medicine.''; PubMed Europe PMC Scholia
  15. Lee SB, Várnai P, Balla A, Jalink K, Rhee SG, Balla T.; ''The pleckstrin homology domain of phosphoinositide-specific phospholipase Cdelta4 is not a critical determinant of the membrane localization of the enzyme.''; PubMed Europe PMC Scholia
  16. Irvine RF, Schell MJ.; ''Back in the water: the return of the inositol phosphates.''; PubMed Europe PMC Scholia
  17. Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T, Ohsawa I, Ohta S, Hattori S.; ''Phosphorylation of Nephrin Triggers Ca2+ Signaling by Recruitment and Activation of Phospholipase C-{gamma}1.''; PubMed Europe PMC Scholia
  18. Hwang JI, Oh YS, Shin KJ, Kim H, Ryu SH, Suh PG.; ''Molecular cloning and characterization of a novel phospholipase C, PLC-eta.''; PubMed Europe PMC Scholia
  19. Caffrey JJ, Hidaka K, Matsuda M, Hirata M, Shears SB.; ''The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification.''; PubMed Europe PMC Scholia
  20. Saiardi A, Nagata E, Luo HR, Snowman AM, Snyder SH.; ''Identification and characterization of a novel inositol hexakisphosphate kinase.''; PubMed Europe PMC Scholia
  21. Leslie NR, McLennan AG, Safrany ST.; ''Cloning and characterisation of hAps1 and hAps2, human diadenosine polyphosphate-metabolising Nudix hydrolases.''; PubMed Europe PMC Scholia
  22. Patterson RL, van Rossum DB, Nikolaidis N, Gill DL, Snyder SH.; ''Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling.''; PubMed Europe PMC Scholia
  23. Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD.; ''A conserved family of enzymes that phosphorylate inositol hexakisphosphate.''; PubMed Europe PMC Scholia
  24. Zhou Y, Wing MR, Sondek J, Harden TK.; ''Molecular cloning and characterization of PLC-eta2.''; PubMed Europe PMC Scholia
  25. Safrany ST, Caffrey JJ, Yang X, Bembenek ME, Moyer MB, Burkhart WA, Shears SB.; ''A novel context for the 'MutT' module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase.''; PubMed Europe PMC Scholia
  26. Han SY, Kato H, Kato S, Suzuki T, Shibata H, Ishii S, Shiiba K, Matsuno S, Kanamaru R, Ishioka C.; ''Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay.''; PubMed Europe PMC Scholia
  27. Drayer AL, Pesesse X, De Smedt F, Woscholski R, Parker P, Erneux C.; ''Cloning and expression of a human placenta inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase.''; PubMed Europe PMC Scholia
  28. Wang H, Falck JR, Hall TM, Shears SB.; ''Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding.''; PubMed Europe PMC Scholia
  29. Baldassare JJ, Henderson PA, Fisher GJ.; ''Isolation and characterization of one soluble and two membrane-associated forms of phosphoinositide-specific phospholipase C from human platelets.''; PubMed Europe PMC Scholia
  30. Yang X, Shears SB.; ''Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P(4) 1-kinase/Ins(1,3,4)P(3) 5/6-kinase.''; PubMed Europe PMC Scholia
  31. Carozzi AJ, Kriz RW, Webster C, Parker PJ.; ''Identification, purification and characterization of a novel phosphatidylinositol-specific phospholipase C, a third member of the beta subfamily.''; PubMed Europe PMC Scholia
  32. Jefferson AB, Majerus PW.; ''Properties of type II inositol polyphosphate 5-phosphatase.''; PubMed Europe PMC Scholia
  33. Leung DW, Tompkins C, Brewer J, Ball A, Coon M, Morris V, Waggoner D, Singer JW.; ''Phospholipase C delta-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells.''; PubMed Europe PMC Scholia
  34. Chang SC, Miller AL, Feng Y, Wente SR, Majerus PW.; ''The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase.''; PubMed Europe PMC Scholia
  35. Jhon DY, Lee HH, Park D, Lee CW, Lee KH, Yoo OJ, Rhee SG.; ''Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-beta 3.''; PubMed Europe PMC Scholia
  36. Alcázar-Román AR, Wente SR.; ''Inositol polyphosphates: a new frontier for regulating gene expression.''; PubMed Europe PMC Scholia
  37. Pawełczyk T, Matecki A.; ''Expression, purification and kinetic properties of human recombinant phospholipase C delta 3.''; PubMed Europe PMC Scholia
  38. Chang SC, Majerus PW.; ''Inositol polyphosphate multikinase regulates inositol 1,4,5,6-tetrakisphosphate.''; PubMed Europe PMC Scholia
  39. Lopez I, Mak EC, Ding J, Hamm HE, Lomasney JW.; ''A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway.''; PubMed Europe PMC Scholia
  40. Deleu S, Choi K, Pesesse X, Cho J, Sulis ML, Parsons R, Shears SB.; ''Physiological levels of PTEN control the size of the cellular Ins(1,3,4,5,6)P(5) pool.''; PubMed Europe PMC Scholia
  41. Laxminarayan KM, Chan BK, Tetaz T, Bird PI, Mitchell CA.; ''Characterization of a cDNA encoding the 43-kDa membrane-associated inositol-polyphosphate 5-phosphatase.''; PubMed Europe PMC Scholia
  42. York JD, Veile RA, Donis-Keller H, Majerus PW.; ''Cloning, heterologous expression, and chromosomal localization of human inositol polyphosphate 1-phosphatase.''; PubMed Europe PMC Scholia
  43. Saiardi A, Caffrey JJ, Snyder SH, Shears SB.; ''The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis.''; PubMed Europe PMC Scholia
  44. Lee CW, Park DJ, Lee KH, Kim CG, Rhee SG.; ''Purification, molecular cloning, and sequencing of phospholipase C-beta 4.''; PubMed Europe PMC Scholia
  45. Norris FA, Atkins RC, Majerus PW.; ''The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family.''; PubMed Europe PMC Scholia
  46. Bunney TD, Katan M.; ''Phosphoinositide signalling in cancer: beyond PI3K and PTEN.''; PubMed Europe PMC Scholia
  47. Banno Y, Yada Y, Nozawa Y.; ''Purification and characterization of membrane-bound phospholipase C specific for phosphoinositides from human platelets.''; PubMed Europe PMC Scholia
  48. Cheng HF, Jiang MJ, Chen CL, Liu SM, Wong LP, Lomasney JW, King K.; ''Cloning and identification of amino acid residues of human phospholipase C delta 1 essential for catalysis.''; PubMed Europe PMC Scholia
  49. Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T, Kataoka T.; ''Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras.''; PubMed Europe PMC Scholia
  50. Ho MW, Yang X, Carew MA, Zhang T, Hua L, Kwon YU, Chung SK, Adelt S, Vogel G, Riley AM, Potter BV, Shears SB.; ''Regulation of Ins(3,4,5,6)P(4) signaling by a reversible kinase/phosphatase.''; PubMed Europe PMC Scholia
  51. Caricasole A, Sala C, Roncarati R, Formenti E, Terstappen GC.; ''Cloning and characterization of the human phosphoinositide-specific phospholipase C-beta 1 (PLC beta 1).''; PubMed Europe PMC Scholia
  52. Chi Y, Zhou B, Wang WQ, Chung SK, Kwon YU, Ahn YH, Chang YT, Tsujishita Y, Hurley JH, Zhang ZY.; ''Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe Synaptojanin and SHIP2.''; PubMed Europe PMC Scholia
  53. Thorsell AG, Persson C, Voevodskaya N, Busam RD, Hammarström M, Gräslund S, Gräslund A, Hallberg BM.; ''Structural and biophysical characterization of human myo-inositol oxygenase.''; PubMed Europe PMC Scholia
  54. Zhang X, Jefferson AB, Auethavekiat V, Majerus PW.; ''The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase.''; PubMed Europe PMC Scholia
  55. Lin H, Fridy PC, Ribeiro AA, Choi JH, Barma DK, Vogel G, Falck JR, Shears SB, York JD, Mayr GW.; ''Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases.''; PubMed Europe PMC Scholia
  56. Arner RJ, Prabhu KS, Reddy CC.; ''Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney.''; PubMed Europe PMC Scholia
  57. Norris FA, Auethavekiat V, Majerus PW.; ''The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase.''; PubMed Europe PMC Scholia
  58. Draskovic P, Saiardi A, Bhandari R, Burton A, Ilc G, Kovacevic M, Snyder SH, Podobnik M.; ''Inositol hexakisphosphate kinase products contain diphosphate and triphosphate groups.''; PubMed Europe PMC Scholia
  59. Park D, Jhon DY, Kriz R, Knopf J, Rhee SG.; ''Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2.''; PubMed Europe PMC Scholia
  60. Monserrate JP, York JD.; ''Inositol phosphate synthesis and the nuclear processes they affect.''; PubMed Europe PMC Scholia
  61. Chi H, Tiller GE, Dasouki MJ, Romano PR, Wang J, O'keefe RJ, Puzas JE, Rosier RN, Reynolds PR.; ''Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19.''; PubMed Europe PMC Scholia
