Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 20:52, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 5-7, 9...91418142, 14, 1719359, 12, 16, 25, 282, 148, 16, 22, 28, 31...mitochondrial matrixMRPL51 MRPL33 OXA1L MRPL13 MRPL10 MRPS5 MRPL12 MRPL3 MRPS27 Gly-tRNA(Gly) ERAL1 His-tRNA(His) MRPS33 Gly-tRNA(Gly) MRPL44 Thr-tRNA(Thr) MRPL15 MRPL55 MRPS28 Mitochondrial 12S rRNA MRPL27 MRPL57 Pro-tRNA(Pro) MRPL41 MRPL11 GFM2:GDPAURKAIP1 MRPL54 MRPS25 MRPL15 GDPMRPL47 MRPL19 MRPS23 MTIF2MRPL40 MRPL20 MRPL36 GADD45GIP1 tRNA(His) MRPS5 MRPL41 MRPL11 MRPS7 MRPL48 MRPL11 MRPS31 MRPL15 MRPL34 MRPL44 MRPL9 MRPS10 MRPL18 ICT1 MRPL41 MRPL14 MRPL2 MRPL32 Mitochondrial 16S rRNA MRPL49 MRPL37 MRPS25 MRPL50 MRPL51 TUFM:TSFM28S ribosomalsubunit:MTIF3MRPS9 MRPS34 MRPL38 MRPL40 MRPL50 MRPL13 MRPL50 MRPL51 MRPS30 MRPL11 MRPL2 ICT1 MRPL13 MRPS14 Ser-tRNA(Ser) MRPS34 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAPTCD3 tRNA(Tyr) MRPS27 MRPS35 MRPL44 MRPL1 CHCHD1 MRPS36 MRPL49 MRPL21 MRPL47 ERAL1 MRPL23 MRPS6 MRPS34 MRPL18 MRPS27 MRPL57 MRPL39 MRPS2 Ala-tRNA(Ala) MRPL18 MRPS14 PitRNA(Trp) PTCD3 MRPS30 MRPL30 MRPS35 MRPL10 DAP3 MRPS24 MRPS25 PTCD3 MRPL51 MRPL40 MRPL49 Lys-tRNA(Lys) MRPL12 Cys-tRNA(Cys) MRPL23 MRPS18A MRPS18B MRPL1 MRPS2 MRPS33 MRPS6 MRPS16 MRPL17 MRPL33 MRPL45 MRPL13 GTP MRPL44 Ile-tRNA(Ile) MRPL34 OXA1L DAP3 MRPS2 MRPS26 MRPS18A tRNA(Thr) fMet-tRNA(fMet) MRPS16 MRPL46 PiMRPS18A tRNA(Asn) MRPS23 MRPL36 MRPL20 peptidyl-tRNA with elongated peptide Asp-tRNA(Asp) MRPL4 MRPS22 tRNA(Gly) tRNA(Asp) PTCD3 Pro-tRNA(Pro) MRPL20 MRPL47 MRPS17 GTP MRPL36 MRPL30 tRNA(Ala) MRPL42 tRNA(Met) MRPS18C MRPL2 PTCD3 MRPL17 MT-TV MRPL1 GFM1 OXA1L MRPS6 MRPL36 MRPS22 MRPL52 tRNA(Val) ERAL1 MRPS18B MRPL46 tRNAGADD45GIP1 MRPS17 fMet-tRNA(fMet) MRPL38 MRPS5 MRPS7 MRPS9 MRPL22 MRPS30 MRPL46 tRNA(Asn) MRPS14 Lys-tRNA(Lys) ICT1 CHCHD1 MRPS17 MRPS30 Mitochondrial 16S rRNA Phe-tRNA(Phe) MRPL9 GTP MRPS11 Met-tRNA(Met) MRPS18B MRPL1 tRNA(Phe) MRPS28 MRPS11 MRPS12 OXA1L MRPL35 mRNA MRPS9 MRPL4 MRPS21 MRPS15 MRPS7 MRPS25 Gln-tRNA(Gln) 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPL34 MRPL55 MRPS12 GFM2 MRPS24 MRPS21 MRPL3 MRPL18 MRPL10 tRNA(Thr) GADD45GIP1 MRPS2 MRPS35 MRPS16 