Regulation of TP53 Expression and Degradation (Homo sapiens)

From WikiPathways

Revision as of 21:11, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
2, 3, 9, 14, 24...50254, 10575027, 572, 8388442, 5, 12, 15, 17...88348, 46, 69, 7023, 50, 64, 932, 5, 13, 28, 32...6, 62822, 52, 63, 658811, 34583219, 785, 45, 5845, 5816, 40, 6151, 888, 46, 60, 68, 69, 762, 1354325441, 47, 53, 796816, 40, 61nucleoplasmplasma membranecytosolUBB(1-76) UBC(229-304) UBC(609-684) PPP2R5C PolyUb-TP53 TP53 TetramerUSP2:PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4p-S346,S367,S403-MDM4 Ubp-S166,S188-MDM2 MDM4 UBC(229-304) PolyUb,p-S342,S367,S403-MDM4 UbTP53 TORC2 complexUBC(533-608) UBC(609-684) MDM2MDM4 p-S166,S188,T218-MDM2 DNA Double StrandBreak ResponseUBC(229-304) p-T161-CDK1 UBC(77-152) PPP2CA p-S166,S188-MDM2 p-S15,S20-TP53:PRDM1GeneATPMDM2PolyUb,p-S166,S188-MDM2 CCNA2 PRDM1 Gene TP53 RPS27A(1-76) UBC(77-152) TP53 UBC(533-608) p-T305,S472-AKT3 K33polyUb p14-ARF ATPPRDM1 GenePolyUb,p-S15,S20-TP53 TetramerCCNG1UBC(153-228) p-S166,S188-MDM2 p-S166,S188-MDM2:p-S403-MDM4p-S166,S188,T218-MDM2 p-S166,S188-MDM2 UBC(305-380) PolyUb,p-S342,S367,S403-MDM4 PolyUb,p-S166,S188-MDM2 homodimerUBC(153-228) PHF20PPP2A-PPPR5C:CCNG1:(p-T218-MDM2, p-S166-MDM2)TP53 gene ATPUBC(305-380) UBC(381-456) PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4UBB(77-152) K6polyUb p-S166,S188,T218-MDM2UBC(229-304) K29polyUb CCNG1 GeneUBC(457-532) RICTOR PolyUbUBC(533-608) p-S422-SGK1UBA52(1-76) p-S15,S20-TP53Tetramer:MDM2 GeneUBC(457-532) p-T160-CDK2 CCNA:p-CDK1/2CCNA1 p-S403-MDM4 p14-ARF:p-S166,S188-MDM2 dimer,p-S166,S188-MDM2:MDM4:TP53PPP2R1B MTOR p-T218,S166,S188-MDM2, p-S166,S188-MDM2PolyUb,p-S166,S188-MDM2:(PolyUb,p-S166,S188-MDM2, PolyUb,p-S342,S367,S403-MDM4)PPP2R1B UBB(153-228) UBB(77-152) UBA52(1-76) UBA52(1-76) PDPK1:PIP3USP2p-T308,S473-AKT1 K63polyUb p-S166,S188-MDM2 DAXX:(PolyUb,p-S166,S188-MDM2):USP7Ubp-S166,S188-MDM2 RPS27A(1-76) ADPp-T309,S474-AKT2 K27polyUb UBB(1-76) p-S166,S188-MDM2 p14-ARF RPS27A(1-76) UBC(1-76) UbPRR5 p-S15,S20-TP53TetramerPolyUb,p-S166,S188-MDM2 p-S166,S188-MDM2 PiPDPK1 p14-ARF:p-S166,S188-MDM2 dimer,p-S166,S188-MDM2:MDM4p-S166,S188-MDM2:(p-S166,S188-MDM2,p-S346,S367,S403-MDM4)p-S166,S188-MDM2 RNF34,RFFLPPP2R5C USP7 PPP2CB UBB(153-228) PolyUb-TP53 TetramerUBC(457-532) MDM4 ATPUBB(153-228) PPP2R1A p-S166,S188-MDM2UBC(1-76) p-S15,S20-TP53 UBC(77-152) PRDM1PolyUb,p-S342,S367,S403-MDM4 p-S166,S188-MDM2dimerUBB(77-152) TP53 UBC(153-228) H2Op-S1981,Ac-K3016-ATMADPPPP2R1A p-S166,S188-MDM2:p-S346,S367,S403-MDM4SGK1UBB(153-228) ADPUBC(153-228) p-S166,S188-MDM2dimer,p-S166,S188-MDM2:MDM4UBC(533-608) RNF34 MDM2 Gene CCNG1 UBC(457-532) UBC(1-76) ATPMDM4 p-S166,S188-MDM2:MDM4TP53 genep-S346,S367,S403-MDM4 UBC(609-684) K11polyUb p-T256,S422-SGK1PIP3 activates AKTsignalingUBA52(1-76) p-5S,T-MDM2PPP2CA DAXXMAPKAP1 PolyUb,p-S342,S367,S403-MDM4 H2OUBB(77-152) RFFL p-S166,S188-MDM2PolyUb,p-S166,S188-MDM2 H2OH2OMDM2 GeneUBC(609-684) PolyUb,p-S166,S188-MDM2 PI(3,4,5)P3 p-S166,S188-MDM2dimer,p-S166,S188-MDM2,MDM4:TP53UBB(1-76) TP53 Tetramer:CCNG1GeneUBC(1-76) UBC(77-152) UBC(381-456) p-S166,S188-MDM2 TP53Active AKTMDM4 USP7UBB(1-76) UBC(381-456) USP2 ADPp-S166,S188-MDM2 RPS27A(1-76) UBC(305-380) ADPMLST8 PPP2CB ATPCCNG1 Gene UBC(381-456) PolyUb-TP53 Tetramerp-S166,S188-MDM2,MDM4PolyUb,p-S166,S188-MDM2 PRDM1:TP53 GeneADPp-S15,S20-TP53 PP2A-PPP2R5Cp-S,3T-CHEK2PolyUb-TP53 Regulation of TP53Activity throughPhosphorylationp-S15,S20-TP53 PRDM1 ADPATPUBC(305-380) DAXX PolyUb,p-S15,S20-TP53 MDM4 p-S166,S188-MDM2 K48polyUb p14-ARF1, 7, 18, 20-22, 26...328863, 6568582, 63, 6529, 3056212, 15, 17, 3658


Description

TP53 (p53) tumor suppressor protein is a transcription factor that functions as a homotetramer (Jeffrey et al. 1995). The protein levels of TP53 are low in unstressed cells due to MDM2-mediated ubiquitination that triggers proteasome-mediated degradation of TP53 (Wu et al. 1993). The E3 ubiquitin ligase MDM2 functions as a homodimer/homo-oligomer or a heterodimer/hetero-oligomer with MDM4 (MDMX) (Linares et al. 2003, Toledo and Wahl 2007, Cheng et al. 2011, Wade et al. 2013).