  62. McAllister G, Whiting P, Hammond EA, Knowles MR, Atack JR, Bailey FJ, Maigetter R, Ragan CI.; ''cDNA cloning of human and rat brain myo-inositol monophosphatase. Expression and characterization of the human recombinant enzyme.''; PubMed Europe PMC Scholia
  63. Zhang X, Hartz PA, Philip E, Racusen LC, Majerus PW.; ''Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate.''; PubMed Europe PMC Scholia
  64. Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R.; ''Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation.''; PubMed Europe PMC Scholia
  65. Wilson MP, Majerus PW.; ''Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme.''; PubMed Europe PMC Scholia
  66. York JD.; ''Regulation of nuclear processes by inositol polyphosphates.''; PubMed Europe PMC Scholia
  67. Nalaskowski MM, Deschermeier C, Fanick W, Mayr GW.; ''The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization.''; PubMed Europe PMC Scholia
  68. Choi JH, Williams J, Cho J, Falck JR, Shears SB.; ''Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress.''; PubMed Europe PMC Scholia
  69. Kouchi Z, Shikano T, Nakamura Y, Shirakawa H, Fukami K, Miyazaki S.; ''The role of EF-hand domains and C2 domain in regulation of enzymatic activity of phospholipase Czeta.''; PubMed Europe PMC Scholia
  70. Rogers NT, Hobson E, Pickering S, Lai FA, Braude P, Swann K.; ''Phospholipase Czeta causes Ca2+ oscillations and parthenogenetic activation of human oocytes.''; PubMed Europe PMC Scholia
  71. Kavanaugh WM, Pot DA, Chin SM, Deuter-Reinhard M, Jefferson AB, Norris FA, Masiarz FR, Cousens LS, Majerus PW, Williams LT.; ''Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2.''; PubMed Europe PMC Scholia
  72. Ohnishi T, Ohba H, Seo KC, Im J, Sato Y, Iwayama Y, Furuichi T, Chung SK, Yoshikawa T.; ''Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1.''; PubMed Europe PMC Scholia
  73. Cantz M, Gehler J.; ''The mucopolysaccharidoses: inborn errors of glycosaminoglycan catabolism.''; PubMed Europe PMC Scholia
  74. Caffrey JJ, Safrany ST, Yang X, Shears SB.; ''Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases. An expanding Nudt family.''; PubMed Europe PMC Scholia
  75. Brehm MA, Schenk TM, Zhou X, Fanick W, Lin H, Windhorst S, Nalaskowski MM, Kobras M, Shears SB, Mayr GW.; ''Intracellular localization of human Ins(1,3,4,5,6)P5 2-kinase.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114963view16:49, 25 January 2021ReactomeTeamReactome version 75
113407view11:48, 2 November 2020ReactomeTeamReactome version 74
112610view15:58, 9 October 2020ReactomeTeamReactome version 73
101526view11:39, 1 November 2018ReactomeTeamreactome version 66
101061view21:21, 31 October 2018ReactomeTeamreactome version 65
100592view19:55, 31 October 2018ReactomeTeamreactome version 64
100141view16:40, 31 October 2018ReactomeTeamreactome version 63
99691view15:09, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99279view12:45, 31 October 2018ReactomeTeamreactome version 62
93768view13:34, 16 August 2017ReactomeTeamreactome version 61
93292view11:19, 9 August 2017ReactomeTeamreactome version 61
87135view18:50, 18 July 2016MkutmonOntology Term : 'inositol phosphate metabolic pathway' added !
86378view09:16, 11 July 2016ReactomeTeamreactome version 56
83150view10:10, 18 November 2015ReactomeTeamVersion54
81502view13:02, 21 August 2015ReactomeTeamVersion53
76978view08:26, 17 July 2014ReactomeTeamFixed remaining interactions
76683view12:05, 16 July 2014ReactomeTeamFixed remaining interactions
76010view10:07, 11 June 2014ReactomeTeamRe-fixing comment source
75718view11:08, 10 June 2014ReactomeTeamReactome 48 Update
75070view13:58, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74715view08:47, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
(PP)2-IP4ComplexR-ALL-2023936 (Reactome)
(PP)2-IP4ComplexR-ALL-2023968 (Reactome)
1,5-(PP)2-IP3MetaboliteCHEBI:62931 (ChEBI)
1,5-(PP)2-IP4 MetaboliteCHEBI:62923 (ChEBI)
1,5-(PP)2-IP4MetaboliteCHEBI:62923 (ChEBI)
1-PP-IP4 MetaboliteCHEBI:62926 (ChEBI)
1-PP-IP4MetaboliteCHEBI:62926 (ChEBI)
1-PP-IP5 MetaboliteCHEBI:62919 (ChEBI)
1-PP-IP5MetaboliteCHEBI:62919 (ChEBI)
1/3-PP-IP5ComplexR-ALL-2023944 (Reactome)
1/3-PP-IP5ComplexR-ALL-2023974 (Reactome)
3,5-(PP)2-IP4 MetaboliteCHEBI:62924 (ChEBI)
3-PP-IP4 MetaboliteCHEBI:62927 (ChEBI)
3-PP-IP5 MetaboliteCHEBI:62922 (ChEBI)
5-PP-IP4 MetaboliteCHEBI:62928 (ChEBI)
5-PP-IP4MetaboliteCHEBI:62928 (ChEBI)
5-PP-IP5MetaboliteCHEBI:30164 (ChEBI)
5-PPP-IP5MetaboliteCHEBI:62985 (ChEBI)
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
CALM1 ProteinP0DP23 (Uniprot-TrEMBL)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
DAG and IP3 signalingPathwayR-HSA-1489509 (Reactome) This pathway describes the generation of DAG and IP3 by the PLCgamma-mediated hydrolysis of PIP2 and the subsequent downstream signaling events.
DAGMetaboliteCHEBI:17815 (ChEBI)
Fe2+ MetaboliteCHEBI:18248 (ChEBI)
Glc6PMetaboliteCHEBI:4170 (ChEBI)
GlcAMetaboliteCHEBI:15748 (ChEBI)
Glycosaminoglycan metabolismPathwayR-HSA-1630316 (Reactome) Glycosaminoglycans (GAGs) are long, unbranched polysaccharides containing a repeating disaccharide unit composed of a hexosamine (either N-acetylgalactosamine (GalNAc) or N-acetylglucosamine (GlcNAc)) and a uronic acid (glucuronate or iduronate). They can be heavily sulfated. GAGs are located primarily in the extracellular matrix (ECM) and on cell membranes, acting as a lubricating fluid for joints and as part of signalling processes. They have structural roles in connective tissue, cartilage, bone and blood vessels (Esko et al. 2009). GAGs are degraded in the lysosome as part of their natural turnover. Defects in the lysosomal enzymes responsible for the metabolism of membrane-associated GAGs lead to lysosomal storage diseases called mucopolysaccharidoses (MPS). MPSs are characterised by the accumulation of GAGs in lysosomes resulting in chronic, progressively debilitating disorders that in many instances lead to severe psychomotor retardation and premature death (Cantz & Gehler 1976, Clarke 2008). The biosynthesis and breakdown of the main GAGs (hyaluronate, keratan sulfate, chondroitin sulfate, dermatan sulfate and heparan sulfate) is described here.
H+MetaboliteCHEBI:15378 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
I(1,2,4,5,6)P5MetaboliteCHEBI:16507 (ChEBI)
I(1,3)P2MetaboliteCHEBI:18225 (ChEBI)
I(1,3,4)P3MetaboliteCHEBI:18228 (ChEBI)
I(1,3,4,5)P4MetaboliteCHEBI:16783 (ChEBI)
I(1,3,4,5,6)P5MetaboliteCHEBI:16322 (ChEBI)
I(1,3,4,6)P4MetaboliteCHEBI:16155 (ChEBI)
I(1,4)P2MetaboliteCHEBI:17816 (ChEBI)
I(1,4,5)P3MetaboliteCHEBI:16595 (ChEBI)
I(1,4,5,6)P4MetaboliteCHEBI:16067 (ChEBI)
I(3,4)P2MetaboliteCHEBI:28858 (ChEBI)
I(3,4,5,6)P4MetaboliteCHEBI:15844 (ChEBI)
I(3,4,6)P3MetaboliteCHEBI:62918 (ChEBI)
I1PMetaboliteCHEBI:18297 (ChEBI)
I3PMetaboliteCHEBI:18169 (ChEBI)
I4PMetaboliteCHEBI:18384 (ChEBI)
IMPA1 ProteinP29218 (Uniprot-TrEMBL)
IMPA1/2ComplexR-HSA-2024024 (Reactome)
IMPA2 ProteinO14732 (Uniprot-TrEMBL)
INPP1 ProteinP49441 (Uniprot-TrEMBL)
INPP1:Mg2+ComplexR-HSA-1604578 (Reactome)
INPP4A ProteinQ96PE3 (Uniprot-TrEMBL)
INPP4A/BComplexR-HSA-1806281 (Reactome)
INPP4B ProteinO15327 (Uniprot-TrEMBL)
INPP5(3)/ITPK1ComplexR-HSA-2023888 (Reactome)
INPP5(4)ComplexR-HSA-2024044 (Reactome)
INPP5A ProteinQ14642 (Uniprot-TrEMBL)
INPP5A/BComplexR-HSA-2024026 (Reactome)
INPP5B(321-993) ProteinP32019 (Uniprot-TrEMBL)
INPP5D ProteinQ92835 (Uniprot-TrEMBL)
INPP5J ProteinQ15735 (Uniprot-TrEMBL)
INPPL1 ProteinO15357 (Uniprot-TrEMBL)
IP6MetaboliteCHEBI:17401 (ChEBI)
IP6K1 ProteinQ92551 (Uniprot-TrEMBL)
IP6K1/2ComplexR-HSA-2023924 (Reactome)
IP6K1/3ComplexR-HSA-2023977 (Reactome)
IP6K2 ProteinQ9UHH9 (Uniprot-TrEMBL)
IP6K3 ProteinQ96PC2 (Uniprot-TrEMBL)
IPMKProteinQ8NFU5 (Uniprot-TrEMBL)
IPPKProteinQ9H8X2 (Uniprot-TrEMBL)
ISYNA1 ProteinQ9NPH2 (Uniprot-TrEMBL)
ISYNA1:NAD+ComplexR-HSA-2024052 (Reactome)
ITPK1 ProteinQ13572 (Uniprot-TrEMBL)
ITPK1:Mg2+ComplexR-HSA-1604601 (Reactome)
ITPKA ProteinP23677 (Uniprot-TrEMBL)
ITPKA/B/CComplexR-HSA-2023867 (Reactome)
ITPKB ProteinP27987 (Uniprot-TrEMBL)
ITPKC ProteinQ96DU7 (Uniprot-TrEMBL)
Inositol