MRPL27 MRPS21 Mitochondrial 12S rRNA tRNA(Ile) MRPL46 tRNA(Phe) MRPS18A MRPS7 MRPS24 MRPL53 MRPL1 MRPL11 MRPL53 MRPL21 MRPL9 MRPL38 MRPS18C TSFMMRPL20 MTIF3 GTP MRPL53 55Sribosome:mRNA:peptidyl-tRNA at P-siteCHCHD1 MT-TV fMet-tRNA(fMet) MRPL45 MRPL57 tRNA(Met) MRPL42 CHCHD1 MRPS33 MRPS18C MRPL43 MRPL22 MRPL39 MRPS2 MRPL22 MRPL37 GADD45GIP1 tRNA(Leu) MRPS15 MRPL32 MRPL53 MRPL39 MRPS7 MRPS12 tRNA(Pro) MRPS11 MRPL45 MRPL16 MRPL46 MRPL2 GADD45GIP1 MRPL27 MRPL43 MRPL28 MRPL54 MRPL38 MRPL54 tRNA(Lys) OXA1L MRPS36 MRPS26 MRPL50 MRPL17 MRPL49 MRPL55 MRPS15 MRPS36 MRPL41 MRPL38 AURKAIP1 MRPS26 MRRF MRPS10 MRPL18 MRPS23 MRPL35 MRPL40 MRPL30 MRPS21 MRPS12 MRPS33 MRPS24 Mitochondrial 12S rRNA MRPL39 DAP3 MRPS18B MRPL33 MRPL39 MRPL19 PTCD3 MRPS6 MRPL36 MRPS16 MRPL28 MT-TV MRPL40 MRPS6 MRPS31 55Sribosome:MRRF:GFM2:GTPDAP3 MRPL39 MRPL18 MRPL45 tRNA(Thr) MRPL10 MRPS7 MRPS30 MT-TV MRPS2 MRPS21 CHCHD1 MRPL30 ICT1 MRPS17 ICT1 GFM2 MRPL54 MRPL22 tRNA(Arg) MRPL3 MRPS6 MRRFmRNA MRPS12 MRRF MRPL38 GFM1 MRPS30 MRPL24 MRPS24 MRPS34 Pro-tRNA(Pro) MRPS22 ERAL1 Asp-tRNA(Asp) MRPS23 MRPL33 MTIF2:GTPMRPL51 MRPS23 MRPL43 10-formyl-THFMRPL49 AURKAIP1 MRPL42 MRPL16 Gln-tRNA(Gln) MRPL3 MRPL54 OXA1L ERAL1 MRPL37 tRNA(Cys) MRPL43 MRPL17 Mitochondrial 16S rRNA MRPL57 Phe-tRNA(Phe) MRPS36 MRPS22 AURKAIP1 Mitochondrial 12S rRNA MRPS24 MRPL12 ERAL1 MRPL46 MRPS31 MRPL14 MRPS24 MRPL36 Asp-tRNA(Asp) MRPL49 THFtRNA(Leu) MRPL9 mRNA MRPL2 MRPS12 MRPL49 MRPS25 MRPS14 MRPL30 PTCD3 MRPL17 MRPL23 MRPS18C MRPS21 MRPL30 MRPL38 peptidyl-tRNA with elongated peptide Val-tRNA(Val) MRPL14 MRPL17 MRPS30 MRPL46 MRPL20 MRPL28 MRPL45 MRPL52 Ile-tRNA(Ile) MRPS18C MRPS12 MRPS18C MRPL10 DAP3 MRPL21 MRPL49 Mitochondrial 16S rRNA MRPL46 MRPL52 Leu-tRNA(Leu) MRPL15 tRNA(Ser) MRPL10 MRPL9 Leu-tRNA(Leu) MRPL19 MRPL23 GADD45GIP1 ERAL1 MRPS28 GFM1:GDPMRPS18C MRPL33 MT-TV MRPS15 MRPL11 MRPS7 Mitochondrial 12S rRNA Ile-tRNA(Ile) MRPL3 MRPL52 ICT1 PTCD3 GTP MRPS25 MRPS11 TUFM:GTP:aminoacyl-tRNAMRPS28 MRPL13 MRPS23 MRPL24 MRPL43 MRPL3 MRPL15 MRPL43 MRPS33 MRPL39 MRPS17 GADD45GIP1 MRPS6 tRNA(Ile) MRPS23 MRPL35 MRPS34 MRPL32 MRPL52 MRPL41 MRPS6 MRPS33 MRPL16 MRPL39 MRPL47 MRPS10 MRPS21 MRPL51 MRPS10 28S ribosomalsubunitMRPS22 MRPL48 39S