Activating phosphorylation of TP53 at serine residues S15 and S20 in response to genotoxic stress disrupts TP53 interaction with MDM2. In contrast to MDM2, E3 ubiquitin ligases RNF34 (CARP1) and RFFL (CARP2) can ubiquitinate phosphorylated TP53 (Yang et al. 2007). Binding of MDM2 to TP53 is also inhibited by the tumor suppressor p14-ARF, transcribed from the CDKN2A gene in response to oncogenic signaling or oxidative stress (Zhang et al. 1998, Parisi et al. 2002, Voncken et al. 2005). Ubiquitin-dependant degradation of TP53 can also be promoted by PIRH2 (Leng et al. 2003) and COP1 (Dornan et al. 2004) ubiquitin ligases. HAUSP (USP7) can deubiquitinate TP53, contributing to TP53 stabilization (Li et al. 2002).<p>While post-translational regulation plays a prominent role, TP53 activity is also controlled at the level of promoter function (reviewed in Saldana-Meyer and Recillas-Targa 2011), mRNA stability and translation efficiency (Mahmoudi et al. 2009, Le et al. 2009, Takagi et al. 2005). View original pathway at:Reactome.</div>

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6806003
Reactome-version 
Reactome version: 64
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S.; ''Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation.''; PubMed Europe PMC Scholia
  2. Geyer RK, Yu ZK, Maki CG.; ''The MDM2 RING-finger domain is required to promote p53 nuclear export.''; PubMed Europe PMC Scholia
  3. Mayo LD, Donner DB.; ''A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus.''; PubMed Europe PMC Scholia
  4. Gully CP, Velazquez-Torres G, Shin JH, Fuentes-Mattei E, Wang E, Carlock C, Chen J, Rothenberg D, Adams HP, Choi HH, Guma S, Phan L, Chou PC, Su CH, Zhang F, Chen JS, Yang TY, Yeung SC, Lee MH.; ''Aurora B kinase phosphorylates and instigates degradation of p53.''; PubMed Europe PMC Scholia
  5. Sharp DA, Kratowicz SA, Sank MJ, George DL.; ''Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein.''; PubMed Europe PMC Scholia
  6. Weige CC, Birtwistle MR, Mallick H, Yi N, Berrong Z, Cloessner E, Duff K, Tidwell J, Clendenning M, Wilkerson B, Farrell C, Bunz F, Ji H, Shtutman M, Creek KE, Banister CE, Buckhaults PJ.; ''Transcriptomes and shRNA suppressors in a TP53 allele-specific model of early-onset colon cancer in African Americans.''; PubMed Europe PMC Scholia
  7. Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z.; ''Mdm2 association with p53 targets its ubiquitination.''; PubMed Europe PMC Scholia
  8. Zhang Y, Xiong Y, Yarbrough WG.; ''ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.''; PubMed Europe PMC Scholia
  9. Wang Y, Schwedes JF, Parks D, Mann K, Tegtmeyer P.; ''Interaction of p53 with its consensus DNA-binding site.''; PubMed Europe PMC Scholia
  10. Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS, Yang X.; ''Critical role for Daxx in regulating Mdm2.''; PubMed Europe PMC Scholia
  11. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB.; ''AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.''; PubMed Europe PMC Scholia
  12. Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, Holzer B, Ludwig S, Rapp UR.; ''MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1.''; PubMed Europe PMC Scholia
  13. Parisi T, Pollice A, Di Cristofano A, Calabrò V, La Mantia G.; ''Transcriptional regulation of the human tumor suppressor p14(ARF) by E2F1, E2F2, E2F3, and Sp1-like factors.''; PubMed Europe PMC Scholia
  14. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT.; ''A role for ATR in the DNA damage-induced phosphorylation of p53.''; PubMed Europe PMC Scholia
  15. Facchin S, Lopreiato R, Ruzzene M, Marin O, Sartori G, Götz C, Montenarh M, Carignani G, Pinna LA.; ''Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency.''; PubMed Europe PMC Scholia
  16. Chen J, Marechal V, Levine AJ.; ''Mapping of the p53 and mdm-2 interaction domains.''; PubMed Europe PMC Scholia
  17. Keller DM, Lu H.; ''p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex.''; PubMed Europe PMC Scholia
  18. Meulmeester E, Maurice MM, Boutell C, Teunisse AF, Ovaa H, Abraham TE, Dirks RW, Jochemsen AG.; ''Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2.''; PubMed Europe PMC Scholia
  19. Waterman JL, Shenk JL, Halazonetis TD.; ''The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding.''; PubMed Europe PMC Scholia
  20. Lakin ND, Hann BC, Jackson SP.; ''The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53.''; PubMed Europe PMC Scholia
  21. Li M, Brooks CL, Kon N, Gu W.; ''A dynamic role of HAUSP in the p53-Mdm2 pathway.''; PubMed Europe PMC Scholia
  22. Yan J, Jiang J, Lim CA, Wu Q, Ng HH, Chin KC.; ''BLIMP1 regulates cell growth through repression of p53 transcription.''; PubMed Europe PMC Scholia
  23. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C.; ''The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites.''; PubMed Europe PMC Scholia
  24. Linares LK, Hengstermann A, Ciechanover A, Müller S, Scheffner M.; ''HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53.''; PubMed Europe PMC Scholia
  25. Endo Y, Fujita T, Tamura K, Tsuruga H, Nojima H.; ''Structure and chromosomal assignment of the human cyclin G gene.''; PubMed Europe PMC Scholia
  26. Wu X, Bayle JH, Olson D, Levine AJ.; ''The p53-mdm-2 autoregulatory feedback loop.''; PubMed Europe PMC Scholia
  27. Lyo D, Xu L, Foster DA.; ''Phospholipase D stabilizes HDM2 through an mTORC2/SGK1 pathway.''; PubMed Europe PMC Scholia
  28. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM.; ''Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53.''; PubMed Europe PMC Scholia
  29. Cheng Q, Cross B, Li B, Chen L, Li Z, Chen J.; ''Regulation of MDM2 E3 ligase activity by phosphorylation after DNA damage.''; PubMed Europe PMC Scholia
  30. Luciani MG, Hutchins JR, Zheleva D, Hupp TR.; ''The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A.''; PubMed Europe PMC Scholia
  31. Zauberman A, Lupo A, Oren M.; ''Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding sites.''; PubMed Europe PMC Scholia
  32. D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S.; ''Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis.''; PubMed Europe PMC Scholia
  33. Taira N, Yamamoto H, Yamaguchi T, Miki Y, Yoshida K.; ''ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage.''; PubMed Europe PMC Scholia
  34. Takagi M, Absalon MJ, McLure KG, Kastan MB.; ''Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin.''; PubMed Europe PMC Scholia
  35. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K.; ''DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage.''; PubMed Europe PMC Scholia
  36. Stenger JE, Tegtmeyer P, Mayr GA, Reed M, Wang Y, Wang P, Hough PV, Mastrangelo IA.; ''p53 oligomerization and DNA looping are linked with transcriptional activation.''; PubMed Europe PMC Scholia
  37. Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH, Frappier L.; ''Molecular recognition of p53 and MDM2 by USP7/HAUSP.''; PubMed Europe PMC Scholia
  38. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W.; ''Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization.''; PubMed Europe PMC Scholia
  39. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM.; ''The ubiquitin ligase COP1 is a critical negative regulator of p53.''; PubMed Europe PMC Scholia
  40. Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA, Sen S.; ''Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53.''; PubMed Europe PMC Scholia
  41. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B.; ''Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53.''; PubMed Europe PMC Scholia
  42. Ciccia A, Elledge SJ.; ''The DNA damage response: making it safe to play with knives.''; PubMed Europe PMC Scholia
  43. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y.; ''Enhanced phosphorylation of p53 by ATM in response to DNA damage.''; PubMed Europe PMC Scholia
  44. Abe Y, Matsumoto S, Wei S, Nezu K, Miyoshi A, Kito K, Ueda N, Shigemoto K, Hitsumoto Y, Nikawa J, Enomoto Y.; ''Cloning and characterization of a p53-related protein kinase expressed in interleukin-2-activated cytotoxic T-cells, epithelial tumor cell lines, and the testes.''; PubMed Europe PMC Scholia
  45. Huang L, Yan Z, Liao X, Li Y, Yang J, Wang ZG, Zuo Y, Kawai H, Shadfan M, Ganapathy S, Yuan ZM.; ''The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo.''; PubMed Europe PMC Scholia
  46. Wade M, Li YC, Wahl GM.; ''MDM2, MDMX and p53 in oncogenesis and cancer therapy.''; PubMed Europe PMC Scholia
  47. Momand J, Zambetti GP, Olson DC, George D, Levine AJ.; ''The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.''; PubMed Europe PMC Scholia
  48. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B.; ''Amplification of a gene encoding a p53-associated protein in human sarcomas.''; PubMed Europe PMC Scholia
  49. Pant V, Xiong S, Iwakuma T, Quintás-Cardama A, Lozano G.; ''Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability.''; PubMed Europe PMC Scholia
  50. Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS, Prives C.; ''Cyclin G recruits PP2A to dephosphorylate Mdm2.''; PubMed Europe PMC Scholia
  51. Milne D, Kampanis P, Nicol S, Dias S, Campbell DG, Fuller-Pace F, Meek D.; ''A novel site of AKT-mediated phosphorylation in the human MDM2 onco-protein.''; PubMed Europe PMC Scholia
  52. Lu M, Wang J, Jones KT, Ives HE, Feldman ME, Yao LJ, Shokat KM, Ashrafi K, Pearce D.; ''mTOR complex-2 activates ENaC by phosphorylating SGK1.''; PubMed Europe PMC Scholia
  53. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC.; ''HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation.''; PubMed Europe PMC Scholia
  54. Cheng Q, Chen L, Li Z, Lane WS, Chen J.; ''ATM activates p53 by regulating MDM2 oligomerization and E3 processivity.''; PubMed Europe PMC Scholia
  55. Boyd SD, Tsai KY, Jacks T.; ''An intact HDM2 RING-finger domain is required for nuclear exclusion of p53.''; PubMed Europe PMC Scholia
  56. Lee JH, Jeong MW, Kim W, Choi YH, Kim KT.; ''Cooperative roles of c-Abl and Cdk5 in regulation of p53 in response to oxidative stress.''; PubMed Europe PMC Scholia
  57. Maki CG.; ''Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2.''; PubMed Europe PMC Scholia
  58. Toledo F, Wahl GM.; ''MDM2 and MDM4: p53 regulators as targets in anticancer therapy.''; PubMed Europe PMC Scholia
  59. Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabrielli B, Chan D, Lees-Miller SP, Lavin MF.; ''ATM associates with and phosphorylates p53: mapping the region of interaction.''; PubMed Europe PMC Scholia
  60. Zhang J, Krishnamurthy PK, Johnson GV.; ''Cdk5 phosphorylates p53 and regulates its activity.''; PubMed Europe PMC Scholia
  61. Xie S, Wang Q, Wu H, Cogswell J, Lu L, Jhanwar-Uniyal M, Dai W.; ''Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3.''; PubMed Europe PMC Scholia
  62. Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y.; ''Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway.''; PubMed Europe PMC Scholia
  63. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK.; ''The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2.''; PubMed Europe PMC Scholia
  64. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H.; ''A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1.''; PubMed Europe PMC Scholia
  65. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD.; ''Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage.''; PubMed Europe PMC Scholia
  66. Jeffrey PD, Gorina S, Pavletich NP.; ''Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms.''; PubMed Europe PMC Scholia
  67. García-Martínez JM, Alessi DR.; ''mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1).''; PubMed Europe PMC Scholia
  68. Wu L, Ma CA, Zhao Y, Jain A.; ''Aurora B interacts with NIR-p53, leading to p53 phosphorylation in its DNA-binding domain and subsequent functional suppression.''; PubMed Europe PMC Scholia
  69. Zhang T, Prives C.; ''Cyclin a-CDK phosphorylation regulates MDM2 protein interactions.''; PubMed Europe PMC Scholia
  70. Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M, Biton S, Teunisse AF, Lehmann WD, Jochemsen AG, Shiloh Y.; ''Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage.''; PubMed Europe PMC Scholia
  71. Allende-Vega N, Sparks A, Lane DP, Saville MK.; ''MdmX is a substrate for the deubiquitinating enzyme USP2a.''; PubMed Europe PMC Scholia
  72. Yang W, Rozan LM, McDonald ER, Navaraj A, Liu JJ, Matthew EM, Wang W, Dicker DT, El-Deiry WS.; ''CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation.''; PubMed Europe PMC Scholia
  73. Pearce LR, Huang X, Boudeau J, Pawłowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR.; ''Identification of Protor as a novel Rictor-binding component of mTOR complex-2.''; PubMed Europe PMC Scholia
  74. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B.; ''MicroRNA-125b is a novel negative regulator of p53.''; PubMed Europe PMC Scholia
  75. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD.; ''Activation of the ATM kinase by ionizing radiation and phosphorylation of p53.''; PubMed Europe PMC Scholia
  76. Chehab NH, Malikzay A, Appel M, Halazonetis TD.; ''Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53.''; PubMed Europe PMC Scholia
  77. Okamoto K, Beach D.; ''Cyclin G is a transcriptional target of the p53 tumor suppressor protein.''; PubMed Europe PMC Scholia
  78. Tomasini R, Samir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S, Malissen B, Dagorn JC, Iovanna JL, Dusetti NJ.; ''TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity.''; PubMed Europe PMC Scholia
  79. Sarkari F, La Delfa A, Arrowsmith CH, Frappier L, Sheng Y, Saridakis V.; ''Further insight into substrate recognition by USP7: structural and biochemical analysis of the HdmX and Hdm2 interactions with USP7.''; PubMed Europe PMC Scholia
  80. Chen L, Gilkes DM, Pan Y, Lane WS, Chen J.; ''ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage.''; PubMed Europe PMC Scholia
  81. Li HH, Li AG, Sheppard HM, Liu X.; ''Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression.''; PubMed Europe PMC Scholia
  82. Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, Hegg JW, Bandhakavi S, Griffin TJ, Kim DH.; ''PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling.''; PubMed Europe PMC Scholia
  83. Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML.; ''Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2.''; PubMed Europe PMC Scholia
  84. Kobayashi T, Cohen P.; ''Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2.''; PubMed Europe PMC Scholia
  85. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW.; ''DNA damage-induced activation of p53 by the checkpoint kinase Chk2.''; PubMed Europe PMC Scholia
  86. Mahmoudi S, Henriksson S, Corcoran M, Méndez-Vidal C, Wiman KG, Farnebo M.; ''Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage.''; PubMed Europe PMC Scholia
  87. Amato R, D'Antona L, Porciatti G, Agosti V, Menniti M, Rinaldo C, Costa N, Bellacchio E, Mattarocci S, Fuiano G, Soddu S, Paggi MG, Lang F, Perrotti N.; ''Sgk1 activates MDM2-dependent p53 degradation and affects cell proliferation, survival, and differentiation.''; PubMed Europe PMC Scholia
  88. Saldaña-Meyer R, Recillas-Targa F.; ''Transcriptional and epigenetic regulation of the p53 tumor suppressor gene.''; PubMed Europe PMC Scholia
  89. Li M, Luo J, Brooks CL, Gu W.; ''Acetylation of p53 inhibits its ubiquitination by Mdm2.''; PubMed Europe PMC Scholia
  90. Hou X, Liu JE, Liu W, Liu CY, Liu ZY, Sun ZY.; ''A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation.''; PubMed Europe PMC Scholia
  91. Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D, Hemmings BA.; ''Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation.''; PubMed Europe PMC Scholia
  92. Lee JH, Kim HS, Lee SJ, Kim KT.; ''Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death.''; PubMed Europe PMC Scholia
  93. Okamoto K, Kamibayashi C, Serrano M, Prives C, Mumby MC, Beach D.; ''p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A.''; PubMed Europe PMC Scholia
  94. Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, Jhanwar-Uniyal M, Dai W.; ''Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114882view16:39, 25 January 2021ReactomeTeamReactome version 75
113328view11:40, 2 November 2020ReactomeTeamReactome version 74
112540view15:50, 9 October 2020ReactomeTeamReactome version 73
101453view11:32, 1 November 2018ReactomeTeamreactome version 66
100991view21:11, 31 October 2018ReactomeTeamreactome version 65
100527view19:44, 31 October 2018ReactomeTeamreactome version 64
100074view16:28, 31 October 2018ReactomeTeamreactome version 63
99625view15:01, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99232view12:44, 31 October 2018ReactomeTeamreactome version 62
93820view13:38, 16 August 2017ReactomeTeamreactome version 61
93366view11:21, 9 August 2017ReactomeTeamreactome version 61
87115view18:24, 18 July 2016EgonwOntology Term : 'regulatory pathway' added !
86451view09:18, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
Active AKTComplexR-HSA-202074 (Reactome)
CCNA1 ProteinP78396 (Uniprot-TrEMBL)
CCNA2 ProteinP20248 (Uniprot-TrEMBL)
CCNA:p-CDK1/2ComplexR-HSA-4088020 (Reactome)
CCNG1 Gene ProteinENSG00000113328 (Ensembl)
CCNG1 GeneGeneProductENSG00000113328 (Ensembl)
CCNG1 ProteinP51959 (Uniprot-TrEMBL)
CCNG1ProteinP51959 (Uniprot-TrEMBL)
DAXX ProteinQ9UER7 (Uniprot-TrEMBL)
DAXX:(PolyUb,p-S166,S188-MDM2):USP7ComplexR-HSA-3222079 (Reactome)
DAXXProteinQ9UER7 (Uniprot-TrEMBL)
DNA Double Strand Break ResponsePathwayR-HSA-5693606 (Reactome) DNA double strand break (DSB) response involves sensing of DNA DSBs by the MRN complex which triggers ATM activation. ATM phosphorylates a number of proteins involved in DNA damage checkpoint signaling, as well as proteins directly involved in the repair of DNA DSBs. For a recent review, please refer to Ciccia and Elledge, 2010.
H2OMetaboliteCHEBI:15377 (ChEBI)
K11polyUb R-HSA-6782596 (Reactome)
K27polyUb R-HSA-6782588 (Reactome)
K29polyUb R-HSA-6782589 (Reactome)
K33polyUb R-HSA-6782629 (Reactome)
K48polyUb R-HSA-6782465 (Reactome)
K63polyUb R-HSA-6782513 (Reactome)
K6polyUb R-HSA-6782613 (Reactome)
MAPKAP1 ProteinQ9BPZ7 (Uniprot-TrEMBL)
MDM2 Gene ProteinENSG00000135679 (Ensembl)
MDM2 GeneGeneProductENSG00000135679 (Ensembl)
MDM2ProteinQ00987 (Uniprot-TrEMBL)
MDM4 ProteinO15151 (Uniprot-TrEMBL)
MLST8 ProteinQ9BVC4 (Uniprot-TrEMBL)
MTOR ProteinP42345 (Uniprot-TrEMBL)
PDPK1 ProteinO15530 (Uniprot-TrEMBL)
PDPK1:PIP3ComplexR-HSA-109697 (Reactome)
PHF20ProteinQ9BVI0 (Uniprot-TrEMBL)
PI(3,4,5)P3 MetaboliteCHEBI:16618 (ChEBI)
PIP3 activates AKT signalingPathwayR-HSA-1257604 (Reactome) Signaling by AKT is one of the key outcomes of receptor tyrosine kinase (RTK) activation. AKT is activated by the cellular second messenger PIP3, a phospholipid that is generated by PI3K. In ustimulated cells, PI3K class IA enzymes reside in the cytosol as inactive heterodimers composed of p85 regulatory subunit and p110 catalytic subunit. In this complex, p85 stabilizes p110 while inhibiting its catalytic activity. Upon binding of extracellular ligands to RTKs, receptors dimerize and undergo autophosphorylation. The regulatory subunit of PI3K, p85, is recruited to phosphorylated cytosolic RTK domains either directly or indirectly, through adaptor proteins, leading to a conformational change in the PI3K IA heterodimer that relieves inhibition of the p110 catalytic subunit. Activated PI3K IA phosphorylates PIP2, converting it to PIP3; this reaction is negatively regulated by PTEN phosphatase. PIP3 recruits AKT to the plasma membrane, allowing TORC2 to phosphorylate a conserved serine residue of AKT. Phosphorylation of this serine induces a conformation change in AKT, exposing a conserved threonine residue that is then phosphorylated by PDPK1 (PDK1). Phosphorylation of both the threonine and the serine residue is required to fully activate AKT. The active AKT then dissociates from PIP3 and phosphorylates a number of cytosolic and nuclear proteins that play important roles in cell survival and metabolism. For a recent review of AKT signaling, please refer to Manning and Cantley, 2007.
PP2A-PPP2R5CComplexR-HSA-6792873 (Reactome)
PPP2A-PPPR5C:CCNG1:(p-T218-MDM2, p-S166-MDM2)ComplexR-HSA-6792868 (Reactome)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2CB ProteinP62714 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R1B ProteinP30154 (Uniprot-TrEMBL)
PPP2R5C ProteinQ13362 (Uniprot-TrEMBL)
PRDM1 Gene ProteinENSG00000057657 (Ensembl)
PRDM1 GeneGeneProductENSG00000057657 (Ensembl)
PRDM1 ProteinO75626 (Uniprot-TrEMBL)
PRDM1:TP53 GeneComplexR-HSA-6804203 (Reactome)
PRDM1ProteinO75626 (Uniprot-TrEMBL)
PRR5 ProteinP85299 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
PolyUb,p-S15,S20-TP53 ProteinP04637 (Uniprot-TrEMBL)
PolyUb,p-S15,S20-TP53 TetramerComplexR-HSA-6804448 (Reactome)
PolyUb,p-S166,S188-MDM2 ProteinQ00987 (Uniprot-TrEMBL)
PolyUb,p-S166,S188-MDM2 homodimerComplexR-HSA-6804935 (Reactome)
PolyUb,p-S166,S188-MDM2:(PolyUb,p-S166,S188-MDM2, PolyUb,p-S342,S367,S403-MDM4)ComplexR-HSA-6805029 (Reactome)
PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4ComplexR-HSA-6804937 (Reactome)
PolyUb,p-S342,S367,S403-MDM4 ProteinO15151 (Uniprot-TrEMBL)
PolyUb-TP53 ProteinP04637 (Uniprot-TrEMBL)
PolyUb-TP53 TetramerComplexR-HSA-3209186 (Reactome)
PolyUb-TP53 TetramerComplexR-HSA-8856287 (Reactome)
PolyUbComplexR-HSA-6782682 (Reactome)
RFFL ProteinQ8WZ73 (Uniprot-TrEMBL)
RICTOR ProteinQ6R327 (Uniprot-TrEMBL)
RNF34 ProteinQ969K3 (Uniprot-TrEMBL)
RNF34,RFFLComplexR-HSA-6804437 (Reactome)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
Regulation of TP53

Activity through

Phosphorylation
PathwayR-HSA-6804756 (Reactome) Phosphorylation of TP53 (p53) at the N-terminal serine residues S15 and S20 plays a critical role in protein stabilization as phosphorylation at these sites interferes with binding of the ubiquitin ligase MDM2 to TP53. Several different kinases can phosphorylate TP53 at S15 and S20. In response to double strand DNA breaks, S15 is phosphorylated by ATM (Banin et al. 1998, Canman et al. 1998, Khanna et al. 1998), and S20 by CHEK2 (Chehab et al. 1999, Chehab et al. 2000, Hirao et al. 2000). DNA damage or other types of genotoxic stress, such as stalled replication forks, can trigger ATR-mediated phosphorylation of TP53 at S15 (Lakin et al. 1999, Tibbetts et al. 1999) and CHEK1-mediated phosphorylation of TP53 at S20 (Shieh et al. 2000). In response to various types of cell stress, NUAK1 (Hou et al. 2011), CDK5 (Zhang et al. 2002, Lee et al. 2007, Lee et al. 2008), AMPK (Jones et al. 2005) and TP53RK (Abe et al. 2001, Facchin et al. 2003) can phosphorylate TP53 at S15, while PLK3 (Xie, Wang et al. 2001, Xie, Wu et al. 2001) can phosphorylate TP53 at S20.

Phosphorylation of TP53 at serine residue S46 promotes transcription of TP53-regulated apoptotic genes rather than cell cycle arrest genes. Several kinases can phosphorylate S46 of TP53, including ATM-activated DYRK2, which, like TP53, is targeted for degradation by MDM2 (Taira et al. 2007, Taira et al. 2010). TP53 is also phosphorylated at S46 by HIPK2 in the presence of the TP53 transcriptional target TP53INP1 (D'Orazi et al. 2002, Hofmann et al. 2002, Tomasini et al. 2003). CDK5, in addition to phosphorylating TP53 at S15, also phosphorylates it at S33 and S46, which promotes neuronal cell death (Lee et al. 2007).

MAPKAPK5 (PRAK) phosphorylates TP53 at serine residue S37, promoting cell cycle arrest and cellular senescence in response to oncogenic RAS signaling (Sun et al. 2007).

NUAK1 phosphorylates TP53 at S15 and S392, and phosphorylation at S392 may contribute to TP53-mediated transcriptional activation of cell cycle arrest genes (Hou et al. 2011). S392 of TP53 is also phosphorylated by the complex of casein kinase II (CK2) bound to the FACT complex, enhancing transcriptional activity of TP53 in response to UV irradiation (Keller et al. 2001, Keller and Lu 2002).

The activity of TP53 is inhibited by phosphorylation at serine residue S315, which enhances MDM2 binding and degradation of TP53. S315 of TP53 is phosphorylated by Aurora kinase A (AURKA) (Katayama et al. 2004) and CDK2 (Luciani et al. 2000). Interaction with MDM2 and the consequent TP53 degradation is also increased by phosphorylation of TP53 threonine residue T55 by the transcription initiation factor complex TFIID (Li et al. 2004).

Aurora kinase B (AURKB) has been shown to phosphorylate TP53 at serine residue S269 and threonine residue T284, which is possibly facilitated by the binding of the NIR co-repressor. AURKB-mediated phosphorylation was reported to inhibit TP53 transcriptional activity through an unknown mechanism (Wu et al. 2011). A putative direct interaction between TP53 and AURKB has also been described and linked to TP53 phosphorylation and S183, T211 and S215 and TP53 degradation (Gully et al. 2012).

SGK1ProteinO00141 (Uniprot-TrEMBL)
TORC2 complexComplexR-HSA-198626 (Reactome)
TP53 ProteinP04637 (Uniprot-TrEMBL)
TP53 Tetramer:CCNG1 GeneComplexR-HSA-6791405 (Reactome)
TP53 TetramerComplexR-HSA-3209194 (Reactome)
TP53 gene ProteinENSG00000141510 (Ensembl)
TP53 geneGeneProductENSG00000141510 (Ensembl)
TP53ProteinP04637 (Uniprot-TrEMBL)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
USP2 ProteinO75604 (Uniprot-TrEMBL)
USP2:PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4ComplexR-HSA-6782767 (Reactome)
USP2ProteinO75604 (Uniprot-TrEMBL)
USP7 ProteinQ93009 (Uniprot-TrEMBL)
USP7ProteinQ93009 (Uniprot-TrEMBL)
UbComplexR-HSA-68524 (Reactome)
p-5S,T-MDM2ProteinQ00987 (Uniprot-TrEMBL)
p-S,3T-CHEK2ProteinO96017 (Uniprot-TrEMBL)
p-S15,S20-TP53 Tetramer:MDM2 GeneComplexR-HSA-3700998 (Reactome)
p-S15,S20-TP53 TetramerComplexR-HSA-3222171 (Reactome)
p-S15,S20-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15,S20-TP53:PRDM1 GeneComplexR-HSA-6804190 (Reactome)
p-S166,S188,T218-MDM2 ProteinQ00987 (Uniprot-TrEMBL)
p-S166,S188,T218-MDM2ProteinQ00987 (Uniprot-TrEMBL)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2,MDM4:TP53
ComplexR-HSA-6804885 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2:MDM4
ComplexR-HSA-6804745 (Reactome)
p-S166,S188-MDM2 dimerComplexR-HSA-6804933 (Reactome)
p-S166,S188-MDM2 ProteinQ00987 (Uniprot-TrEMBL)
p-S166,S188-MDM2,MDM4ComplexR-HSA-6804750 (Reactome)
p-S166,S188-MDM2:(p-S166,S188-MDM2,p-S346,S367,S403-MDM4)ComplexR-HSA-6805030 (Reactome)
p-S166,S188-MDM2:MDM4ComplexR-HSA-6804932 (Reactome)
p-S166,S188-MDM2:p-S346,S367,S403-MDM4ComplexR-HSA-6804936 (Reactome)
p-S166,S188-MDM2:p-S403-MDM4ComplexR-HSA-6804939 (Reactome)
p-S166,S188-MDM2ProteinQ00987 (Uniprot-TrEMBL)
p-S1981,Ac-K3016-ATMProteinQ13315 (Uniprot-TrEMBL)
p-S346,S367,S403-MDM4 ProteinO15151 (Uniprot-TrEMBL)
p-S403-MDM4 ProteinO15151 (Uniprot-TrEMBL)
p-S422-SGK1ProteinO00141 (Uniprot-TrEMBL)
p-T160-CDK2 ProteinP24941 (Uniprot-TrEMBL)
p-T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T218,S166,S188-MDM2, p-S166,S188-MDM2ComplexR-HSA-6792895 (Reactome)
p-T256,S422-SGK1ProteinO00141 (Uniprot-TrEMBL)
p-T305,S472-AKT3 ProteinQ9Y243 (Uniprot-TrEMBL)
p-T308,S473-AKT1 ProteinP31749 (Uniprot-TrEMBL)
p-T309,S474-AKT2 ProteinP31751 (Uniprot-TrEMBL)
p14-ARF ProteinQ8N726 (Uniprot-TrEMBL)
p14-ARF:p-S166,S188-MDM2 dimer,p-S166,S188-MDM2:MDM4:TP53ComplexR-HSA-6804999 (Reactome)
p14-ARF:p-S166,S188-MDM2 dimer,p-S166,S188-MDM2:MDM4ComplexR-HSA-6804995 (Reactome)
p14-ARFProteinQ8N726 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-198599 (Reactome)
ADPArrowR-HSA-349426 (Reactome)
ADPArrowR-HSA-349455 (Reactome)
ADPArrowR-HSA-6793661 (Reactome)
ADPArrowR-HSA-6795290 (Reactome)
ADPArrowR-HSA-6795460 (Reactome)
ADPArrowR-HSA-6795473 (Reactome)
ADPArrowR-HSA-6804955 (Reactome)
ATPR-HSA-198599 (Reactome)
ATPR-HSA-349426 (Reactome)
ATPR-HSA-349455 (Reactome)
ATPR-HSA-6793661 (Reactome)
ATPR-HSA-6795290 (Reactome)
ATPR-HSA-6795460 (Reactome)
ATPR-HSA-6795473 (Reactome)
ATPR-HSA-6804955 (Reactome)
Active AKTmim-catalysisR-HSA-198599 (Reactome)
CCNA:p-CDK1/2mim-catalysisR-HSA-6793661 (Reactome)
CCNG1 GeneR-HSA-6791409 (Reactome)
CCNG1 GeneR-HSA-6792491 (Reactome)
CCNG1ArrowR-HSA-6792491 (Reactome)
CCNG1ArrowR-HSA-6792863 (Reactome)
CCNG1R-HSA-6792871 (Reactome)
DAXX:(PolyUb,p-S166,S188-MDM2):USP7ArrowR-HSA-3222072 (Reactome)
DAXX:(PolyUb,p-S166,S188-MDM2):USP7R-HSA-3215295 (Reactome)
DAXX:(PolyUb,p-S166,S188-MDM2):USP7mim-catalysisR-HSA-3215295 (Reactome)
DAXXArrowR-HSA-3215295 (Reactome)
DAXXR-HSA-3222072 (Reactome)
H2OR-HSA-3215295 (Reactome)
H2OR-HSA-3215310 (Reactome)
H2OR-HSA-5689972 (Reactome)
H2OR-HSA-6792863 (Reactome)
MDM2 GeneR-HSA-3700992 (Reactome)
MDM2 GeneR-HSA-3700997 (Reactome)
MDM2ArrowR-HSA-3700992 (Reactome)
MDM2ArrowR-HSA-6792863 (Reactome)
MDM2ArrowR-HSA-6795667 (Reactome)
MDM2R-HSA-198599 (Reactome)
MDM2R-HSA-6795460 (Reactome)
MDM2R-HSA-6795667 (Reactome)
PDPK1:PIP3mim-catalysisR-HSA-6795473 (Reactome)
PHF20TBarR-HSA-5633460 (Reactome)
PP2A-PPP2R5CArrowR-HSA-6792863 (Reactome)
PP2A-PPP2R5CR-HSA-6792871 (Reactome)
PPP2A-PPPR5C:CCNG1:(p-T218-MDM2, p-S166-MDM2)ArrowR-HSA-6792871 (Reactome)
PPP2A-PPPR5C:CCNG1:(p-T218-MDM2, p-S166-MDM2)R-HSA-6792863 (Reactome)
PPP2A-PPPR5C:CCNG1:(p-T218-MDM2, p-S166-MDM2)mim-catalysisR-HSA-6792863 (Reactome)
PRDM1 GeneR-HSA-6804191 (Reactome)
PRDM1 GeneR-HSA-6804193 (Reactome)
PRDM1:TP53 GeneArrowR-HSA-6804194 (Reactome)
PRDM1:TP53 GeneTBarR-HSA-6804188 (Reactome)
PRDM1ArrowR-HSA-6804193 (Reactome)
PRDM1R-HSA-6804194 (Reactome)
PiArrowR-HSA-6792863 (Reactome)
PolyUb,p-S15,S20-TP53 TetramerArrowR-HSA-6804441 (Reactome)
PolyUb,p-S166,S188-MDM2 homodimerArrowR-HSA-6804942 (Reactome)
PolyUb,p-S166,S188-MDM2:(PolyUb,p-S166,S188-MDM2, PolyUb,p-S342,S367,S403-MDM4)R-HSA-3222072 (Reactome)
PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4ArrowR-HSA-6804724 (Reactome)
PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4R-HSA-6805022 (Reactome)
PolyUb-TP53 TetramerArrowR-HSA-6793685 (Reactome)
PolyUb-TP53 TetramerArrowR-HSA-6804879 (Reactome)
PolyUb-TP53 TetramerR-HSA-3215310 (Reactome)
PolyUb-TP53 TetramerR-HSA-6793685 (Reactome)
PolyUbArrowR-HSA-5689972 (Reactome)
R-HSA-198599 (Reactome) AKT phosphorylates MDM2 on two serine residues, at positions 166 and 188 (Mayo and Donner 2001, Feng et al. 2004, Milne et al. 2004). AKT-mediated phosphorylation of the E3 ubiquitin-protein ligase MDM2 promotes nuclear localization and interferes with the interaction between MDM2 and p14-ARF, thereby decreasing p53 stability. This leads to a decreased expression of p53 target genes, such as BAX, that promote apoptosis (Zhou et al. 2001, Mayo and Donner 2001).
R-HSA-3215295 (Reactome) In the presence of DAXX, USP7 deubiquitinates MDM2. DAXX expression therefore prolongs MDM2 half-life and inhibits TP53 activation (Tang et al. 2006). In the absence of DAXX or when DNA damage response is activated (Tang et al. 2006), USP7 associates with ubiquitinated TP53 rather than ubiquitinated MDM2 (Li et al. 2004, Sheng et al. 2006, Hu et al. 2006). USP7 also deubiquitinates MDM4 (MDMX) (Meulmeester et al. 2005, Sarkari et al. 2010). The role of DAXX in deubiquitination of MDM4 has not been examined.
R-HSA-3215310 (Reactome) USP7 (HAUSP) can deubiquitinate TP53, thereby prolonging TP53 half-life and enhancing TP53 activity (Li et al. 2002, Li et al. 2004, Sheng et al. 2006, Hu et al. 2006).
R-HSA-3222072 (Reactome) DAXX paired amphipathic helix domain 2 (PAH2) binds MDM2, while DAXX PAH1 domain and acid rich region simultaneously bind USP7 (HAUSP) (Tang et al. 2006), forming a tripartite complex.
R-HSA-349426 (Reactome) CHEK2 (Chk2) kinase is required for phosphorylation of MDM4 at serine residues S342 and S367 in vivo. CHEK2-mediated phosphorylation stimulates MDM4 ubiquitination by MDM2 and subsequent degradation (Chen et al. 2005).
R-HSA-349455 (Reactome) Human MDM4 (MDMX) is phosphorylated on serine residue S403 by ATM. This site is important for MDM2-mediated ubiquitination of MDM4 after induction of double strand DNA breaks (Pereg et al. 2005, Chen et al. 2005).
R-HSA-3700992 (Reactome) Binding of TP53 (p53) to the p53 response element in the first intron of the MDM2 gene stimulates MDM2 transcription (Wu et al. 1993).
R-HSA-3700997 (Reactome) TP53 (p53) binds the p53 response element in the first intron of the MDM2 gene (Wu et al. 1993).
R-HSA-5633460 (Reactome) The N-terminal portion of MDM2 binds the N-terminal transactivation domain of TP53 (p53) and inhibits transcriptional transactivation by TP53 (Momand et al. 1992, Oliner et al. 1992, Oliner et al. 1993, Chen et al. 1993).
R-HSA-5689972 (Reactome) The ubiquitin protease USP2 deubiquitinates MDM2 and MDM4 but not TP53 (Stevenson et al. 2007, Allende-Vega et al. 2010).
R-HSA-6791409 (Reactome) TP53 (p53) binds the p53 response element in the first intron of cyclin G1 (CCNG1) gene. An additional p53 response element may be located in the CCNG1 promoter (Okamoto and Beach 1994, Zauberman et al. 1995, Endo et al. 1996).
R-HSA-6792491 (Reactome) Upon binding to the p53 response elements in the promoter and/or the first intron of CCNG1 (cyclin G1) gene, TP53 induces CCNG1 transcription (Okamoto and Beach 1994, Zauberman et al. 1995, Endo et al. 1996).
R-HSA-6792863 (Reactome) The protein serine/threonine phosphatase complex PP2A, recruited to MDM2 through interaction of the PP2A regulatory subunit PPP2R5C and cyclin G1 (CCNG1) dephosphorylates MDM2 on threonine residue T218 (T218 in human MDM2 corresponds to T216 in mouse Mdm2). Dephosphorylation of T218 increases the affinity of MDM2 for TP53 (p53), leading to p53 down-regulation (Okamoto et al. 2002).

CCNG1-recruited PP2A can also dephosphorylate serine residue S166 of human MDM2 (Okamoto et al. 2002).

R-HSA-6792871 (Reactome) CCNG1 (cyclin G1) simultaneously interacts with the regulatory subunit of the PP2A protein phosphatase complex, PPP2R5C (Okamoto et al. 1996), and MDM2, thus recruiting the PP2A complex to MDM2 (Okamoto et al. 2002).
R-HSA-6793661 (Reactome) CDK1 or CDK2 in complex with CCNA (cyclin A) phosphorylates MDM2 at threonine residue T218. Phosphorylation of MDM2 at T218 increases its affinity for p14-ARF and reduces its affinity for TP53 (p53), thus resulting in TP53 upregulation (Zhang and Prives 2001).
R-HSA-6793666 (Reactome) AKT- or SGK1-phosphorylated MDM2 residues S166 and S188 are in the vicinity of the MDM2 nuclear localization signal. MDM2 phosphorylation by AKT or SGK1 leads to MDM2 translocation from the cytosol to the nucleus (Mayo and Donner 2001).
R-HSA-6793685 (Reactome) Upon MDM2-mediated ubiquitination, TP53 is exported from the nucleus to the cytosol. TP53 nuclear export requires the nuclear export sequence (NES) of TP53, but not the NES of MDM2 (Boyd et al. 2000. Geyer et al. 2000).
R-HSA-6795290 (Reactome) The TORC2 complex phosphorylates SGK1 at serine residue S422, located in the carboxy-terminal hydrophobic motif of SGK1. Phosphorylation at S422 contributes to SGK1 activation (Garcia-Martinez and Alessi 2008, Lu et al. 2010).
R-HSA-6795460 (Reactome) SGK1 phosphorylates MDM2 at serine residues S166 and S188, resulting in MDM2 activation (Amato et al. 2009, Lyo et al. 2010). SGK1 may play a more prominent role in MDM2 activation than AKT (Lyo et al. 2010).
R-HSA-6795473 (Reactome) PDPK1 (PDK1) activates SGK1 by phosphorylating threonine residue T256, located in the activation loop of SGK1. Phosphorylation of SGK1 at S422 facilitates subsequent phosphorylation at T256 (Kobayashi and Cohen 1999).
R-HSA-6795667 (Reactome) Unphosphorylated MDM2 is exported from the nucleus into the cytosol (Mayo and Donner 2001).
R-HSA-6804188 (Reactome) Binding of PRDM1 (BLIMP1) to the promoter region of the TP53 (p53) gene inhibits TP53 transcription (Yan et al. 2007) probably by inducing repressive methylation of the TP53 promoter (Weige et al. 2014).
R-HSA-6804191 (Reactome) TP53 (p53) binds the p53 response element in the third intron of the PRDM1 (BLIMP1) gene (Yan et al. 2007).
R-HSA-6804193 (Reactome) Binding of TP53 (p53) to the p53 response element in the third intron of the PRDM1 (BLIMP1) gene stimulates BLIMP1 transcription (Yan et al. 2007).
R-HSA-6804194 (Reactome) PRDM1 (BLIMP1) zinc finger transcription factor binds in vicinity of the transcription start site of the TP53 (p53) gene (Yan et al. 2007).
R-HSA-6804441 (Reactome) E3 ubiquitin ligases RNF34 (CARP1) and RFFL (CARP2) can ubiquitinate TP53 (p53) phosphorylated at the N-terminus and target it for proteasome-mediated degradation (Yang et al. 2007).
R-HSA-6804724 (Reactome) Once MDM4 is phosphorylated by ATM and CHEK2 in response to DNA damage, MDM2 ubiquitinates MDM4 and targets it for degradation (Chen et al. 2005, Pereg et al. 2005). The presence of MDM4 stimulates auto-ubiquitination of MDM2 (Linares et al. 2003).
R-HSA-6804741 (Reactome) To efficiently function as an E3 ubiquitin ligase, MDM2 has to form dimers or higher order oligomers. MDM2 can homodimerize (Cheng et al. 2011) or heterodimerize with MDM4 (MDMX) (Sharp et al. 1999, Huang et al. 2011, Pant et al. 2011). Dimerization involves the RING domain of MDM2 and/or MDM4. Heterodimers of MDM2 and MDM4 may be particularly important during embryonic development (Pant et al. 2011).
R-HSA-6804762 (Reactome) TP53 (p53) functions as a stable homotetramer. The tetramerization domain is located within the C-terminus (Stenger et al. 1994, Waterman et al. 1995, Jeffrey et al. 1995, Wang et al. 1995).
R-HSA-6804879 (Reactome) MDM2 is an ubiquitin ligase whose expression is positively regulated by TP53 (p53) (Wu et al. 1993). MDM2 binds TP53 tetramer (Maki 1999) and promotes its ubiquitination and subsequent degradation (Fuchs et al. 1998). Formation of MDM2 homodimers (Cheng et al. 2011) or heterodimers with MDM4 (MDMX) is needed for efficient ubiquitination of TP53 (Linares et al. 2003). While MDM2-TP53 binding occurs at the amino-terminus of TP53, MDM2 ubiquitinates TP53 lysine residues at the carboxy-terminus. Acetylation of those lysines can inhibit MDM2-dependent ubiquitination (Li et al. 2002).
R-HSA-6804942 (Reactome) MDM2 undergoes auto-ubiquitination (Fang et al. 2000). Formation of homodimers may not be necessary for auto-ubiquitination (Cheng et al. 2011).
R-HSA-6804955 (Reactome) ATM phosphorylates MDM2 on three serine residues (S386, S395, S407) and one threonine residue (T419) in vicinity to the RING domain. ATM-mediated phosphorylation of MDM2 in response to DNA damage (DNA double strand breaks) prevents MDM2 dimerization, binding of TP53 (p53) and MDM2-mediated ubiquitination of TP53 (Cheng et al. 2009, Cheng et al. 2011).
R-HSA-6804996 (Reactome) Binding of p14-ARF to MDM2 decreases the half-life of MDM2, likely through promoting MDM2 degradation. Thus, p14-ARF inhibits MDM2-mediated ubiquitination and degradation of TP53 (Zhang et al. 1998).
R-HSA-6804998 (Reactome) p14-ARF forms a complex with TP53-bound MDM2 by interacting with the C-terminus of MDM2, while the N-terminus of MDM2 is involved in TP53 (p53) binding. p14-ARF cannot associate with TP53 in the absence of MDM2 (Zhang et al. 1998).
R-HSA-6805022 (Reactome) The ubiquitin protease USP2 forms a tripartite complex with MDM2 and MDM4 (MDMX) by binding to the ubiquitinated heterodimer of MDM2 and MDM4 (Allende-Vega et al. 2010).
RNF34,RFFLmim-catalysisR-HSA-6804441 (Reactome)
SGK1R-HSA-6795290 (Reactome)
TORC2 complexmim-catalysisR-HSA-6795290 (Reactome)
TP53 Tetramer:CCNG1 GeneArrowR-HSA-6791409 (Reactome)
TP53 Tetramer:CCNG1 GeneArrowR-HSA-6792491 (Reactome)
TP53 TetramerArrowR-HSA-3215310 (Reactome)
TP53 TetramerArrowR-HSA-6804762 (Reactome)
TP53 TetramerArrowR-HSA-6804996 (Reactome)
TP53 TetramerR-HSA-5633460 (Reactome)
TP53 TetramerR-HSA-6791409 (Reactome)
TP53 geneR-HSA-6804188 (Reactome)
TP53 geneR-HSA-6804194 (Reactome)
TP53ArrowR-HSA-6804188 (Reactome)
TP53R-HSA-6804762 (Reactome)
USP2:PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4ArrowR-HSA-6805022 (Reactome)
USP2:PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4R-HSA-5689972 (Reactome)
USP2:PolyUb,p-S166,S188-MDM2:PolyUb,p-S342,S367,S403-MDM4mim-catalysisR-HSA-5689972 (Reactome)
USP2ArrowR-HSA-5689972 (Reactome)
USP2R-HSA-6805022 (Reactome)
USP7ArrowR-HSA-3215295 (Reactome)
USP7R-HSA-3222072 (Reactome)
USP7mim-catalysisR-HSA-3215310 (Reactome)
UbArrowR-HSA-3215295 (Reactome)
UbArrowR-HSA-3215310 (Reactome)
UbR-HSA-6804441 (Reactome)
UbR-HSA-6804724 (Reactome)
UbR-HSA-6804879 (Reactome)
UbR-HSA-6804942 (Reactome)
p-5S,T-MDM2ArrowR-HSA-6804955 (Reactome)
p-S,3T-CHEK2mim-catalysisR-HSA-349426 (Reactome)
p-S15,S20-TP53 Tetramer:MDM2 GeneArrowR-HSA-3700992 (Reactome)
p-S15,S20-TP53 Tetramer:MDM2 GeneArrowR-HSA-3700997 (Reactome)
p-S15,S20-TP53 TetramerR-HSA-3700997 (Reactome)
p-S15,S20-TP53 TetramerR-HSA-6804191 (Reactome)
p-S15,S20-TP53 TetramerR-HSA-6804441 (Reactome)
p-S15,S20-TP53:PRDM1 GeneArrowR-HSA-6804191 (Reactome)
p-S15,S20-TP53:PRDM1 GeneArrowR-HSA-6804193 (Reactome)
p-S166,S188,T218-MDM2ArrowR-HSA-6793661 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2,MDM4:TP53
ArrowR-HSA-5633460 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2,MDM4:TP53
R-HSA-6804879 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2,MDM4:TP53
R-HSA-6804998 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2,MDM4:TP53
mim-catalysisR-HSA-6804879 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2:MDM4
ArrowR-HSA-6804741 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2:MDM4
ArrowR-HSA-6804879 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2:MDM4
R-HSA-5633460 (Reactome)
p-S166,S188-MDM2 dimerR-HSA-6804942 (Reactome)
p-S166,S188-MDM2 dimermim-catalysisR-HSA-6804942 (Reactome)
p-S166,S188-MDM2,MDM4R-HSA-6804741 (Reactome)
p-S166,S188-MDM2:(p-S166,S188-MDM2,p-S346,S367,S403-MDM4)ArrowR-HSA-3215295 (Reactome)
p-S166,S188-MDM2:MDM4R-HSA-349455 (Reactome)
p-S166,S188-MDM2:p-S346,S367,S403-MDM4ArrowR-HSA-349426 (Reactome)
p-S166,S188-MDM2:p-S346,S367,S403-MDM4ArrowR-HSA-5689972 (Reactome)
p-S166,S188-MDM2:p-S346,S367,S403-MDM4R-HSA-6804724 (Reactome)
p-S166,S188-MDM2:p-S346,S367,S403-MDM4mim-catalysisR-HSA-6804724 (Reactome)
p-S166,S188-MDM2:p-S403-MDM4ArrowR-HSA-349455 (Reactome)
p-S166,S188-MDM2:p-S403-MDM4R-HSA-349426 (Reactome)
p-S166,S188-MDM2ArrowR-HSA-198599 (Reactome)
p-S166,S188-MDM2ArrowR-HSA-6793666 (Reactome)
p-S166,S188-MDM2ArrowR-HSA-6795460 (Reactome)
p-S166,S188-MDM2R-HSA-6793661 (Reactome)
p-S166,S188-MDM2R-HSA-6793666 (Reactome)
p-S166,S188-MDM2R-HSA-6804741 (Reactome)
p-S166,S188-MDM2R-HSA-6804955 (Reactome)
p-S1981,Ac-K3016-ATMTBarR-HSA-6804741 (Reactome)
p-S1981,Ac-K3016-ATMmim-catalysisR-HSA-349455 (Reactome)
p-S1981,Ac-K3016-ATMmim-catalysisR-HSA-6804955 (Reactome)
p-S422-SGK1ArrowR-HSA-6795290 (Reactome)
p-S422-SGK1R-HSA-6795473 (Reactome)
p-T218,S166,S188-MDM2, p-S166,S188-MDM2R-HSA-6792871 (Reactome)
p-T256,S422-SGK1ArrowR-HSA-6795473 (Reactome)
p-T256,S422-SGK1mim-catalysisR-HSA-6795460 (Reactome)
p14-ARF:p-S166,S188-MDM2 dimer,p-S166,S188-MDM2:MDM4:TP53ArrowR-HSA-6804998 (Reactome)
p14-ARF:p-S166,S188-MDM2 dimer,p-S166,S188-MDM2:MDM4:TP53R-HSA-6804996 (Reactome)
p14-ARF:p-S166,S188-MDM2 dimer,p-S166,S188-MDM2:MDM4ArrowR-HSA-6804996 (Reactome)
p14-ARF:p-S166,S188-MDM2 dimer,p-S166,S188-MDM2:MDM4TBarR-HSA-6804879 (Reactome)
p14-ARFR-HSA-6804998 (Reactome)

Personal tools