polyphosphate

5-phosphatase
ComplexR-HSA-3769048 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
InsMetaboliteCHEBI:17268 (ChEBI)
MINPP1ProteinQ9UNW1 (Uniprot-TrEMBL)
MIOX ProteinQ9UGB7 (Uniprot-TrEMBL)
MIOX:2xFe2+ComplexR-HSA-5678326 (Reactome)
MTMR7 ProteinQ9Y216 (Uniprot-TrEMBL)
MTMR7:MTMR9ComplexR-HSA-6809241 (Reactome)
MTMR7ProteinQ9Y216 (Uniprot-TrEMBL)
MTMR9 ProteinQ96QG7 (Uniprot-TrEMBL)
MTMR9ProteinQ96QG7 (Uniprot-TrEMBL)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
Mn2+ MetaboliteCHEBI:29035 (ChEBI)
NAD+ MetaboliteCHEBI:15846 (ChEBI)
NUDT(1)ComplexR-HSA-2023957 (Reactome)
NUDT10 ProteinQ8NFP7 (Uniprot-TrEMBL)
NUDT11 ProteinQ96G61 (Uniprot-TrEMBL)
NUDT3 ProteinO95989 (Uniprot-TrEMBL)
NUDT4 ProteinQ9NZJ9 (Uniprot-TrEMBL)
NUDT4:Mg2+/Mn2+ComplexR-HSA-1604660 (Reactome)
O2MetaboliteCHEBI:15379 (ChEBI)
OCRL ProteinQ01968 (Uniprot-TrEMBL)
PI(4,5)P2MetaboliteCHEBI:18348 (ChEBI)
PL(C)D4:3xCa2+ComplexR-HSA-8870313 (Reactome)
PLCB1 ProteinQ9NQ66 (Uniprot-TrEMBL)
PLCB2 ProteinQ00722 (Uniprot-TrEMBL)
PLCB3 ProteinQ01970 (Uniprot-TrEMBL)
PLCB4 ProteinQ15147 (Uniprot-TrEMBL)
PLCD1 ProteinP51178 (Uniprot-TrEMBL)
PLCD3 ProteinQ8N3E9 (Uniprot-TrEMBL)
PLCD4 ProteinQ9BRC7 (Uniprot-TrEMBL)
PLCE1 ProteinQ9P212 (Uniprot-TrEMBL)
PLCG1 ProteinP19174 (Uniprot-TrEMBL)
PLCG2 ProteinP16885 (Uniprot-TrEMBL)
PLCH1 ProteinQ4KWH8 (Uniprot-TrEMBL)
PLCH2 ProteinO75038 (Uniprot-TrEMBL)
PLCZ1 ProteinQ86YW0 (Uniprot-TrEMBL)
PLCbzComplexR-HSA-2023864 (Reactome)
PLCdeghComplexR-HSA-2023861 (Reactome)
PLD4(1-762) ProteinQ96BZ4 (Uniprot-TrEMBL)
PLD4:Ca2+ComplexR-HSA-2023869 (Reactome)
PP-IP4ComplexR-ALL-2023943 (Reactome)
PPIP5K1 ProteinQ6PFW1 (Uniprot-TrEMBL)
PPIP5K1/2ComplexR-HSA-2023997 (Reactome)
PPIP5K2 ProteinO43314 (Uniprot-TrEMBL)
PTEN ProteinP60484 (Uniprot-TrEMBL)
PTEN:Mg2+ComplexR-HSA-199426 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
SYNJ1 ProteinO43426 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
(PP)2-IP4ArrowR-HSA-1855220 (Reactome)
(PP)2-IP4R-HSA-1855165 (Reactome)
(PP)2-IP4R-HSA-1855220 (Reactome)
(PP)2-IP4R-HSA-2023973 (Reactome)
1,5-(PP)2-IP3ArrowR-HSA-1855193 (Reactome)
1,5-(PP)2-IP3ArrowR-HSA-1855230 (Reactome)
1,5-(PP)2-IP4ArrowR-HSA-1855157 (Reactome)
1,5-(PP)2-IP4ArrowR-HSA-1855182 (Reactome)
1,5-(PP)2-IP4ArrowR-HSA-1855194 (Reactome)
1-PP-IP4R-HSA-1855193 (Reactome)
1-PP-IP5ArrowR-HSA-1855216 (Reactome)
1-PP-IP5R-HSA-1855157 (Reactome)
1-PP-IP5R-HSA-1855194 (Reactome)
1/3-PP-IP5ArrowR-HSA-1855212 (Reactome)
1/3-PP-IP5ArrowR-HSA-2023973 (Reactome)
1/3-PP-IP5R-HSA-1855212 (Reactome)
1/3-PP-IP5R-HSA-2023971 (Reactome)
5-PP-IP4ArrowR-HSA-1855173 (Reactome)
5-PP-IP4ArrowR-HSA-1855181 (Reactome)
5-PP-IP4ArrowR-HSA-1855223 (Reactome)
5-PP-IP4R-HSA-1855173 (Reactome)
5-PP-IP4R-HSA-1855230 (Reactome)
5-PP-IP5ArrowR-HSA-1855165 (Reactome)
5-PP-IP5ArrowR-HSA-1855203 (Reactome)
5-PP-IP5ArrowR-HSA-1855207 (Reactome)
5-PP-IP5ArrowR-HSA-1855227 (Reactome)
5-PP-IP5R-HSA-1855158 (Reactome)
5-PP-IP5R-HSA-1855182 (Reactome)
5-PP-IP5R-HSA-1855198 (Reactome)
5-PP-IP5R-HSA-1855203 (Reactome)
5-PP-IP5R-HSA-1855224 (Reactome)
5-PPP-IP5ArrowR-HSA-1855158 (Reactome)
5-PPP-IP5ArrowR-HSA-1855224 (Reactome)
ADPArrowR-HSA-1855153 (Reactome)
ADPArrowR-HSA-1855157 (Reactome)
ADPArrowR-HSA-1855158 (Reactome)
ADPArrowR-HSA-1855162 (Reactome)
ADPArrowR-HSA-1855169 (Reactome)
ADPArrowR-HSA-1855172 (Reactome)
ADPArrowR-HSA-1855176 (Reactome)
ADPArrowR-HSA-1855179 (Reactome)
ADPArrowR-HSA-1855181 (Reactome)
ADPArrowR-HSA-1855182 (Reactome)
ADPArrowR-HSA-1855185 (Reactome)
ADPArrowR-HSA-1855193 (Reactome)
ADPArrowR-HSA-1855194 (Reactome)
ADPArrowR-HSA-1855197 (Reactome)
ADPArrowR-HSA-1855206 (Reactome)
ADPArrowR-HSA-1855207 (Reactome)
ADPArrowR-HSA-1855216 (Reactome)
ADPArrowR-HSA-1855223 (Reactome)
ADPArrowR-HSA-1855224 (Reactome)
ADPArrowR-HSA-1855227 (Reactome)
ADPArrowR-HSA-1855228 (Reactome)
ADPArrowR-HSA-1855230 (Reactome)
ADPArrowR-HSA-1855233 (Reactome)
ATPR-HSA-1855153 (Reactome)
ATPR-HSA-1855157 (Reactome)
ATPR-HSA-1855158 (Reactome)
ATPR-HSA-1855162 (Reactome)
ATPR-HSA-1855169 (Reactome)
ATPR-HSA-1855172 (Reactome)
ATPR-HSA-1855176 (Reactome)
ATPR-HSA-1855179 (Reactome)
ATPR-HSA-1855181 (Reactome)
ATPR-HSA-1855182 (Reactome)
ATPR-HSA-1855185 (Reactome)
ATPR-HSA-1855193 (Reactome)
ATPR-HSA-1855194 (Reactome)
ATPR-HSA-1855197 (Reactome)
ATPR-HSA-1855206 (Reactome)
ATPR-HSA-1855207 (Reactome)
ATPR-HSA-1855216 (Reactome)
ATPR-HSA-1855223 (Reactome)
ATPR-HSA-1855224 (Reactome)
ATPR-HSA-1855227 (Reactome)
ATPR-HSA-1855228 (Reactome)
ATPR-HSA-1855230 (Reactome)
ATPR-HSA-1855233 (Reactome)
DAGArrowR-HSA-1855177 (Reactome)
DAGArrowR-HSA-1855214 (Reactome)
DAGArrowR-HSA-1855221 (Reactome)
Glc6PR-HSA-1855178 (Reactome)
GlcAArrowR-HSA-5678327 (Reactome)
H+ArrowR-HSA-5678327 (Reactome)
H2OArrowR-HSA-5678327 (Reactome)
H2OR-HSA-1855154 (Reactome)
H2OR-HSA-1855159 (Reactome)
H2OR-HSA-1855163 (Reactome)
H2OR-HSA-1855165 (Reactome)
H2OR-HSA-1855166 (Reactome)
H2OR-HSA-1855171 (Reactome)
H2OR-HSA-1855174 (Reactome)
H2OR-HSA-1855177 (Reactome)
H2OR-HSA-1855180 (Reactome)
H2OR-HSA-1855198 (Reactome)
H2OR-HSA-1855200 (Reactome)
H2OR-HSA-1855202 (Reactome)
H2OR-HSA-1855205 (Reactome)
H2OR-HSA-1855208 (Reactome)
H2OR-HSA-1855210 (Reactome)
H2OR-HSA-1855211 (Reactome)
H2OR-HSA-1855213 (Reactome)
H2OR-HSA-1855214 (Reactome)
H2OR-HSA-1855218 (Reactome)
H2OR-HSA-1855219 (Reactome)
H2OR-HSA-1855221 (Reactome)
H2OR-HSA-1855222 (Reactome)
H2OR-HSA-1855225 (Reactome)
H2OR-HSA-1855232 (Reactome)
H2OR-HSA-2023971 (Reactome)
H2OR-HSA-2023973 (Reactome)
H2OR-HSA-6809561 (Reactome)