ribosomalsubunitERAL1 MRPL52 MRPS26 MRPL15 MRPL39 tRNA(Glu) MRPS18B MRPS15 His-tRNA(His) MRPL36 MRPL14 MRPS26 TUFM MRPL27 MRPL42 MRPS10 MRPS22 GDP MRPS31 MRPL52 MRPL48 tRNA(Ala) MRPL57 Asn-tRNA(Asn) GTP peptidyl-tRNA with elongated peptide MRPL40 MRPS15 MRPL35 mRNA MRPL34 MRPS5 DAP3 tRNA(Met)MRPL38 MRPS31 MRPL24 MRPS28 MRPL11 MRPL38 MRPL13 DAP3 MRPS16 MRPL4 MRPS24 MRPL14 MRPS35 Cys-tRNA(Cys) MRPS23 MRPL4 Glu-tRNA(Glu) MRPL34 MRPL36 MRPS31 MRPL35 mRNA MRPL10 MRPS34 Ala-tRNA(Ala) MRPS6 CHCHD1 MRPS11 PTCD3 GTP MRPS24 MRPS18C MRPS28 MRPL24 tRNA(Arg) MRPS21 MRPL43 55Sribosome:mRNA:fMet-tRNAMRPS18C MRPL47 MRPL18 MRPS2 MRPL43 MRPL1 Ala-tRNA(Ala) MRPS2 MRPS18A MRPS5 OXA1L MRPL21 MRPL13 MRPS18B MRPS34 MT-TV MRPL48 MRPS25 MRPS26 MRPL4 MRPS9 MRPL32 MTRF1L MRPL44 MRPL45 MRPS33 MRPL4 DAP3 MRPL27 Mitochondrial 16S rRNA MRPL19 MRPS15 GTP GFM1:GTPAURKAIP1 MRPL16 ICT1 MRPS18B Glu-tRNA(Glu) TSFM MRPS7 MRPS22 MRPS16 Ser-tRNA(Ser) PiMRPL28 fMet-tRNA(fMet) MRPL57 MRPL34 MRPL18 MRPS14 MRPS31 MRPL16 MRPL20 MRPL35 MRPS35 MRPL35 MRPS25 fMet-tRNA(fMet) tRNA(Lys) MRPS18B MRPS36 MRPS14 MRPL1 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPL13 MRPS6 MRPL14 MRPS21 MRPL24 MRPL16 MRPS24 MRPL9 GADD45GIP1 MRPL30 MRPL41 TUFM Gln-tRNA(Gln) Mitochondrial 12S rRNA MRPL14 MRPS17 Gly-tRNA(Gly) MRPL55 Trp-tRNA(Trp) MRPS18A TUFM MRPL19 MRPS18C CHCHD1 MRPL40 Trp-tRNA(Trp) Mitochondrial 12S rRNA Trp-tRNA(Trp) MRPS16 MRPL17 GTPtRNA(His) MRPS9 Tyr-tRNA(Tyr) MRPL45 MRPS15 MRPS14 MRPS12 mRNA MRPS30 MRPL30 MRPS17 Mitochondrial 16S rRNA TUFM MRPL10 MRPL30 MRPL20 MRPS15 MRPL53 MRPS36 MRPL21 mRNA MRPL49 MRPL37 MRPL39 MRPL9 MRPS11 GDPtRNA(Pro) GDP MRPS5 MRPS10 MRPS21 MRPL23 MRPS26 MRPS18A MRPL44 ICT1 MRPS28 MRPL19 MRPL12 MRPS26 tRNA(Ala) MRPL21 tRNA(Ile) MRPS12 PTCD3 MRPL42 MRPS34 MRPL32 MRPL12 MRPL20 MRPS14 MRPS11 MRPS14 Arg-tRNA(Arg) MRPS17 Arg-tRNA(Arg) Leu-tRNA(Leu) Mitochondrial 12S rRNA MRPL45 tRNA(Tyr) MRPL12 MRPS16 Tyr-tRNA(Tyr) Tyr-tRNA(Tyr) MRPL37 MRPL53 MRPL24 MRPL17 MRPL2 MRPS27 MRPL53 MRPL49 MRPL32 MRPL28 MRPS24 MRPS5 MRPL44 MTRF1L MRPL37 MRPL32 MRPL17 GFM1 ERAL1 GFM2:GTPMRPS21 MRPS35 MRPS11 MRPL21 MRPL15 MRPS16 MRPL24 MRPS18A Gln-tRNA(Gln) DAP3 GTP MRPL18 MRPL9 MRPL13 polypeptideMRPL14 MRPL3 