H2OR-HSA-6809565 (Reactome)
I(1,2,4,5,6)P5ArrowR-HSA-1855225 (Reactome)
I(1,3)P2ArrowR-HSA-1855180 (Reactome)
I(1,3)P2R-HSA-6809561 (Reactome)
I(1,3)P2R-HSA-6809565 (Reactome)
I(1,3,4)P3ArrowR-HSA-1855171 (Reactome)
I(1,3,4)P3ArrowR-HSA-1855213 (Reactome)
I(1,3,4)P3ArrowR-HSA-1855218 (Reactome)
I(1,3,4)P3R-HSA-1855172 (Reactome)
I(1,3,4)P3R-HSA-1855180 (Reactome)
I(1,3,4)P3R-HSA-1855197 (Reactome)
I(1,3,4)P3R-HSA-1855232 (Reactome)
I(1,3,4,5)P4ArrowR-HSA-1855153 (Reactome)
I(1,3,4,5)P4ArrowR-HSA-1855168 (Reactome)
I(1,3,4,5)P4ArrowR-HSA-1855172 (Reactome)
I(1,3,4,5)P4ArrowR-HSA-1855186 (Reactome)
I(1,3,4,5)P4ArrowR-HSA-1855233 (Reactome)
I(1,3,4,5)P4R-HSA-1855168 (Reactome)
I(1,3,4,5)P4R-HSA-1855186 (Reactome)
I(1,3,4,5)P4R-HSA-1855200 (Reactome)
I(1,3,4,5)P4R-HSA-1855205 (Reactome)
I(1,3,4,5)P4R-HSA-1855206 (Reactome)
I(1,3,4,5)P4R-HSA-1855213 (Reactome)
I(1,3,4,5)P4R-HSA-1855218 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855155 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855160 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855161 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855162 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855166 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855185 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855195 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855206 (Reactome)
I(1,3,4,5,6)P5ArrowR-HSA-1855228 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855155 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855160 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855161 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855163 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855176 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855179 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855181 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855195 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855219 (Reactome)
I(1,3,4,5,6)P5R-HSA-1855223 (Reactome)
I(1,3,4,6)P4ArrowR-HSA-1855169 (Reactome)
I(1,3,4,6)P4ArrowR-HSA-1855197 (Reactome)
I(1,3,4,6)P4ArrowR-HSA-1855201 (Reactome)
I(1,3,4,6)P4R-HSA-1855159 (Reactome)
I(1,3,4,6)P4R-HSA-1855171 (Reactome)
I(1,3,4,6)P4R-HSA-1855201 (Reactome)
I(1,3,4,6)P4R-HSA-1855228 (Reactome)
I(1,4)P2ArrowR-HSA-1855174 (Reactome)
I(1,4)P2ArrowR-HSA-1855222 (Reactome)
I(1,4)P2R-HSA-1855208 (Reactome)
I(1,4,5)P3ArrowR-HSA-1855177 (Reactome)
I(1,4,5)P3ArrowR-HSA-1855190 (Reactome)
I(1,4,5)P3ArrowR-HSA-1855200 (Reactome)
I(1,4,5)P3ArrowR-HSA-1855205 (Reactome)
I(1,4,5)P3ArrowR-HSA-1855214 (Reactome)
I(1,4,5)P3ArrowR-HSA-1855217 (Reactome)
I(1,4,5)P3ArrowR-HSA-1855221 (Reactome)
I(1,4,5)P3R-HSA-1855153 (Reactome)
I(1,4,5)P3R-HSA-1855174 (Reactome)
I(1,4,5)P3R-HSA-1855190 (Reactome)
I(1,4,5)P3R-HSA-1855217 (Reactome)
I(1,4,5)P3R-HSA-1855222 (Reactome)
I(1,4,5)P3R-HSA-1855233 (Reactome)
I(1,4,5,6)P4ArrowR-HSA-1855163 (Reactome)
I(1,4,5,6)P4ArrowR-HSA-1855189 (Reactome)
I(1,4,5,6)P4R-HSA-1855185 (Reactome)
I(1,4,5,6)P4R-HSA-1855189 (Reactome)
I(3,4)P2ArrowR-HSA-1855232 (Reactome)
I(3,4)P2R-HSA-1855202 (Reactome)
I(3,4,5,6)P4ArrowR-HSA-1855219 (Reactome)
I(3,4,5,6)P4R-HSA-1855162 (Reactome)
I(3,4,6)P3ArrowR-HSA-1855159 (Reactome)
I(3,4,6)P3R-HSA-1855169 (Reactome)
I1PArrowR-HSA-6809561 (Reactome)
I1PArrowR-HSA-6809565 (Reactome)
I1PR-HSA-1855154 (Reactome)
I3PArrowR-HSA-1855178 (Reactome)
I3PArrowR-HSA-1855202 (Reactome)
I3PR-HSA-1855210 (Reactome)
I4PArrowR-HSA-1855208 (Reactome)
I4PR-HSA-1855211 (Reactome)
IMPA1/2mim-catalysisR-HSA-1855154 (Reactome)
IMPA1/2mim-catalysisR-HSA-1855210 (Reactome)
IMPA1/2mim-catalysisR-HSA-1855211 (Reactome)
INPP1:Mg2+mim-catalysisR-HSA-1855208 (Reactome)
INPP1:Mg2+mim-catalysisR-HSA-1855232 (Reactome)
INPP4A/Bmim-catalysisR-HSA-1855180 (Reactome)
INPP4A/Bmim-catalysisR-HSA-1855202 (Reactome)
INPP5(3)/ITPK1mim-catalysisR-HSA-1855218 (Reactome)
INPP5(4)mim-catalysisR-HSA-1855174 (Reactome)
INPP5A/Bmim-catalysisR-HSA-1855222 (Reactome)
IP6ArrowR-HSA-1855164 (Reactome)
IP6ArrowR-HSA-1855176 (Reactome)
IP6ArrowR-HSA-1855179 (Reactome)
IP6ArrowR-HSA-1855187 (Reactome)
IP6ArrowR-HSA-1855188 (Reactome)
IP6ArrowR-HSA-1855198 (Reactome)
IP6ArrowR-HSA-2023971 (Reactome)
IP6K1/2mim-catalysisR-HSA-1855157 (Reactome)
IP6K1/2mim-catalysisR-HSA-1855181 (Reactome)
IP6K1/2mim-catalysisR-HSA-1855207 (Reactome)
IP6K1/2mim-catalysisR-HSA-1855224 (Reactome)
IP6K1/2mim-catalysisR-HSA-1855230 (Reactome)
IP6K1/3mim-catalysisR-HSA-1855158 (Reactome)
IP6K1/3mim-catalysisR-HSA-1855193 (Reactome)
IP6K1/3mim-catalysisR-HSA-1855194 (Reactome)
IP6K1/3mim-catalysisR-HSA-1855223 (Reactome)
IP6K1/3mim-catalysisR-HSA-1855227 (Reactome)
IP6R-HSA-1855164 (Reactome)
IP6R-HSA-1855187 (Reactome)
IP6R-HSA-1855188 (Reactome)
IP6R-HSA-1855207 (Reactome)
IP6R-HSA-1855216 (Reactome)
IP6R-HSA-1855225 (Reactome)
IP6R-HSA-1855227 (Reactome)
IPMKmim-catalysisR-HSA-1855185 (Reactome)
IPMKmim-catalysisR-HSA-1855206 (Reactome)
IPMKmim-catalysisR-HSA-1855228 (Reactome)
IPMKmim-catalysisR-HSA-1855233 (Reactome)
IPPKmim-catalysisR-HSA-1855176 (Reactome)
IPPKmim-catalysisR-HSA-1855179 (Reactome)
ISYNA1:NAD+mim-catalysisR-HSA-1855178 (Reactome)
ITPK1:Mg2+mim-catalysisR-HSA-1855159 (Reactome)
ITPK1:Mg2+mim-catalysisR-HSA-1855162 (Reactome)
ITPK1:Mg2+mim-catalysisR-HSA-1855169 (Reactome)
ITPK1:Mg2+mim-catalysisR-HSA-1855171 (Reactome)
ITPK1:Mg2+mim-catalysisR-HSA-1855172 (Reactome)
ITPK1:Mg2+mim-catalysisR-HSA-1855197 (Reactome)
ITPK1:Mg2+mim-catalysisR-HSA-1855219 (Reactome)
ITPKA/B/Cmim-catalysisR-HSA-1855153 (Reactome)
Inositol

polyphosphate

5-phosphatase
mim-catalysisR-HSA-1855213 (Reactome)
InsArrowR-HSA-1855154 (Reactome)
InsArrowR-HSA-1855210 (Reactome)
InsArrowR-HSA-1855211 (Reactome)
InsR-HSA-5678327 (Reactome)
MINPP1mim-catalysisR-HSA-1855163 (Reactome)
MINPP1mim-catalysisR-HSA-1855200 (Reactome)
MINPP1mim-catalysisR-HSA-1855225 (Reactome)
MIOX:2xFe2+mim-catalysisR-HSA-5678327 (Reactome)
MTMR7:MTMR9ArrowR-HSA-6809238 (Reactome)
MTMR7:MTMR9mim-catalysisR-HSA-6809565 (Reactome)
MTMR7R-HSA-6809238 (Reactome)
MTMR7mim-catalysisR-HSA-6809561 (Reactome)
MTMR9R-HSA-6809238 (Reactome)
NUDT(1)mim-catalysisR-HSA-1855165 (Reactome)
NUDT(1)mim-catalysisR-HSA-1855198 (Reactome)
NUDT(1)mim-catalysisR-HSA-2023971 (Reactome)
NUDT(1)mim-catalysisR-HSA-2023973 (Reactome)
NUDT4:Mg2+/Mn2+mim-catalysisR-HSA-1855166 (Reactome)
O2R-HSA-5678327 (Reactome)
PI(4,5)P2R-HSA-1855177 (Reactome)
PI(4,5)P2R-HSA-1855214 (Reactome)
PI(4,5)P2R-HSA-1855221 (Reactome)
PL(C)D4:3xCa2+mim-catalysisR-HSA-1855214 (Reactome)
PLCbzmim-catalysisR-HSA-1855177 (Reactome)
PLCdeghmim-catalysisR-HSA-1855221 (Reactome)
PP-IP4R-HSA-1855166 (Reactome)
PPIP5K1/2mim-catalysisR-HSA-1855182 (Reactome)
PPIP5K1/2mim-catalysisR-HSA-1855216 (Reactome)
PTEN:Mg2+mim-catalysisR-HSA-1855205 (Reactome)
PiArrowR-HSA-1855154 (Reactome)
PiArrowR-HSA-1855159 (Reactome)
PiArrowR-HSA-1855163 (Reactome)
PiArrowR-HSA-1855165 (Reactome)
PiArrowR-HSA-1855166 (Reactome)
PiArrowR-HSA-1855171 (Reactome)
PiArrowR-HSA-1855174 (Reactome)
PiArrowR-HSA-1855180 (Reactome)
PiArrowR-HSA-1855198 (Reactome)
PiArrowR-HSA-1855200 (Reactome)
PiArrowR-HSA-1855202 (Reactome)
PiArrowR-HSA-1855205 (Reactome)
PiArrowR-HSA-1855208 (Reactome)
PiArrowR-HSA-1855210 (Reactome)
PiArrowR-HSA-1855211 (Reactome)
PiArrowR-HSA-1855213 (Reactome)
PiArrowR-HSA-1855218 (Reactome)
PiArrowR-HSA-1855219 (Reactome)
PiArrowR-HSA-1855222 (Reactome)
PiArrowR-HSA-1855225 (Reactome)
PiArrowR-HSA-1855232 (Reactome)
PiArrowR-HSA-2023971 (Reactome)
PiArrowR-HSA-2023973 (Reactome)
PiArrowR-HSA-6809561 (Reactome)
PiArrowR-HSA-6809565 (Reactome)
R-HSA-1855153 (Reactome) Inositol-trisphosphate 3-kinase A (ITPKA), B (ITPKB), and C (ITPKC) phosphorylate inositol 1,4,5-trisphosphate (I(1,4,5)P3) to inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) (Dewaste et al. 2003).
R-HSA-1855154 (Reactome) Inositol monophosphatase 1 (IMPA1) and 2 (IMPA2) homodimers dephosphorylate inositol 1-phosphate (I1P) to inositol (Ins). In vitro, IMPA1 and 2 differ in their pH optima and IMPA1 has a significantly greater activity on IP4 than does IMPA2 (McAllister et al. 1992, Ohnishi et al. 2007).
R-HSA-1855155 (Reactome) Inositol 1,3,4,5,6-pentakisphosphate I(1,3,4,5,6)P5 translocates from the endoplasmic reticulum (ER) lumen to the cytosol (Nalaskowski et al. 2002, Ho et al. 2002, Brehm et al. 2007).
R-HSA-1855157 (Reactome) In the nucleus, inositol hexakisphosphate kinase 1 (IP6K1) and 2 (IP6K2) phosphorylate 1-diphospho-2,3,4,5,6-pentakisphosphate (1-PP-IP5) to make inositol 1,5-bisdiphospho-2,3,4,6-tetrakisphosphate (1,5-(PP)2-IP4) (Saiardi et al. 2001, Mulugu et al. 2007).
R-HSA-1855158 (Reactome) Inositol hexakisphosphate kinase 1 (IP6K1) and 3 (IP6K3) phosphorylate inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-PP-IP5) to inositol 5-triphospho- 1,2,3,4,6-pentakisphosphate (5-PPP-IP5).

The following lists the above proteins with their corresponding literature references: IP6K1 (Saiardi et al. 2001, Draskovic et al. 2008) and IP6K3 (Saiardi et al. 2001, Draskovic et al. 2008).
R-HSA-1855159 (Reactome) Inositol-tetrakisphosphate 1-kinase (ITPK1) dephosphorylates inositol 1,3,4,6-tetrakisphosphate (I(1,3,4,6)P4) to inositol 3,4,6-trisphosphate (I(3,4,6)P3) (Ho et al. 2002).
R-HSA-1855160 (Reactome) Inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) translocates from the endoplasmic reticulum (ER) lumen to the nucleus (Verbsky et al. 2002, Brehm et al. 2007, Choi et al. 2007).
R-HSA-1855161 (Reactome) Inositol 1,3,4,5,6-pentakisphosphate I(1,3,4,5,6)P5 translocates from the nucleus to the cytosol (Nalaskowski et al. 2002; Ho et al. 2002, Brehm et al. 2007).
R-HSA-1855162 (Reactome) Inositoltetrakisphosphate 1-kinase (ITPK1) phosphorylates inositol 3,4,5,6-tetrakisphosphate (I(3,4,5,6)P4) to inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) (Yang & Shears 2000).
R-HSA-1855163 (Reactome) In the endoplasmic reticulum (ER) lumen, multiple inositol polyphosphate phosphatase 1 (MINPP1) dephosphorylates inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) to inositol 1,4,5,6-tetrakisphosphate (I(1,4,5,6)P4) (Caffrey et al. 1999, Chi et al. 1999).
R-HSA-1855164 (Reactome) 1,2,3,4,5,6-hexakisphosphate (IP6) translocates from the cytosol to the endoplasmic reticulum (ER) lumen (Caffrey et al. 1999).
R-HSA-1855165 (Reactome) Diphosphoinositol polyphosphate phosphohydrolases (DIPP), also known as nucleoside diphosphate-linked moiety X motif (NUDT) proteins, dephosphorylate inositol bisdiphospho-tetrakisphosphate ((PP)2-IP4) to inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-PP-IP5). The NUDT proteins involved are: nucleoside diphosphate-linked moiety X motif 3 (NUDT3), 4 (NUDT4), 10 (NUDT10), and 11 (NUDT11). The reactants consumed are: inositol 1,5-bisdiphospho-2,3,4,6-tetrakisphosphate (1,5-(PP)2-IP4) and inositol 3,5-bisdiphospho-1,2,4,6-tetrakisphosphate (3,5-(PP)2-IP4).

The following lists the above proteins with their corresponding literature references: NUDT3 (Safrany et al. 1999, Safrany et al. 1998, Yang et al. 1999, Caffrey et al. 2000), NUDT4 (Caffrey et al. 2000), NUDT10 (Leslie et al. 2002, Hidaka et al. 2002) and NUDT11 (Leslie et al. 2002, Hidaka et al. 2002).
R-HSA-1855166 (Reactome) Diphosphoinositol polyphosphate phosphohydrolase 2, also known as nucleoside diphosphate-linked moiety X motif 4 (NUDT4), dephosphorylates diphospho- tetrakisphosphate (PP-IP4) to inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5). The products made are: inositol 5-diphospho-1,3,4,6-tetrakisphosphate (5-PP-IP4); inositol 1-diphospho-3,4,5,6-tetrakisphosphate (1-PP-IP4); and inositol 3-diphospho-1,4,5,6-tetrakisphosphate (3-PP-IP4).

The following lists the above protein with its corresponding literature references: NUDT4 (Saiardi et al. 2001, Saiardi et al. 2000).
R-HSA-1855168 (Reactome) Inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) translocates from the cytosol to the nucleus (Dewaste et al. 2003, Nalaskowski et al. 2002).
R-HSA-1855169 (Reactome) Inositol-tetrakisphosphate 1-kinase (ITPK1) phosphorylates inositol 3,4,6-trisphosphate (I(3,4,6)P3) to inositol 1,3,4,6-tetrakisphosphate (I(1,3,4,6)P4) (Ho et al. 2002).
R-HSA-1855171 (Reactome) Inositol-tetrakisphosphate 1-kinase (ITPK1) dephosphorylates inositol 1,3,4,6-tetrakisphosphate (I(1,3,4,6)P4) to inositol 1,3,4-trisphosphate (I(1,3,4)P3) (Ho et al. 2002).
R-HSA-1855172 (Reactome) The broad-specificity enzyme inositol-tetrakisphosphate 1-kinase (ITPK1) phosphorylates inositol 1,3,4-trisphosphate (I(1,3,4)P3) to inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) (Wilson & Majerus 1996).
R-HSA-1855173 (Reactome) Inositol 5-diphospho-1,3,4,6-tetrakisphosphate (5-PP-IP4) translocates from the nucleus to the cytosol (Saiardi et al. 2001, Saiardi et al. 2000).
R-HSA-1855174 (Reactome) A group of inositol phosphatases dephosphorylate inositol 1,4,5-trisphosphate (I(1,4,5)P3) to inositol 1,4-bisphosphate (I(1,4)P2). The group of inositol phosphatases involved are: inositol polyphosphate 5-phosphatase OCRL-1 (OCRL), phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (INPP5J), and synaptic inositol-1,4,5-trisphosphate 5-phosphatase 1 (SYNJ1).

The following lists the above proteins with their corresponding literature references: OCRL (Zhang et al. 1995, Zhang et al. 1998, Schmid et al. 2004); INPP5J (Mochizuki & Thompson 1999); SYNJ1 (Schmid et al. 2004).
R-HSA-1855176 (Reactome) In the nucleus, inositol-pentakisphosphate 2-kinase (IPPK - also known as IP5-2K) phosphorylates inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) to inositol 1,2,3,4,5,6-hexakisphosphate (IP6) (Verbsky et al. 2002, Brehm et al. 2007, Choi et al. 2007).
R-HSA-1855177 (Reactome) At the plasma membrane, a group of phospholipase C (“PLC(bz))� proteins hydrolyse phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) to inositol 1,4,5 trisphosphate (I(1,4,5)P3) and diacylglycerol (DAG). This group of phospholipase C proteins lack a PH domain and so are is cytosolic. Their C2 domains bind to PI(4,5)P2 at the membrane. The PLC-beta proteins are thought to be responsible for the majority of PI(4,5)P2 hydrolysis.

The phospholipase C isoforms involved and their corresponding literature references are: phosphoinositide phospholipase C beta-1 (PLCB1) (Caricasole et al. 2000, Jhon et al. 1993, Park et al. 1992); beta-2 (PLCB2) (Jhon et al. 1993, Park et al. 1992); beta-3 (PLCB3) (Carozzi et al. 1992, Jhon et al. 1993); beta-4 (PLCB4) (Alvarez et al. 1995, Lee et al. 1993); and zeta-1 (PLCZ1) (Kouchi et al. 2005, Rogers et al. 2004).
R-HSA-1855178 (Reactome) Inositol-3-phosphate synthase 1 (ISYNA1) aka hIPS isomerises glucose 6-phosphate (Glc6P) to inositol 3-phosphate (I3P) (Ju et al. 2004).
R-HSA-1855179 (Reactome) Inositolpentakisphosphate 2-kinase (IPPK), also known as IP52K, phosphorylates inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) to inositol 1,2,3,4,5,6-hexakisphosphate (IP6) (Verbski et al. 2002, Brehm et al. 2007, Choi et al. 2007).
R-HSA-1855180 (Reactome) Type I (INPP4A) and type II inositol-3,4-bisphosphate 4-phosphatase (INPP4B) dephosphorylate inositol 1,3,4-trisphosphate (I(1,3,4)P3) to inositol 1,3-bisphosphate (I(1,3)P2) (Norris et al. 1995, Norris et al. 1997).
R-HSA-1855181 (Reactome) In the nucleus, inositol hexakisphosphate kinase 1 (IP6K1) and 2 (IP6K2) phosphorylate inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) to inositol 5-diphospho-(1,3,4,6)-tetrakisphosphate (5-PP-IP4) (Saiardi et al. 2001, Saiardi et al. 2000, Draskovic et al. 2008).
R-HSA-1855182 (Reactome) Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1/2 (PPIP5K1) and 2 (PPIP5K2) phosphorylate inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-PP-IP5) to inositol 1,5-bisdiphospho-2,3,4,6-tetrakisphosphate (1,5-(PP)2-IP4) (Fridy et al. 2007, Mulugu et al. 2007, Choi et al. 2007, Lin et al. 2009).
R-HSA-1855185 (Reactome) In the nucleus, inositol polyphosphate multikinase (IPMK) phosphorylates inositol 1,4,5,6-tetrakisphosphate (I(1,4,5,6)P4) to inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) (Nalaskowski et al. 2002, Chang & Majerus 2006).
R-HSA-1855186 (Reactome) Inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) translocates from the cytosol to the endoplasmic reticulum (ER) lumen (Caffrey et al. 1999, Chi et al. 1999).
R-HSA-1855187 (Reactome) Inositol 1,2,3,4,5,6-hexakisphosphate (IP6) translocates from the nucleus to the endoplasmic reticulum (ER) lumen (Caffrey et al. 1999).
R-HSA-1855188 (Reactome) Inositol 1,2,3,4,5,6-hexakisphosphate (IP6) translocates from the cytosol to the nucleus (Saiardi et al. 2001).
R-HSA-1855189 (Reactome) Inositol 1,4,5,6-tetrakisphosphate (I(1,4,5,6)P4) translocates from the endoplasmic reticulum (ER) lumen to the nucleus (Caffrey et al. 1999, Chi et al. 1999, Nalaskowski et al. 2002).
R-HSA-1855190 (Reactome) Inositol 1,4,5-trisphosphate (I(1,4,5)P3) translocates from the cytosol to the nucleus (Dewaste et al. 2003, Nalaskowski et al. 2002).
R-HSA-1855193 (Reactome) Inositol hexakisphosphate kinase 1 (IP6K1) and 3 (IP6K3) phosphorylate inositol 1-diphospho-3,4,5,6-tetrakisphosphate (1-PP-IP4) to form inositol 1,5-bisdiphospho-3,4,6-trisphosphate (1,5-(PP)2-IP3) (Saiardi et al. 2001, Saiardi et al. 2000, Draskovic et al. 2008).
R-HSA-1855194 (Reactome) Inositol hexakisphosphate kinase 1 (IP6K1) and 3 (IP6K3) phosphorylate 1-diphospho-2,3,4,5,6-pentakisphosphate (1-PP-IP5) to form inositol 1,5-bisdiphospho-2,3,4,6-tetrakisphosphate (1,5-(PP)2-IP4) (Saiardi et al. 2001, Mulugu et al. 2007).
R-HSA-1855195 (Reactome) Inositol 1,3,4,5,6-pentakisphosphate I(1,3,4,5,6)P5 translocates from the cytosol to the endoplasmic reticulum (ER) lumen (Caffrey et al. 1999, Chi et al. 1999).
R-HSA-1855197 (Reactome) Inositol-tetrakisphosphate 1-kinase (ITPK1) phosphorylates inositol 1,3,4-trisphosphate (I(1,3,4)P3) to inositol 1,3,4,6-tetrakisphosphate (I(1,3,4,6)P4) (Wilson & Majerus 1996, Yang & Shears 2000).
R-HSA-1855198 (Reactome) Diphosphoinositol polyphosphate phosphohydrolases (DIPP), also known as nucleoside diphosphate-linked moiety X motif (NUDT) proteins, dephosphorylate inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-PP-IP5) to inositol 1,2,3,4,5,6-hexakisphosphate (IP6). The NUDT proteins involved are: nucleoside diphosphate-linked moiety X motif 3 (NUDT3), 4 (NUDT4), 10 (NUDT10), and 11 (NUDT11).

The following lists the above proteins with their corresponding literature references: NUDT3 (Safrany et al. 1999, Safrany et al. 1998, Yang et al. 1999, Caffrey et al. 2000), NUDT4 (Caffrey et al. 2000), NUDT10 (Leslie et al. 2002, Hidaka et al. 2002) and NUDT11 (Leslie et al. 2002, Hidaka et al. 2002).
R-HSA-1855200 (Reactome) In the endoplasmic reticulum (ER) lumen, multiple inositol polyphosphate phosphatase 1 (MINPP1) dephosphorylates inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) to inositol 1,4,5-trisphosphate (I(1,4,5)P3) (Caffrey et al. 1999, Chi et al. 1999).
R-HSA-1855201 (Reactome) Inositol 1,3,4,6-tetrakisphosphate (I(1,3,4,6)P4) translocates from the cytosol to the nucleus (Ho et al. 2002, Nalaskowski et al. 2002).
R-HSA-1855202 (Reactome) Type I (INPP4A) and type II inositol-3,4-bisphosphate 4-phosphatase (INPP4B) dephosphorylate inositol 3,4-bisphosphate (I(3,4)P2) to inositol 3-phosphate (I3P) (Norris et al. 1995, Norris et al. 1997).
R-HSA-1855203 (Reactome) Inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-PP-IP5) translocates from the nucleus to the cytosol (Fridy et al. 2007).
R-HSA-1855205 (Reactome) Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase aka phosphatase and tensin homolog (PTEN) dephosphorylates inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) to inositol 1,4,5-trisphosphate (I(1,4,5)P3) (Maehama & Dixon 1998, Han et al. 2000).
R-HSA-1855206 (Reactome) In the nucleus, inositol polyphosphate multikinase (IPMK) phosphorylates inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) to inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) (Nalaskowski et al. 2002, Chang & Majerus 2006).
R-HSA-1855207 (Reactome) In the nucleus, inositol hexakisphosphate kinase 1 (IP6K1) and 2 (IP6K2) phosphorylate inositol 1,2,3,4,5,6-hexakisphosphate (IP6) to inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-PP-IP5).

The following lists the above proteins with their corresponding literature references: IP6K1 (Saiardi et al. 2001, Mulugu et al. 2007, Draskovic et al. 2008) and IP6K2 (Saiardi et al. 2001, Mulugu et al. 2007, Draskovic et al. 2008).
R-HSA-1855208 (Reactome) Inositol polyphosphate 1-phosphatase (INPP1) dephosphorylates inositol 1,4-bisphosphate (I(1,4)P2) to inositol 4-phosphate (I4P) (York et al. 1993).
R-HSA-1855210 (Reactome) Inositol monophosphatase 1 (IMPA1) and 2 (IMPA2) homodimers dephosphorylate inositol 3-phosphate (I3P) to inositol (Ins). In vitro, IMPA1 and 2 differ in their pH optima and IMPA1 has a significantly greater activity on IP4 than does IMPA2 (Ohnishi et al. 2007).
R-HSA-1855211 (Reactome) Inositol monophosphatase 1 (IMPA1) and 2 (IMPA2) homodimers dephosphorylate inositol 4-phosphate (I4P) to inositol (Ins). In vitro, IMPA1 and 2 differ in their pH optima and IMPA1 has a significantly greater activity on IP4 than does IMPA2 (Ohnishi et al. 2007).
R-HSA-1855212 (Reactome) 1-diphospho-2,3,4,5,6-pentakisphosphate (1-PP-IP5) and 3-diphospho-1,2,4,5,6-pentakisphosphate (3-PP-IP5) translocate from the cytosol to the nucleus (Saiardi et al. 2001, Mulugu et al. 2007).
R-HSA-1855213 (Reactome) Type II inositol-1,4,5-trisphosphate 5-phosphatase (INPP5B) is attached to the plasma membrane where it dephosphorylates inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) to inositol 1,3,4-trisphosphate (I(1,3,4)P3 (Jefferson & Majerus 1995, Ross et al. 1991, Schmid et al. 2004). INPP5B is isoprenylated at its C-terminus for membrane attachment.
R-HSA-1855214 (Reactome) At the endoplasmic reticulum (ER) membrane, 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-4 (PLCD4) and phospholipase D4 (PLD4) hydrolyse phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to inositol 1,4,5-trisphosphate (I(1,4,5)P3) and diacylglycerol (DAG). Both lipases are thought to require three Ca2+ ions per subunit for activity. PLD4 is attached to the ER membrane via its PH domain while its C2 domain binds to the PI(4,5)P2 in the membrane (Lee et al. 2004). Overexpression or dysregulated expression of PLCD4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway. PLCD4 can therefore be a useful tumor marker for breast or testicular cancer tissues (Leung et al. 2004).
R-HSA-1855216 (Reactome) Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1/2 (PPIP5K1) and 2 (PPIP5K2) phosphorylate inositol 1,2,3,4,5,6-hexakisphosphate (IP6) to inositol 1-diphospho-2,3,4,5,6-pentakisphosphate (1-PP-IP5)) (Fridy et al. 2007, Mulugu et al. 2007, Choi et al. 2007, Lin et al. 2009; Wang et al. 2011).
R-HSA-1855217 (Reactome) Inositol 1,4,5-trisphosphate (I(1,4,5)P3) translocates from the endoplasmic reticulum (ER) lumen to the cytosol (Caffrey et al. 1999, Chi et al. 1999).
R-HSA-1855218 (Reactome) A group of inositol phosphatases and the broad specificity enzyme inositol-tetrakisphosphate 1-kinase (ITPK1) dephosphorylate inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) to inositol 1,3,4-trisphosphate (I(1,3,4)P3). The group of inositol phosphatases involved are: inositol polyphosphate 5-phosphatase OCRL-1 (OCRL), phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 (INPP5D) aka SHIP1, phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 2 (INPPL1) aka SHIP2, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (INPP5J) aka PIPP, and synaptic inositol-1,4,5-trisphosphate 5-phosphatase 1 (SYNJ1).

The following lists the above proteins with their corresponding literature references: OCRL (Chang et al. 2002, Zhang et al. 1995, Zhang et al. 1998, Schmid et al. 2004); INPP5D (Drayer et al. 1996, Kavanaugh et al. 1996); INPPL1 (Chi et al. 2004); INPP5J (Mochizuki & Thompson 1999); SYNJ1 (Schmid et al. 2004); ITPK1 (Ho et al. 2002).
R-HSA-1855219 (Reactome) Inositol-tetrakisphosphate 1-kinase (ITPK1) dephosphorylates inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) to inositol 3,4,5,6-tetrakisphosphate (I(3,4,5,6)P4) (Ho et al. 2002).
R-HSA-1855220 (Reactome) Inositol 1,5-bisdiphospho-2,3,4,6-tetrakisphosphate (1,5-(PP)2-IP4) and inositol 3,5-bisdiphospho-1,2,4,6-tetrakisphosphate (3,5-(PP)2-IP4) translocate from the nucleus to the cytosol (Leslie et al. 2002).
R-HSA-1855221 (Reactome) A group of phospholipase C proteins (“PLC(degh)�) bind to the plasma membrane via their PH domains. These phospholipases hydrolyse phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) to inositol 1,4,5 trisphosphate (I(1,4,5)P3) and diacylglycerol (DAG). The C2 domains of the enzymes bind to PI(4,5)P2 at the membrane.

The phospholipase C isoforms involved and their corresponding literature references are: phosphoinositide phospholipase C delta-1(PLCD1) (Cheng et al. 1995); epsilon-1 (PLCE1) (Song et al. 2001, Lopez et al. 2001); delta-3 (PLCD3) (Pawelczyk & Matecki 1997); gamma-1 (PLCG1) (Harita et al. 2009, Baldassare et al. 1989); gamma-2 (PLCG2) (Banno et al. 1988); eta-1 (PLCH1) (Hwang et al. 2005); and eta-2 (PLCH2) (Zhou et al 2005).
R-HSA-1855222 (Reactome) Type I inositol-1,4,5-trisphosphate 5-phosphatase (INPP5A) and the Type II phosphatase (INPP5B) are isoprenylated to the plasma membrane and act as a lipid anchor. Here they dephosphorylate inositol 1,4,5-trisphosphate (I(1,4,5)P3) to inositol 1,4-bisphosphate I(1,4)P2. ).

The following lists the above proteins with their corresponding literature references: INPP5A (Laxminarayan et al. 1994); INPP5B (Jefferson & Majerus 1995, Ross et al. 1991, Schmid et al. 2004).
R-HSA-1855223 (Reactome) Inositol hexakisphosphate kinase 1 (IP6K1) and 3 (IP6K3) phosphorylate inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) to inositol 5-diphospho-(1,3,4,6)-tetrakisphosphate (5-PP-IP4) (Saiardi et al. 2001, Saiardi et al. 2000, Draskovic et al. 2008).
R-HSA-1855224 (Reactome) In the nucleus, inositol hexakisphosphate kinase 1 (IP6K1) and 2 (IP6K2) phosphorylate inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-PP-IP5) to inositol 5-triphospho- 1,2,3,4,6-pentakisphosphate (5-PPP-IP5) (Saiardi et al. 2001, Draskovic et al. 2008) and IP6K2 (Saiardi et al. 2001, Draskovic et al. 2008). While this reaction has been demonstrated to occur in vitro, the extent to which it occurs in vivo is less clear.
R-HSA-1855225 (Reactome) In the endoplasmic reticulum (ER) lumen, multiple inositol polyphosphate phosphatase 1 (MINPP1) dephosphorylates 1,2,3,4,5,6-hexakisphosphate (IP6) to inositol 1,2,4,5,6-pentakisphosphate (I(1,2,4,5,6)P5) (Caffrey et al. 1999, Chi et al. 1999, Deleu et al. 2006, Nogimori et al. 1991).
R-HSA-1855227 (Reactome) Inositol hexakisphosphate kinase 1 (IP6K1) and 3 (IP6K3) phosphorylate inositol 1,2,3,4,5,6-hexakisphosphate (IP6) to inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-PP-IP5).

The following lists the above proteins with their corresponding literature references: IP6K1 (Saiardi et al. 2001, Mulugu et al. 2007, Draskovic et al. 2008; Lin et al. 2009) and IP6K3 (Saiardi et al. 2001, Draskovic et al. 2008).
R-HSA-1855228 (Reactome) In the nucleus, inositol polyphosphate multikinase (IPMK) phosphorylates inositol 1,3,4,6-tetrakisphosphate (I(1,3,4,6)P4) to inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) (Chang et al. 2002, Chang & Majerus 2006).
R-HSA-1855230 (Reactome) In the nucleus, inositol hexakisphosphate kinase 1 (IP6K1) and 2 (IP6K2) phosphorylate5-diphospho-1,3,4,6-tetrakisphosphate (5-PP-IP4) to inositol 1,5-bisdiphospho-3,4,6-trisphosphate (1,5-(PP)2-IP3) (Saiardi et al. 2001, Saiardi et al. 2000, Draskovic et al. 2008).
R-HSA-1855232 (Reactome) Inositol polyphosphate 1-phosphatase (INPP1) dephosphorylates inositol 1,3,4-trisphosphate (I(1,3,4)P3) to inositol 3,4-bisphosphate (I(3,4)P2) (York et al. 1993).
R-HSA-1855233 (Reactome) In the nucleus, inositol polyphosphate multikinase (IPMK) phosphorylates inositol 1,4,5-trisphosphate (I(1,4,5)P3) to inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) (Nalaskowski et al. 2002, Chang et al. 2002, Chang & Majerus 2006).
R-HSA-2023971 (Reactome) Diphosphoinositol polyphosphate phosphohydrolases, also known as nucleoside diphosphate-linked moiety X motif (NUDT) proteins, dephosphorylate inositol diphospho-pentakisphosphate (PP-IP5) to inositol 1,2,3,4,5,6-hexakisphosphate (IP6). The NUDT proteins involved are: nucleoside diphosphate-linked moiety X motif 3 (NUDT3), 4 (NUDT4), 10 (NUDT10), and 11 (NUDT11). The reactants consumed are: inositol 1-diphospho-2,3,4,5,6-pentakisphosphate (1-PP-IP5) and 3-diphospho-1,2,4,5,6-pentakisphosphate (3-PP-IP5).

The following lists the above proteins with their corresponding literature references: NUDT3 (Safrany et al. 1999, Safrany et al. 1998, Yang et al. 1999, Caffrey et al. 2000), NUDT4 (Caffrey et al. 2000), NUDT10 (Leslie et al. 2002, Hidaka et al. 2002) and NUDT11 (Leslie et al. 2002, Hidaka et al. 2002).
R-HSA-2023973 (Reactome) Diphosphoinositol polyphosphate phosphohydrolases (DIPP), also known as nucleoside diphosphate-linked moiety X motif (NUDT) proteins, dephosphorylate inositol bisdiphospho-tetrakisphosphate ((PP)2-IP4) to inositol diphospho-pentakisphosphate (PP-IP5). The NUDT proteins involved are: nucleoside diphosphate-linked moiety X motif 3 (NUDT3), 4 (NUDT4), 10 (NUDT10), and 11 (NUDT11). The reactants consumed are: inositol 1,5-bisdiphospho-2,3,4,6-tetrakisphosphate (1,5-(PP)2-IP4) and inositol 3,5-bisdiphospho-1,2,4,6-tetrakisphosphate (3,5-(PP)2-IP4). The products made are: inositol 1-diphospho-2,3,4,5,6-pentakisphosphate (1-PP-IP5) and 3-diphospho-1,2,4,5,6-pentakisphosphate (3-PP-IP5).

The following lists the above proteins with their corresponding literature references: NUDT3 (Safrany et al. 1999, Safrany et al. 1998, Yang et al. 1999, Caffrey et al. 2000), NUDT4 (Caffrey et al. 2000), NUDT10 (Leslie et al. 2002, Hidaka et al. 2002) and NUDT11 (Leslie et al. 2002, Hidaka et al. 2002).
R-HSA-5678327 (Reactome) Inositol oxidase (MIOX) catalyses the oxidation of inositol (Ins) to glucuronic acid (GlcA). MIOX binds two Fe2+ ions as cofactor (Arner et al. 2004, Thorsell et al. 2008).
R-HSA-6809238 (Reactome) MTMR7 binds to MTMR9, an enzymatically inactive myotubularin family member, which results in increased enzymatic activity of MTMR7. Almost all MTMR7 in the cell is present in the complex with MTMR9 (Mochizuki and Majerus 2003).
R-HSA-6809561 (Reactome) MTMR7 dephosphorylates inositol-1,3-bisphosphate, I(1,3)P2, acting as an inositol-1,3-bisphosphate 3-phosphatase (Mochizuki and Majerus 2003).
R-HSA-6809565 (Reactome) Formation of a complex with MTMR9 results in 2- to 5-fold increase in MTMR7 inositol-1,3-bisphosphate 3-phosphatase catalytic activity (Mochizuki and Majerus 2003).
Personal tools