tRNA(Ser) MRPL42 MRPL57 MRPL11 MRPS30 Ala-tRNA(Ala) MRPL28 MRPS21 DAP3 MRPL57 MRPL50 Ile-tRNA(Ile) MRPL22 GDP MRPS18B MRPL47 MRPS24 tRNA(Asp) OXA1L MRPS9 Ser-tRNA(Ser) ICT1 Pro-tRNA(Pro) 55Sribosome:mRNA:tRNA:MRRFtRNA(Tyr) Mitochondrial 12S rRNA MRPL47 MRPL50 MRPL47 MRPS25 MRPL9 MRPL15 MRPS36 DAP3 Cys-tRNA(Cys) MRPL36 tRNA(Glu) MRPS22 MRPL12 Mitochondrial 16S rRNA MRPL41 MRPL36 MRPS35 MRPL22 MRPL28 MRPS31 MRPS10 tRNA(Trp) tRNA(Leu) MRPS30 GFM2 MRPS10 MRPS33 MRPS34 GTPMRPL48 MRPL52 MRPL55 tRNA(Val) MRPS23 MRPS2 MRPL40 MT-TV CHCHD1 MRPS15 tRNA(Met) MRPL44 Gly-tRNA(Gly) peptidyl-tRNA with elongated peptide MRPL33 MRPS18A MRPS10 MRPL55 MRPL3 TUFM MRPL35 MRPL16 MRPL52 mRNAGlu-tRNA(Glu) MRPL30 tRNA(Cys) tRNA(Lys) MRPS11 MRPL40 ERAL1 Mitochondrial 16S rRNA MRPS35 MRPL40 MRPL4 tRNA(Gln) AURKAIP1 MRPS33 MRPS15 MRPS2 MRPL10 MRPS5 Mitochondrial 12S rRNA MRPS16 TUFM:GTPMRPS5 MRPL3 MRPL55 MT-TV MRPL1 MRPL54 MRPL46 MRPS35 tRNA(His) MRPS18A MRPS9 MRPL54 MRPS7 MRPL35 MRPS34 MRPS17 MRPL17 MRPL2 aminoacyl-tRNAMRPL23 MRPL2 MRPL1 MRPL51 MRPL37 CHCHD1 MRPL4 MRPL10 ICT1 MRPL43 MRPS33 MRPL3 MRPS31 MRPS27 MRPL54 MRPL24 MRPS31 MRPS35 MRPL23 Mitochondrial 16S rRNA MRPL32 MRPS7 MRPS14 AURKAIP1 MRPS28 mRNA MRPS16 ERAL1 MRPL23 Arg-tRNA(Arg) MRPS11 AURKAIP1 MRPS26 Val-tRNA(Val) MRPL9 GADD45GIP1 MRPL38 MRPL2 MRPS33 MRPL42 MRPL4 MRPL21 MRPL14 CHCHD1 MRPL20 MRPL50 Mitochondrial 12S rRNA MRPS14 MRPS26 MRPS30 MRPS16 MRPS25 MRPS5 MRPS35 MRPL48 PitRNA(Val) MRPS6 tRNA(Gln) MRPL10 MRPS12 MRPS28 MRPS9 Cys-tRNA(Cys) MRPL11 ERAL1 MRPS27 ICT1 MRPL47 Mitochondrial 12S rRNA MRPL24 MRPS27 MRPL15 MRPS18A MRPS18B MRPL45 MRPL9 MRPS22 MRPL55 MRPL21 Met-tRNA(Met)His-tRNA(His) MRPL44 PiMRPL48 MRPL27 MRPS27 MRPL33 MRPL27 MRPS18C AURKAIP1 AURKAIP1 MRPL13 MRPL4 MTIF3 MRPL23 MRPL14 Leu-tRNA(Leu) MRPL50 Lys-tRNA(Lys) MRPS28 MRPL28 MRPS10 MRPL37 MRPL15 Phe-tRNA(Phe) MRPL42 tRNA(Glu) MRPS31 Mitochondrial 16S rRNA MRPS18B DAP3 mRNA MRPS36 Asn-tRNA(Asn) MRPS11 MRPS27 MRPL17 MRPL12 MRPL3 OXA1L MRPS27 MRPS36 MRPL47 MRPS14 MRPS36 MRPS23 MRPL34 MRPS30 MRPS34 Lys-tRNA(Lys) MRPL54 MRPS18A MRPL19 MRPL28 MRPL24 MRPL32 MRPL16 tRNA(Cys) MRPL32 Met-tRNA(Met) MRPL53 MRPS28 MRPS28 MRPS36 MRPL33 tRNA(Phe) MRPS10 MRPL37 Asn-tRNA(Asn) MRPS31 MRPL32 MRPL19 MRPS5 MRPL37 MRPS17 MT-TV MRPL22 Ser-tRNA(Ser) MRPS17 tRNA(Asp) MRPL50 MRPL14 MRPS22 fMet-tRNA(fMet) MRPS17 MRPL55 MRPL51 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL27 MRPL21 MRPL52 MRPL48 MRPL44 tRNA(Gly) MRPL33 MRPS11 MRPS35 MRPL22 CHCHD1 MRPS11 MRPL55 ICT1 MRPL49 MRPL11 CHCHD1 tRNA(Pro) TUFM:GDPMRPL57 mRNA MTIF2 MRPS18C MRPL34 MRPL22 MRPL12 Tyr-tRNA(Tyr) MRPL46 OXA1L MRPL50 MRPL12 MTFMTMRPS15 PTCD3 MRPS23 Thr-tRNA(Thr) MRPL34 55Sribosome:mRNA:tRNAMitochondrial 12S rRNA MRPL53 MRPL40 MRPL20 MRPL51 MRPL23 MRPS18B MRPL1 MRPL16 MRPL11 Phe-tRNA(Phe) MRPL42 GADD45GIP1 Glu-tRNA(Glu) MRPS23 MRPL34 MRPL51 MRPS27 MRPL35 MRPL16 tRNA(Asn) MRPS23 MRPL19 MRPS5 MRPL43 MRPS22 MRPL54 tRNA(Gly) OXA1L MRPL41 MRPL22 MRPL27 MRPS14 Thr-tRNA(Thr) MRPL44 MRPS30 MRPL53 MRPS21 tRNA(Ser) MRPS25 MRPL37 ICT1 MRPL2 MRPL43 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPL48 MRPL48 MRPS34 DAP3 MRPS2 PTCD3 MRPL4 MRPL55 GADD45GIP1 MRPS36 MRPS33 MRPS27 MRPS22 MRPS33 MRPL54 MRPS26 AURKAIP1 MRPL18 Val-tRNA(Val) MRPL51 Met-tRNA(Met) MRPL28 GDPtRNA(Gln) MRPS34 MRPL33 MRPS2 MRPL15 MRPS24 MRPS25 MRPS22 MRPL41 MRPS6 AURKAIP1 Met-tRNA(Met) AURKAIP1 tRNA(Arg) MRPS12 MTIF2 MRPS10 MRPS6 MTRF1L, ICT1MRPL52 MRPS7 MRPS15 MRPS25 MRPS18A MRPS26 Asp-tRNA(Asp) Asn-tRNA(Asn) GTP PTCD3 MRPS35 MRPS27 MRPS9 MRPL19 MRPS7 MRPL35 tRNA(Trp) MT-TV MRPS18B MRPL21 Thr-tRNA(Thr) MRPL57 MRPL34 MRPL48 MRPL38 MRPL46 MRPL27 MRPS9 MRPL45 MRPS9 MRPL30 MRPL13 CHCHD1 MRPS26 MRPL42 Val-tRNA(Val) 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPL28 MRPS5 MRPL41 MRPS9 MRPS18C MRPS12 MRPL39 MRPL42 MRPS16 MRPS7 MRPL36 MRPS12 MRPS36 MRPS17 Trp-tRNA(Trp) MRPL53 MRPS31 fMet-tRNA(fMet)MT-TV MRPL27 MRPL23 MRPL41 MRPL24 MRPL50 MRPL19 MRPL18 MRPL1 His-tRNA(His) MRPS10 MRPS2 MRPL57 MRPL22 MRPL47 Mitochondrial 16S rRNA MRPL2 MRPL20 Arg-tRNA(Arg) MTIF3MRPL12 MRPL16 MRPL33 MRPS9 MRPL45 ERAL1 MRPS28 1, 271, 271, 271, 271, 274, 13, 21, 241, 271, 271, 271, 271, 2725, 31, 321, 4, 26, 271, 271, 271, 27


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 64
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
OXA1L ProteinQ15070 (Uniprot-TrEMBL)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools