Glycerophospholipid biosynthesis (Homo sapiens)

From WikiPathways

Revision as of 21:30, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 155, 167, 171, 196...104, 168, 19877, 101, 1832, 6, 14, 31, 41...57, 94, 103, 140, 15736, 12112, 19, 75, 124, 159...60, 76, 130, 15142, 56, 109, 113104, 168, 19834, 170, 207165, 17751, 67, 16355, 7413, 64, 17640, 82124, 146, 18547, 93, 115, 127392, 6, 14, 31, 41...19739, 55, 74177, 191124, 146, 159, 172, 184...33, 39, 527, 53, 59, 75, 77...49, 144, 199124, 146, 1852, 6, 14, 31, 41...3939, 55, 7454, 143, 145, 1733987, 12971, 1101791423960, 76, 130, 1513011415, 9939, 55, 7439, 55, 7413, 64, 17617739, 17928, 16081, 101, 18317639, 52, 55, 74, 9136, 121, 13820, 119158, 179, 19423, 1418, 32, 178, 20144, 8566, 100, 202122, 150, 17460, 76, 130, 151, 15666, 100, 20221, 43, 78, 84, 14873, 115, 137, 152, 15391, 16572, 133, 17515, 9930135, 1643938, 89, 958858, 188177, 191, 1974890, 20812, 45, 75, 185, 18939, 1796938, 13610826, 33, 35, 39, 52...1733, 39168392, 6, 14, 31, 41...1066, 100, 202118, 19316, 124120, 132, 187, 1926366, 100, 20280, 116, 18062, 63, 128, 18112327, 65, 70, 97, 117...12, 19, 75, 124, 159...61, 14717935, 131, 1391549, 39, 55, 74, 179...1214, 50, 112, 134124, 146, 159, 172, 184...97, 1622, 6, 14, 31, 41...392, 6, 14, 31, 41...1083912, 45, 75, 185, 18955, 74103016, 12417925, 125, 186105, 14924, 1613915, 18, 86, 92, 166...29, 2005, 126, 18224, 16197, 16239, 52, 55, 74, 911, 9, 11, 33, 35...22, 10227, 65, 70, 97, 117...17637, 12329, 46mitochondrial intermembrane spacecytosolmitochondrial intermembrane spacelate endosome lumenmitochondrial matrixendoplasmic reticulum lumenGolgi lumenperoxisomal matrixmitochondrial matrixCa2+ GlycerolMg2+ PLA2(8)PLA2G4A PLA2G10 PLA2G2A:Ca2+MYS-LPACRLS1PLA2G4CPCPLA2G4B CLDAG2-acyl LPSCSNK2A1 PLA2G2A PLA2G4B PLA2G4C PLD2 PLBD1 PLA2(1)PGChoAGPAT9 H2OPISD:PyruvoylH2OMAG Mg2+ PLA2G6 1-acyl LPCPMETAM PLA2(4)PLA2G2D acyl-CoAH2OCHKB H2OPITPNB PCYT2 dimerGPD1 PLA2G12A PI PLA2G4C2-acyl LPILCFA(-)CDIPT STARD7 H2OLIPI LCFA(-)1AGPCPLA2(16)PC PLA2G2F NADHPLA2G2A:Ca2+PLA2(11)Ca2+ PLA2G2A ETANH3CPNEsEPT1 LPCAT1 CRLS1PLA2G4A CHKB LCFA(-)Ca2+ LPA GlycerolMIGA2 PLA2G4A PLA2G2A HRASLSLPCAT4 ADPDAGMg2+ LCFA(-)acyl-CoACa2+ PLA2G2D CoA-SHCDS1:Mg2+BCHE PLA2G4A:Ca2+1-acyl LPELPC (22:6)LCFA(-)LPSATDGAT2L7P SLC44A2 PI:PITPNBPLA2G4D LPCAT1 LCFA(-)PLBD1 CPNE1 PLA2G16 PLA2G4A GPETAM H2OH2OCoA-SHATPPLA2G4F LCFA(-)ATPCHKA acyl-CoALPCAT1 PITPNM1,2,3PChoMBOAT1 cytidine5'-monophosphateH2OPLA2G2F GPAM(1-828) MBOAT2 H2OL-SerAcyl-CoALCFA(-)PLA2G4B PC:PITPNBHADHA LCFA(-)Ca2+ PLA2G4F PTPMT1PLD6 dimer1-acyl LPGCa2+ 1-acyl LPGPLA2G2A:Ca2+PLA2GPC PETAPLA2G5 TMEM86Bcytidine5'-monophosphateLPA,PAPNPLA2/3PLA2G2D LPEATPLD6 PNPLA8 CO2LPC (22:6)LPSATfatty aldehyde2-acyl LPSPC PCYT1B PLA2G10 ETNK2 SLC44A1 LPINPC LPCAT4 CPNEs:PLAdoHcyLPEATH2OMg2+ LCFA(-)PLA2(15)H2OADPETACEPT1:Mg2+/Mn2+PLA2(8)AGK Ca2+ LPCATPHOSPHO1:Mg2+GPCHO PAH2O1-MMGPLA2G4A PEGNPATPLA2(16)Ac-CoAAGPAT2 GPCPD1LPCAT2 PLA2G4D 2-acyl LPGAdoMetDAG PISD(378-409) PLA2G4F LPC(14:0)G3PTAZLPCAT4 PLA2G4E PCTP H2OPIPLA2G4F CoA-SHHADH octamerPLA2G12A PTDSS2PLA2G4F MBOAT1 acyl-CoALIPH LPGAT1 PSPGH2OLPCAT1 PLA2G1B PLA2G2F LCFA(-)ALPI:2Ca2+:Mg2+dimerGlycerolCoA-SHPITPNM1 H+PLA2(7)ALPI PLA2(6)CoA-SHFADH2MBOAT71-acyl LPGSLC44A3 PLA2G12A PLA2G4D PETAPLA2G5 Ca2+ FADACP6PLA2G4B PLA2G3 G3P2-acyl LPAPLA2(15)H2OLCFA(-)GPAEACDP-DAGPSLPCAT4 CEPT1 ETNPPL tetrameracyl-CoAH2OETAAcChoPLA2G10 PPiPLA2G4F GPChoPLA2G2A PLA2G2A acyl-CoACHATCoA-SHLCFA(-)MBOAT1 PLA2G4E AGK:Mg2+CSNK2B acyl-CoADAGLCFA(-)PiPAOSBPL5 CoA-SHLPCAT3 PNPLA3 1-acyl LPAMGLL DHAPPC PI4PPLA2G4CLysoPtdChoPLA2G4D STARD10:LPCAT1:PCPITPNB CTPNa+PLA2G4A InsPL Mn2+ PLA2G4E 1-acyl LPCCoA-SHLPCAT3 PLD6 Ca2+ ChoPC:PITPNBPPiPCacyl-CoAPECa2+ LPCAT1 PLA2G2F PNPLA8 PCYT1 dimerRCOOHH2OPGMg2+ Casein kinase IIPGPPI PLA2G4A PLA2G4B PLA2G4A HRASLS5 2-MAGPIAGPAT4 Mg2+ PLA2G4D PELPCAT1PLA2(13)PLA2G2E LCFA(-)HRASLS2 PLD1/2LPCAT3 H2OG3PPLA2G6 phosphate monoesterPLA2G5 CHKA LCFA(-)CDP-ChoLPIN3 H2OETNK1 DDHD1 1-acyl LPEPLA2(14)PCH2OL-SerDGAT2L6,L7PPC PLA2G4F CoA-SHPLA2G4F LPCAT2 H2OChoGPETAH2OGPD2CholinesteraseCa2+ PLA2G4E PPiMAGPLA2(10)acyl-CoAPLA2G4F PLPA LPCAT4 H2OPLA2G16 H2OMn2+ PCPLA2(9)Ca2+ DHAPH2OAGPAT5 DGAT2L6 GO3PCPNE3 LPCAT4 PLA2G4B PGPLD1 H2OCa2+ PLA2G2F GPAM/GPAT2PLA2G3 H2Oacyl-CoASTARD7CDS2H2OSTARD10PLA2G4B PLA2G2A PLA2G4A cytidine5'-monophosphateLIPH, ICoA-SHMg2+ GPCHO, GPETAMcardiolipinHRASLS ATPMLCLlysoPCPAPLA2G1B LCFA(-)LCLAT1 H2Oacyl-CoAAGPAT1 PAPLA2G2F LPCAT4 ADPCPNE6 Ca2+ PLA2G4B PC PLBD1 PLA2G4D DLCLLCFA(-)PiLPCAT4 PLA2G4E LCFA(-)acyl-CoACDP-DAGPLA2G1B LPGATLPGAT1 CTPPLA2G2A PLA2G4E Ca2+ GPD1/GPD1L homodimerCa2+ MAG,DAG1-acyl LPASTARD7:PCPLA2G4A PSDDHD1,2PLB1PLA2G4D PIH2ODGAT2 LPIN2 LPIN1 AGPAT6acyl-CoAH2OPLA2G15PLBD1 LCFA(-)LCLAT1AcChoLPCATH2OPLA2G10 RARRES3 Pi1-acyl LPIPLA2G4D cardiolipinPITPNM2 H2OCEPT1 Ca2+ Ca2+ 1-acyl LPIPLD4 H2OG3PPCTPPLA2G4F ABHD4LPGATTAGp-S284-STARD10acyl-CoAPiMBOAT2 PI4PCSNK2A2 MIGA1 CHPT1 ADPDGAT1/2PLA2G4D ChoCPNE7 ATPPLA2G6cytidine5'-monophosphateDLCLLPCAT3 PLA2G2A PITPNB 1-acyl LPCZn2+ PPi1-acyl LPSNAD+PLA2G4D STARD10 GlycerolNa+PiNAPEPSMn2+ PLA2G4D PLA2G4D AGPAT3 LPCAT3 PLA2G16 1-acyl LPSETNPPL PLA2G4F ChoCPNE3 PLA2G16 PLBD1 2-acyl LPGAGPAT5MBOAT2 PLA2G4B PEMTPLA2(1)Ca2+ H2OPLA2G12A Ca2+ PITPNB LPCAT4 CPNE1 CHPT1:Mg2+/Mn2+CoA-SHAWAT2PEacyl groupGPChoCoA-SHPMCHO, PMETAMGPD1L STARD10 PLA2(12)PMCHO CDIPT:Mg2+/Mn2+CoA-SHPLD1 Ca2+PLA2G2E PCPGcytidine5'-monophosphateCDP-ETAPLA2(5)DGAT1 GPAT2 CHK dimerPCYT1A STARD7 PGS1PLA2(3)PLA2G4C Ca2+ PLA1APLD1-4/6PLA2G4A PLA2G4D acetateACHE SLC44A5 PLA2G2E PLA2G2D acyl-CoACa2+ PLA2G2F MBOAT7MLCLPLA2G4C1-acyl LPAPIPLA2G2A PHOSPHO1 Pyruvoyl PLA2G4D PLA2(1)PLA2(2)PLA2G2E MFSD2AH2OMGLL dimerCHK/ETNKSTARD7:PCHADHB Ca2+ OSBPL5,8,10PITPNM3 MBOAT1 CTPCEPT1/EPT1PLA2G4E PEH2OPLA2G16 CH3CHOPLA2G4D PLA2G4B 2-acyl LPEPLA2G2A MBOAT2 AGPAT6 LPCAT1 CoA-SHSTARD10:PCCoA-SHABHD3PCDDHD2 PGCa2+ H2OPLA2G5 CDS1 PLD3 SLC44A4 2-acyl LPCOSBPL10 CoA-SHPLA2G4A PNPLA2 PISD(1-377) BMPPGPTDSS1ChoPLA2G1B PI:PITPNBPICPNE6 CPNE7 acyl-CoAcytidine5'-monophosphateLCFA(-)PLA2G4CPLA2R1(21-?)fatty acidPCTP:PCCTL1-51-acyl LPEAGPATMIGA complexesPCYT2 OSBPL8 Mg2+ PLA2G4A Mn2+ PLD2 LPCAT3 Alcohol123, 204123


Description

Glycerophospholipids are important structural and functional components of biological membranes and constituents of serum lipoproteins and the pulmonary surfactant. In addition, glycerophospholipids act as precursors of lipid mediators such as platelet-activating factor and eicosanoids. Cellular membranes contains a distinct composition of various glycerophospholipids such as phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), cardiolipin (CL), lysophosphatidic acid (LPA) and lysobisphosphatidic acid (also known as bis(monoacylglycerol) hydrogen phosphate - BMP).

Glycerophospholipids are first formed by the de novo (Kennedy) pathway using fatty acids activated as acyl-CoA donors. However, the acyl groups of glycerophospholipids are highly diverse and distributed in an asymmetric manner. Saturated and monounsaturated fatty acids are usually esterified at the sn-1 position, whereas polyunsaturated acyl groups are esterified at the sn-2 position. Subsequent acyl chain remodeling (Lands cycle) generates the diverse glycerophospholipid composition and asymmetry characteristic of cell membranes.

In the de novo pathway of glycerophospholipid biosynthesis, lysophosphatidic acid (LPA) is initially formed from glycerol 3-phosphate (G3P). Next, LPA is converted to PA by a LPA acyltransferase (AGPAT, also known as LPAAT), then PA is metabolized into two types of glycerol derivatives. The first is diacylglycerol (DAG) which is converted to triacylglycerol (TAG), PC, and PE. Subsequently, PS is synthesized from PC or PE. The second is cytidine diphosphate-diacylglycerol (CDP-DAG), which is processed into PI, PG, CL, and BMP. Each glycerophospholipid is involved in acyl chain remodeling via cleavage by phospholipases followed by reacylation by an acyltransferase.

Most of the glycerophospholipids are synthesized at the endoplasmic reticulum (ER), however, some, most notably cardiolipin, and BMP are synthesized in the mitochondrial and endosomal membranes respectively. Since the most of the glycerophospholipids are found in all membrane compartments, there must be extensive network of transport of glycerophospholipids from one membrane compartment to another via various mechanisms including diffusion through the cytosol, formation of transportation complexes, and diffusion via membrane contact sites (MCS) (Osman et al. 2011, Lebiedzinska et al. 2009, Lev 2010, Scherer & Schmitz 2011, Orso et al. 2011, Hermansson et al. 2011, Vance & Vance 2008). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 1483206
Reactome-version 
Reactome version: 64
Reactome Author 
Reactome Author: Williams, MG

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Lykidis A, Wang J, Karim MA, Jackowski S.; ''Overexpression of a mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine pathway.''; PubMed Europe PMC Scholia
  2. Sharp JD, Pickard RT, Chiou XG, Manetta JV, Kovacevic S, Miller JR, Varshavsky AD, Roberts EF, Strifler BA, Brems DN.; ''Serine 228 is essential for catalytic activities of 85-kDa cytosolic phospholipase A2.''; PubMed Europe PMC Scholia
  3. Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, Reue K.; ''Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns.''; PubMed Europe PMC Scholia
  4. Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J.; ''Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport.''; PubMed Europe PMC Scholia
  5. Hiramatsu T, Sonoda H, Takanezawa Y, Morikawa R, Ishida M, Kasahara K, Sanai Y, Taguchi R, Aoki J, Arai H.; ''Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta.''; PubMed Europe PMC Scholia
  6. Lehn DA, Brown LJ, Simonson GD, Moran SM, MacDonald MJ.; ''The sequence of a human mitochondrial glycerol-3-phosphate dehydrogenase-encoding cDNA.''; PubMed Europe PMC Scholia
  7. Gallala HD, Sandhoff K.; ''Biological function of the cellular lipid BMP-BMP as a key activator for cholesterol sorting and membrane digestion.''; PubMed Europe PMC Scholia
  8. Agarwal AK.; ''Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease.''; PubMed Europe PMC Scholia
  9. Wille S, Szekeres A, Majdic O, Prager E, Staffler G, Stöckl J, Kunthalert D, Prieschl EE, Baumruker T, Burtscher H, Zlabinger GJ, Knapp W, Stockinger H.; ''Characterization of CDw92 as a member of the choline transporter-like protein family regulated specifically on dendritic cells.''; PubMed Europe PMC Scholia
  10. Chang CL, Liou J.; ''Phosphatidylinositol 4,5-Bisphosphate Homeostasis Regulated by Nir2 and Nir3 Proteins at Endoplasmic Reticulum-Plasma Membrane Junctions.''; PubMed Europe PMC Scholia
  11. Yamashita A, Kamata R, Kawagishi N, Nakanishi H, Suzuki H, Sugiura T, Waku K.; ''Roles of C-terminal processing, and involvement in transacylation reaction of human group IVC phospholipase A2 (cPLA2gamma).''; PubMed Europe PMC Scholia
  12. Aoki J, Inoue A, Makide K, Saiki N, Arai H.; ''Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family.''; PubMed Europe PMC Scholia
  13. Tesson C, Nawara M, Salih MA, Rossignol R, Zaki MS, Al Balwi M, Schule R, Mignot C, Obre E, Bouhouche A, Santorelli FM, Durand CM, Oteyza AC, El-Hachimi KH, Al Drees A, Bouslam N, Lamari F, Elmalik SA, Kabiraj MM, Seidahmed MZ, Esteves T, Gaussen M, Monin ML, Gyapay G, Lechner D, Gonzalez M, Depienne C, Mochel F, Lavie J, Schols L, Lacombe D, Yahyaoui M, Al Abdulkareem I, Zuchner S, Yamashita A, Benomar A, Goizet C, Durr A, Gleeson JG, Darios F, Brice A, Stevanin G.; ''Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia.''; PubMed Europe PMC Scholia
  14. Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV.; ''Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members.''; PubMed Europe PMC Scholia
  15. Lu B, Jiang YJ, Zhou Y, Xu FY, Hatch GM, Choy PC.; ''Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARalpha in murine heart.''; PubMed Europe PMC Scholia
  16. Ardail D, Gasnier F, Lermé F, Simonot C, Louisot P, Gateau-Roesch O.; ''Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes.''; PubMed Europe PMC Scholia
  17. Henneberry AL, Wright MM, McMaster CR.; ''The major sites of cellular phospholipid synthesis and molecular determinants of Fatty Acid and lipid head group specificity.''; PubMed Europe PMC Scholia
  18. Seilhamer JJ, Pruzanski W, Vadas P, Plant S, Miller JA, Kloss J, Johnson LK.; ''Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid.''; PubMed Europe PMC Scholia
  19. Murakami M, Masuda S, Shimbara S, Bezzine S, Lazdunski M, Lambeau G, Gelb MH, Matsukura S, Kokubu F, Adachi M, Kudo I.; ''Cellular arachidonate-releasing function of novel classes of secretory phospholipase A2s (groups III and XII).''; PubMed Europe PMC Scholia
  20. Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, Gavin AC.; ''Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.''; PubMed Europe PMC Scholia
  21. Du X, Kumar J, Ferguson C, Schulz TA, Ong YS, Hong W, Prinz WA, Parton RG, Brown AJ, Yang H.; ''A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking.''; PubMed Europe PMC Scholia
  22. Suzuki N, Ishizaki J, Yokota Y, Higashino K, Ono T, Ikeda M, Fujii N, Kawamoto K, Hanasaki K.; ''Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A(2)s.''; PubMed Europe PMC Scholia
  23. Ersoy BA, Tarun A, D'Aquino K, Hancer NJ, Ukomadu C, White MF, Michel T, Manning BD, Cohen DE.; ''Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling.''; PubMed Europe PMC Scholia
  24. Zhang J, Guan Z, Murphy AN, Wiley SE, Perkins GA, Worby CA, Engel JL, Heacock P, Nguyen OK, Wang JH, Raetz CR, Dowhan W, Dixon JE.; ''Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis.''; PubMed Europe PMC Scholia
  25. Simon GM, Cravatt BF.; ''Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway.''; PubMed Europe PMC Scholia
  26. Kawano Y, Ersoy BA, Li Y, Nishiumi S, Yoshida M, Cohen DE.; ''Thioesterase superfamily member 2 (Them2) and phosphatidylcholine transfer protein (PC-TP) interact to promote fatty acid oxidation and control glucose utilization.''; PubMed Europe PMC Scholia
  27. Olayioye MA, Buchholz M, Schmid S, Schöffler P, Hoffmann P, Pomorski T.; ''Phosphorylation of StarD10 on serine 284 by casein kinase II modulates its lipid transfer activity.''; PubMed Europe PMC Scholia
  28. Murakami M, Masuda S, Ueda-Semmyo K, Yoda E, Kuwata H, Takanezawa Y, Aoki J, Arai H, Sumimoto H, Ishikawa Y, Ishii T, Nakatani Y, Kudo I.; ''Group VIB Ca2+-independent phospholipase A2gamma promotes cellular membrane hydrolysis and prostaglandin production in a manner distinct from other intracellular phospholipases A2.''; PubMed Europe PMC Scholia
  29. Yen CL, Brown CH, Monetti M, Farese RV.; ''A human skin multifunctional O-acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters.''; PubMed Europe PMC Scholia
  30. Kim YJ, Guzman-Hernandez ML, Wisniewski E, Balla T.; ''Phosphatidylinositol-Phosphatidic Acid Exchange by Nir2 at ER-PM Contact Sites Maintains Phosphoinositide Signaling Competence.''; PubMed Europe PMC Scholia
  31. Nie J, Hao X, Chen D, Han X, Chang Z, Shi Y.; ''A novel function of the human CLS1 in phosphatidylglycerol synthesis and remodeling.''; PubMed Europe PMC Scholia
  32. Durand S, Angeletti S, Genti-Raimondi S.; ''GTT1/StarD7, a novel phosphatidylcholine transfer protein-like highly expressed in gestational trophoblastic tumour: cloning and characterization.''; PubMed Europe PMC Scholia
  33. Wu LC, Pfeiffer DR, Calhoon EA, Madiai F, Marcucci G, Liu S, Jurkowitz MS.; ''Purification, identification, and cloning of lysoplasmalogenase, the enzyme that catalyzes hydrolysis of the vinyl ether bond of lysoplasmalogen.''; PubMed Europe PMC Scholia
  34. Xu S, Zhao L, Larsson A, Venge P.; ''The identification of a phospholipase B precursor in human neutrophils.''; PubMed Europe PMC Scholia
  35. Larsson PK, Claesson HE, Kennedy BP.; ''Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity.''; PubMed Europe PMC Scholia
  36. Gale SE, Frolov A, Han X, Bickel PE, Cao L, Bowcock A, Schaffer JE, Ory DS.; ''A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation.''; PubMed Europe PMC Scholia
  37. Grimsey N, Han GS, O'Hara L, Rochford JJ, Carman GM, Siniossoglou S.; ''Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2.''; PubMed Europe PMC Scholia
  38. Dinh TP, Kathuria S, Piomelli D.; ''RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol.''; PubMed Europe PMC Scholia
  39. Guemez-Gamboa A, Nguyen LN, Yang H, Zaki MS, Kara M, Ben-Omran T, Akizu N, Rosti RO, Rosti B, Scott E, Schroth J, Copeland B, Vaux KK, Cazenave-Gassiot A, Quek DQ, Wong BH, Tan BC, Wenk MR, Gunel M, Gabriel S, Chi NC, Silver DL, Gleeson JG.; ''Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome.''; PubMed Europe PMC Scholia
  40. Sonoda H, Aoki J, Hiramatsu T, Ishida M, Bandoh K, Nagai Y, Taguchi R, Inoue K, Arai H.; ''A novel phosphatidic acid-selective phospholipase A1 that produces lysophosphatidic acid.''; PubMed Europe PMC Scholia
  41. Quek DQ, Nguyen LN, Fan H, Silver DL.; ''Structural Insights into the Transport Mechanism of the Human Sodium-dependent Lysophosphatidylcholine Transporter MFSD2A.''; PubMed Europe PMC Scholia
  42. Eden ER, White IJ, Tsapara A, Futter CE.; ''Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction.''; PubMed Europe PMC Scholia
  43. Hammond SM, Altshuller YM, Sung TC, Rudge SA, Rose K, Engebrecht J, Morris AJ, Frohman MA.; ''Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family.''; PubMed Europe PMC Scholia
  44. Vance JE.; ''Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum.''; PubMed Europe PMC Scholia
  45. Toussaint JL, Geoffroy V, Schmitt M, Werner A, Garnier JM, Simoni P, Kempf J.; ''Human choline acetyltransferase (CHAT): partial gene sequence and potential control regions.''; PubMed Europe PMC Scholia
  46. Tomohiro S, Kawaguti A, Kawabe Y, Kitada S, Kuge O.; ''Purification and characterization of human phosphatidylserine synthases 1 and 2.''; PubMed Europe PMC Scholia
  47. Underwood KW, Song C, Kriz RW, Chang XJ, Knopf JL, Lin LL.; ''A novel calcium-independent phospholipase A2, cPLA2-gamma, that is prenylated and contains homology to cPLA2.''; PubMed Europe PMC Scholia
  48. Stuhne-Sekalec L, Chudzik J, Stanacev NZ.; ''Participation of the microsomal CDP-diglycerides in the mitochondrial biosynthesis of phosphatidylglycerol.''; PubMed Europe PMC Scholia
  49. Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, Sadilek M, Nguyen E, Lazdunski M, Lambeau G, Gelb MH.; ''Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2.''; PubMed Europe PMC Scholia
  50. Veiga-da-Cunha M, Hadi F, Balligand T, Stroobant V, Van Schaftingen E.; ''Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine.''; PubMed Europe PMC Scholia
  51. Sengers RC, Trijbels JM, Willems JL, Daniels O, Stadhouders AM.; ''Congenital cataract and mitochondrial myopathy of skeletal and heart muscle associated with lactic acidosis after exercise.''; PubMed Europe PMC Scholia
  52. Scherer M, Schmitz G.; ''Metabolism, function and mass spectrometric analysis of bis(monoacylglycero)phosphate and cardiolipin.''; PubMed Europe PMC Scholia
  53. Lykidis A, Jackson PD, Rock CO, Jackowski S.; ''The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content.''; PubMed Europe PMC Scholia
  54. Agarwal AK, Barnes RI, Garg A.; ''Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: cloning, tissue distribution, gene structure, and enzymatic activity.''; PubMed Europe PMC Scholia
  55. Ofman R, Wanders RJ.; ''Purification of peroxisomal acyl-CoA: dihydroxyacetonephosphate acyltransferase from human placenta.''; PubMed Europe PMC Scholia
  56. Ou X, Ji C, Han X, Zhao X, Li X, Mao Y, Wong LL, Bartlam M, Rao Z.; ''Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1).''; PubMed Europe PMC Scholia
  57. Inoue H, Baba T, Sato S, Ohtsuki R, Takemori A, Watanabe T, Tagaya M, Tani K.; ''Roles of SAM and DDHD domains in mammalian intracellular phospholipase A1 KIAA0725p.''; PubMed Europe PMC Scholia
  58. Vance DE, Ridgway ND.; ''The methylation of phosphatidylethanolamine.''; PubMed Europe PMC Scholia
  59. Olayioye MA, Vehring S, Müller P, Herrmann A, Schiller J, Thiele C, Lindeman GJ, Visvader JE, Pomorski T.; ''StarD10, a START domain protein overexpressed in breast cancer, functions as a phospholipid transfer protein.''; PubMed Europe PMC Scholia
  60. Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP, Li JZ, Schoiswohl G, Yang K, Kumari M, Gross RW, Zechner R, Kershaw EE.; ''Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome.''; PubMed Europe PMC Scholia
  61. Taniyama Y, Shibata S, Kita S, Horikoshi K, Fuse H, Shirafuji H, Sumino Y, Fujino M.; ''Cloning and expression of a novel lysophospholipase which structurally resembles lecithin cholesterol acyltransferase.''; PubMed Europe PMC Scholia
  62. Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA.; ''A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis.''; PubMed Europe PMC Scholia
  63. Cheng JB, Russell DW.; ''Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family.''; PubMed Europe PMC Scholia
  64. Xu Y, Malhotra A, Ren M, Schlame M.; ''The enzymatic function of tafazzin.''; PubMed Europe PMC Scholia
  65. Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J, Cohen J.; ''The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans.''; PubMed Europe PMC Scholia
  66. Zhu L, Johnson C, Bakovic M.; ''Stimulation of the human CTP:phosphoethanolamine cytidylyltransferase gene by early growth response protein 1.''; PubMed Europe PMC Scholia
  67. Vance JE.; ''Phospholipid synthesis in a membrane fraction associated with mitochondria.''; PubMed Europe PMC Scholia
  68. Gassama-Diagne A, Rogalle P, Fauvel J, Willson M, Klaébé A, Chap H.; ''Substrate specificity of phospholipase B from guinea pig intestine. A glycerol ester lipase with broad specificity.''; PubMed Europe PMC Scholia
  69. Lee HC, Inoue T, Imae R, Kono N, Shirae S, Matsuda S, Gengyo-Ando K, Mitani S, Arai H.; ''Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol.''; PubMed Europe PMC Scholia
  70. Velan B, Grosfeld H, Kronman C, Leitner M, Gozes Y, Lazar A, Flashner Y, Marcus D, Cohen S, Shafferman A.; ''The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant.''; PubMed Europe PMC Scholia
  71. Xu Y, Kelley RI, Blanck TJ, Schlame M.; ''Remodeling of cardiolipin by phospholipid transacylation.''; PubMed Europe PMC Scholia
  72. Poorthuis BJ, Hostetler KY.; ''Conversion of diphosphatidylglycerol to bis(monoacylglyceryl)phosphate by lysosomes.''; PubMed Europe PMC Scholia
  73. Lu B, Xu FY, Jiang YJ, Choy PC, Hatch GM, Grunfeld C, Feingold KR.; ''Cloning and characterization of a cDNA encoding human cardiolipin synthase (hCLS1).''; PubMed Europe PMC Scholia
  74. Roberts SJ, Stewart AJ, Sadler PJ, Farquharson C.; ''Human PHOSPHO1 exhibits high specific phosphoethanolamine and phosphocholine phosphatase activities.''; PubMed Europe PMC Scholia
  75. Ghosh M, Loper R, Gelb MH, Leslie CC.; ''Identification of the expressed form of human cytosolic phospholipase A2beta (cPLA2beta): cPLA2beta3 is a novel variant localized to mitochondria and early endosomes.''; PubMed Europe PMC Scholia
  76. Chen X, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM.; ''Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells.''; PubMed Europe PMC Scholia
  77. Song C, Chang XJ, Bean KM, Proia MS, Knopf JL, Kriz RW.; ''Molecular characterization of cytosolic phospholipase A2-beta.''; PubMed Europe PMC Scholia
  78. Lykidis A, Murti KG, Jackowski S.; ''Cloning and characterization of a second human CTP:phosphocholine cytidylyltransferase.''; PubMed Europe PMC Scholia
  79. Liu J, Dai Q, Chen J, Durrant D, Freeman A, Liu T, Grossman D, Lee RM.; ''Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response.''; PubMed Europe PMC Scholia
  80. Malito E, Sekulic N, Too WC, Konrad M, Lavie A.; ''Elucidation of human choline kinase crystal structures in complex with the products ADP or phosphocholine.''; PubMed Europe PMC Scholia
  81. Vordtriede PB, Doan CN, Tremblay JM, Helmkamp GM, Yoder MD.; ''Structure of PITPbeta in complex with phosphatidylcholine: comparison of structure and lipid transfer to other PITP isoforms.''; PubMed Europe PMC Scholia
  82. Honsho M, Abe Y, Fujiki Y.; ''Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis.''; PubMed Europe PMC Scholia
  83. Lebiedzinska M, Szabadkai G, Jones AW, Duszynski J, Wieckowski MR.; ''Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles.''; PubMed Europe PMC Scholia
  84. Tilley SJ, Skippen A, Murray-Rust J, Swigart PM, Stewart A, Morgan CP, Cockcroft S, McDonald NQ.; ''Structure-function analysis of human [corrected] phosphatidylinositol transfer protein alpha bound to phosphatidylinositol.''; PubMed Europe PMC Scholia
  85. Shields DJ, Agellon LB, Vance DE.; ''Structure, expression profile and alternative processing of the human phosphatidylethanolamine N-methyltransferase (PEMT) gene.''; PubMed Europe PMC Scholia
  86. Shindou H, Shimizu T.; ''Acyl-CoA:lysophospholipid acyltransferases.''; PubMed Europe PMC Scholia
  87. Okuda T, Haga T.; ''Functional characterization of the human high-affinity choline transporter.''; PubMed Europe PMC Scholia
  88. Traiffort E, Ruat M, O'Regan S, Meunier FM.; ''Molecular characterization of the family of choline transporter-like proteins and their splice variants.''; PubMed Europe PMC Scholia
  89. Cao J, Shan D, Revett T, Li D, Wu L, Liu W, Tobin JF, Gimeno RE.; ''Molecular identification of a novel mammalian brain isoform of acyl-CoA:lysophospholipid acyltransferase with prominent ethanolamine lysophospholipid acylating activity, LPEAT2.''; PubMed Europe PMC Scholia
  90. Valdivia CR, Ueda K, Ackerman MJ, Makielski JC.; ''GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A.''; PubMed Europe PMC Scholia
  91. Steed PM, Clark KL, Boyar WC, Lasala DJ.; ''Characterization of human PLD2 and the analysis of PLD isoform splice variants.''; PubMed Europe PMC Scholia
  92. Houtkooper RH, Akbari H, van Lenthe H, Kulik W, Wanders RJ, Frentzen M, Vaz FM.; ''Identification and characterization of human cardiolipin synthase.''; PubMed Europe PMC Scholia
  93. Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL.; ''Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes.''; PubMed Europe PMC Scholia
  94. Malhotra A, Xu Y, Ren M, Schlame M.; ''Formation of molecular species of mitochondrial cardiolipin. 1. A novel transacylation mechanism to shuttle fatty acids between sn-1 and sn-2 positions of multiple phospholipid species.''; PubMed Europe PMC Scholia
  95. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW.; ''Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities.''; PubMed Europe PMC Scholia
  96. Ghomashchi F, Naika GS, Bollinger JG, Aloulou A, Lehr M, Leslie CC, Gelb MH.; ''Interfacial kinetic and binding properties of mammalian group IVB phospholipase A2 (cPLA2beta) and comparison with the other cPLA2 isoforms.''; PubMed Europe PMC Scholia
  97. He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, Cohen JC, Hobbs HH.; ''A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis.''; PubMed Europe PMC Scholia
  98. Cupillard L, Koumanov K, Mattéi MG, Lazdunski M, Lambeau G.; ''Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A2.''; PubMed Europe PMC Scholia
  99. Nagai Y, Aoki J, Sato T, Amano K, Matsuda Y, Arai H, Inoue K.; ''An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans.''; PubMed Europe PMC Scholia
  100. de Vet EC, Ijlst L, Oostheim W, Dekker C, Moser HW, van Den Bosch H, Wanders RJ.; ''Ether lipid biosynthesis: alkyl-dihydroxyacetonephosphate synthase protein deficiency leads to reduced dihydroxyacetonephosphate acyltransferase activities.''; PubMed Europe PMC Scholia
  101. Cao JX, Koop BF, Upton C.; ''A human homolog of the vaccinia virus HindIII K4L gene is a member of the phospholipase D superfamily.''; PubMed Europe PMC Scholia
  102. Bektas M, Payne SG, Liu H, Goparaju S, Milstien S, Spiegel S.; ''A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells.''; PubMed Europe PMC Scholia
  103. Wojtczak L, Barańska J, Zborowski J.; ''Transport of phosphatidic acid within the mitochondrion.''; PubMed Europe PMC Scholia
  104. Gijón MA, Riekhof WR, Zarini S, Murphy RC, Voelker DR.; ''Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils.''; PubMed Europe PMC Scholia
  105. Yoder MD, Thomas LM, Tremblay JM, Oliver RL, Yarbrough LR, Helmkamp GM.; ''Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine.''; PubMed Europe PMC Scholia
  106. Hermansson M, Hokynar K, Somerharju P.; ''Mechanisms of glycerophospholipid homeostasis in mammalian cells.''; PubMed Europe PMC Scholia
  107. Guan ZZ, Wang YN, Xiao KQ, Hu PS, Liu JL.; ''Activity of phosphatidylethanolamine-N-methyltransferase in brain affected by Alzheimer's disease.''; PubMed Europe PMC Scholia
  108. Hullin-Matsuda F, Kawasaki K, Delton-Vandenbroucke I, Xu Y, Nishijima M, Lagarde M, Schlame M, Kobayashi T.; ''De novo biosynthesis of the late endosome lipid, bis(monoacylglycero)phosphate.''; PubMed Europe PMC Scholia
  109. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL, Silver DL.; ''Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid.''; PubMed Europe PMC Scholia
  110. Henneberry AL, Wistow G, McMaster CR.; ''Cloning, genomic organization, and characterization of a human cholinephosphotransferase.''; PubMed Europe PMC Scholia
  111. Perttilä J, Merikanto K, Naukkarinen J, Surakka I, Martin NW, Tanhuanpää K, Grimard V, Taskinen MR, Thiele C, Salomaa V, Jula A, Perola M, Virtanen I, Peltonen L, Olkkonen VM.; ''OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism.''; PubMed Europe PMC Scholia
  112. Lev S, Hernandez J, Martinez R, Chen A, Plowman G, Schlessinger J.; ''Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein.''; PubMed Europe PMC Scholia
  113. Fernandez-Alvarez J, Conget I, Rasschaert J, Sener A, Gomis R, Malaisse WJ.; ''Enzymatic, metabolic and secretory patterns in human islets of type 2 (non-insulin-dependent) diabetic patients.''; PubMed Europe PMC Scholia
  114. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S.; ''Complete sequencing and characterization of 21,243 full-length human cDNAs.''; PubMed Europe PMC Scholia
  115. Yamashita A, Tanaka K, Kamata R, Kumazawa T, Suzuki N, Koga H, Waku K, Sugiura T.; ''Subcellular localization and lysophospholipase/transacylation activities of human group IVC phospholipase A2 (cPLA2gamma).''; PubMed Europe PMC Scholia
  116. Ye GM, Chen C, Huang S, Han DD, Guo JH, Wan B, Yu L.; ''Cloning and characterization a novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase gene AGPAT7.''; PubMed Europe PMC Scholia
  117. Nair TS, Kozma KE, Hoefling NL, Kommareddi PK, Ueda Y, Gong TW, Lomax MI, Lansford CD, Telian SA, Satar B, Arts HA, El-Kashlan HK, Berryhill WE, Raphael Y, Carey TE.; ''Identification and characterization of choline transporter-like protein 2, an inner ear glycoprotein of 68 and 72 kDa that is the target of antibody-induced hearing loss.''; PubMed Europe PMC Scholia
  118. Chen YQ, Kuo MS, Li S, Bui HH, Peake DA, Sanders PE, Thibodeaux SJ, Chu S, Qian YW, Zhao Y, Bredt DS, Moller DE, Konrad RJ, Beigneux AP, Young SG, Cao G.; ''AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase.''; PubMed Europe PMC Scholia
  119. Nissilä E, Ohsaki Y, Weber-Boyvat M, Perttilä J, Ikonen E, Olkkonen VM.; ''ORP10, a cholesterol binding protein associated with microtubules, regulates apolipoprotein B-100 secretion.''; PubMed Europe PMC Scholia
  120. Shiao YJ, Lupo G, Vance JE.; ''Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine.''; PubMed Europe PMC Scholia
  121. Zhao Y, Chen YQ, Li S, Konrad RJ, Cao G.; ''The microsomal cardiolipin remodeling enzyme acyl-CoA lysocardiolipin acyltransferase is an acyltransferase of multiple anionic lysophospholipids.''; PubMed Europe PMC Scholia
  122. West J, Tompkins CK, Balantac N, Nudelman E, Meengs B, White T, Bursten S, Coleman J, Kumar A, Singer JW, Leung DW.; ''Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that enhance cytokine-induced signaling responses in cells.''; PubMed Europe PMC Scholia
  123. Prasad SS, Garg A, Agarwal AK.; ''Enzymatic activities of the human AGPAT isoform 3 and isoform 5: localization of AGPAT5 to mitochondria.''; PubMed Europe PMC Scholia
  124. Bertrand T, Augé F, Houtmann J, Rak A, Vallée F, Mikol V, Berne PF, Michot N, Cheuret D, Hoornaert C, Mathieu M.; ''Structural basis for human monoglyceride lipase inhibition.''; PubMed Europe PMC Scholia
  125. Tomsig JL, Creutz CE.; ''Copines: a ubiquitous family of Ca(2+)-dependent phospholipid-binding proteins.''; PubMed Europe PMC Scholia
  126. Cao J, Li JL, Li D, Tobin JF, Gimeno RE.; ''Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis.''; PubMed Europe PMC Scholia
  127. Labar G, Bauvois C, Borel F, Ferrer JL, Wouters J, Lambert DM.; ''Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling.''; PubMed Europe PMC Scholia
  128. Long JZ, Cisar JS, Milliken D, Niessen S, Wang C, Trauger SA, Siuzdak G, Cravatt BF.; ''Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids.''; PubMed Europe PMC Scholia
  129. Lev S.; ''Non-vesicular lipid transport by lipid-transfer proteins and beyond.''; PubMed Europe PMC Scholia
  130. Maury E, Prévost MC, Nauze M, Redoulès D, Tarroux R, Charvéron M, Salles JP, Perret B, Chap H, Gassama-Diagne A.; ''Human epidermis is a novel site of phospholipase B expression.''; PubMed Europe PMC Scholia
  131. Gaigg B, Simbeni R, Hrastnik C, Paltauf F, Daum G.; ''Characterization of a microsomal subfraction associated with mitochondria of the yeast, Saccharomyces cerevisiae. Involvement in synthesis and import of phospholipids into mitochondria.''; PubMed Europe PMC Scholia
  132. Duncan RE, Sarkadi-Nagy E, Jaworski K, Ahmadian M, Sul HS.; ''Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA).''; PubMed Europe PMC Scholia
  133. Horibata Y, Hirabayashi Y.; ''Identification and characterization of human ethanolaminephosphotransferase1.''; PubMed Europe PMC Scholia
  134. Shadan S, Holic R, Carvou N, Ee P, Li M, Murray-Rust J, Cockcroft S.; ''Dynamics of lipid transfer by phosphatidylinositol transfer proteins in cells.''; PubMed Europe PMC Scholia
  135. Kang HW, Wei J, Cohen DE.; ''PC-TP/StARD2: Of membranes and metabolism.''; PubMed Europe PMC Scholia
  136. Ishizaki J, Suzuki N, Higashino K, Yokota Y, Ono T, Kawamoto K, Fujii N, Arita H, Hanasaki K.; ''Cloning and characterization of novel mouse and human secretory phospholipase A(2)s.''; PubMed Europe PMC Scholia
  137. Grataroli R, Dijkman R, Dutilh CE, van der Ouderaa F, De Haas GH, Figarella C.; ''Studies on prophospholipase A2 and its enzyme from human pancreatic juice. Catalytic properties and sequence of the N-terminal region.''; PubMed Europe PMC Scholia
  138. Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepinsky RB.; ''Structure and properties of a human non-pancreatic phospholipase A2.''; PubMed Europe PMC Scholia
  139. Ma Z, Wang X, Nowatzke W, Ramanadham S, Turk J.; ''Human pancreatic islets express mRNA species encoding two distinct catalytically active isoforms of group VI phospholipase A2 (iPLA2) that arise from an exon-skipping mechanism of alternative splicing of the transcript from the iPLA2 gene on chromosome 22q13.1.''; PubMed Europe PMC Scholia
  140. Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P.; ''INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts.''; PubMed Europe PMC Scholia
  141. Zhao Y, Chen YQ, Bonacci TM, Bredt DS, Li S, Bensch WR, Moller DE, Kowala M, Konrad RJ, Cao G.; ''Identification and characterization of a major liver lysophosphatidylcholine acyltransferase.''; PubMed Europe PMC Scholia
  142. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL.; ''A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP.''; PubMed Europe PMC Scholia
  143. Wright MM, McMaster CR.; ''PC and PE synthesis: mixed micellar analysis of the cholinephosphotransferase and ethanolaminephosphotransferase activities of human choline/ethanolamine phosphotransferase 1 (CEPT1).''; PubMed Europe PMC Scholia
  144. Yang L, Lewkowich I, Apsley K, Fritz JM, Wills-Karp M, Weaver TE.; ''Haploinsufficiency for Stard7 is associated with enhanced allergic responses in lung and skin.''; PubMed Europe PMC Scholia
  145. Hiroyama M, Takenawa T.; ''Isolation of a cDNA encoding human lysophosphatidic acid phosphatase that is involved in the regulation of mitochondrial lipid biosynthesis.''; PubMed Europe PMC Scholia
  146. Kazachkov M, Chen Q, Wang L, Zou J.; ''Substrate preferences of a lysophosphatidylcholine acyltransferase highlight its role in phospholipid remodeling.''; PubMed Europe PMC Scholia
  147. Cao J, Liu Y, Lockwood J, Burn P, Shi Y.; ''A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse.''; PubMed Europe PMC Scholia
  148. Osman C, Voelker DR, Langer T.; ''Making heads or tails of phospholipids in mitochondria.''; PubMed Europe PMC Scholia
  149. Weinstock M, Groner E.; ''Rational design of a drug for Alzheimer's disease with cholinesterase inhibitory and neuroprotective activity.''; PubMed Europe PMC Scholia
  150. Chen J, Engle SJ, Seilhamer JJ, Tischfield JA.; ''Cloning and recombinant expression of a novel human low molecular weight Ca(2+)-dependent phospholipase A2.''; PubMed Europe PMC Scholia
  151. Hung V, Zou P, Rhee HW, Udeshi ND, Cracan V, Svinkina T, Carr SA, Mootha VK, Ting AY.; ''Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging.''; PubMed Europe PMC Scholia
  152. Jain S, Zhang X, Khandelwal PJ, Saunders AJ, Cummings BS, Oelkers P.; ''Characterization of human lysophospholipid acyltransferase 3.''; PubMed Europe PMC Scholia
  153. Roderick SL, Chan WW, Agate DS, Olsen LR, Vetting MW, Rajashankar KR, Cohen DE.; ''Structure of human phosphatidylcholine transfer protein in complex with its ligand.''; PubMed Europe PMC Scholia
  154. Schuurs-Hoeijmakers JH, Geraghty MT, Kamsteeg EJ, Ben-Salem S, de Bot ST, Nijhof B, van de Vondervoort II, van der Graaf M, Nobau AC, Otte-Höller I, Vermeer S, Smith AC, Humphreys P, Schwartzentruber J, FORGE Canada Consortium, Ali BR, Al-Yahyaee SA, Tariq S, Pramathan T, Bayoumi R, Kremer HP, van de Warrenburg BP, van den Akker WM, Gilissen C, Veltman JA, Janssen IM, Vulto-van Silfhout AT, van der Velde-Visser S, Lefeber DJ, Diekstra A, Erasmus CE, Willemsen MA, Vissers LE, Lammens M, van Bokhoven H, Brunner HG, Wevers RA, Schenck A, Al-Gazali L, de Vries BB, de Brouwer AP.; ''Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia.''; PubMed Europe PMC Scholia
  155. Gallego-Ortega D, Ramirez de Molina A, Ramos MA, Valdes-Mora F, Barderas MG, Sarmentero-Estrada J, Lacal JC.; ''Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment.''; PubMed Europe PMC Scholia
  156. Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, Taguchi R, Shimizu T.; ''Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production.''; PubMed Europe PMC Scholia
  157. Zvonok N, Williams J, Johnston M, Pandarinathan L, Janero DR, Li J, Krishnan SC, Makriyannis A.; ''Full mass spectrometric characterization of human monoacylglycerol lipase generated by large-scale expression and single-step purification.''; PubMed Europe PMC Scholia
  158. Horibata Y, Sugimoto H.; ''StarD7 mediates the intracellular trafficking of phosphatidylcholine to mitochondria.''; PubMed Europe PMC Scholia
  159. Nakajima K, Sonoda H, Mizoguchi T, Aoki J, Arai H, Nagahama M, Tagaya M, Tani K.; ''A novel phospholipase A1 with sequence homology to a mammalian Sec23p-interacting protein, p125.''; PubMed Europe PMC Scholia
  160. Mayr JA, Haack TB, Graf E, Zimmermann FA, Wieland T, Haberberger B, Superti-Furga A, Kirschner J, Steinmann B, Baumgartner MR, Moroni I, Lamantea E, Zeviani M, Rodenburg RJ, Smeitink J, Strom TM, Meitinger T, Sperl W, Prokisch H.; ''Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome.''; PubMed Europe PMC Scholia
  161. Higashino Ki K, Yokota Y, Ono T, Kamitani S, Arita H, Hanasaki K.; ''Identification of a soluble form phospholipase A2 receptor as a circulating endogenous inhibitor for secretory phospholipase A2.''; PubMed Europe PMC Scholia
  162. Aguado B, Campbell RD.; ''Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex.''; PubMed Europe PMC Scholia
  163. Chiba H, Michibata H, Wakimoto K, Seishima M, Kawasaki S, Okubo K, Mitsui H, Torii H, Imai Y.; ''Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2delta, induced in psoriatic skin.''; PubMed Europe PMC Scholia
  164. Lopez I, Arnold RS, Lambeth JD.; ''Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2.''; PubMed Europe PMC Scholia
  165. Levine T.; ''Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions.''; PubMed Europe PMC Scholia
  166. Yamashita A, Nakanishi H, Suzuki H, Kamata R, Tanaka K, Waku K, Sugiura T.; ''Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1.''; PubMed Europe PMC Scholia
  167. Takeuchi K, Reue K.; ''Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis.''; PubMed Europe PMC Scholia
  168. Pickard RT, Strifler BA, Kramer RM, Sharp JD.; ''Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2.''; PubMed Europe PMC Scholia
  169. Buckland AG, Kinkaid AR, Wilton DC.; ''Cardiolipin hydrolysis by human phospholipases A2. The multiple enzymatic activities of human cytosolic phospholipase A2.''; PubMed Europe PMC Scholia
  170. Zhang Y, Liu X, Bai J, Tian X, Zhao X, Liu W, Duan X, Shang W, Fan HY, Tong C.; ''Mitoguardin Regulates Mitochondrial Fusion through MitoPLD and Is Required for Neuronal Homeostasis.''; PubMed Europe PMC Scholia
  171. Yang Y, Cao J, Shi Y.; ''Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase.''; PubMed Europe PMC Scholia
  172. Hua JC, Berger J, Pan YC, Hulmes JD, Udenfriend S.; ''Partial sequencing of human adult, human fetal, and bovine intestinal alkaline phosphatases: comparison with the human placental and liver isozymes.''; PubMed Europe PMC Scholia
  173. Larsson Forsell PK, Kennedy BP, Claesson HE.; ''The human calcium-independent phospholipase A2 gene multiple enzymes with distinct properties from a single gene.''; PubMed Europe PMC Scholia
  174. Mardian EB, Bradley RM, Duncan RE.; ''The HRASLS (PLA/AT) subfamily of enzymes.''; PubMed Europe PMC Scholia
  175. O'Regan S, Traiffort E, Ruat M, Cha N, Compaore D, Meunier FM.; ''An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins.''; PubMed Europe PMC Scholia
  176. Valentin E, Singer AG, Ghomashchi F, Lazdunski M, Gelb MH, Lambeau G.; ''Cloning and recombinant expression of human group IIF-secreted phospholipase A(2).''; PubMed Europe PMC Scholia
  177. Abe A, Shayman JA.; ''Purification and characterization of 1-O-acylceramide synthase, a novel phospholipase A2 with transacylase activity.''; PubMed Europe PMC Scholia
  178. Nakashima A, Hosaka K, Nikawa J.; ''Cloning of a human cDNA for CTP-phosphoethanolamine cytidylyltransferase by complementation in vivo of a yeast mutant.''; PubMed Europe PMC Scholia
  179. Orsó E, Grandl M, Schmitz G.; ''Oxidized LDL-induced endolysosomal phospholipidosis and enzymatically modified LDL-induced foam cell formation determine specific lipid species modulation in human macrophages.''; PubMed Europe PMC Scholia
  180. Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J.; ''A lipid associated with the antiphospholipid syndrome regulates endosome structure and function.''; PubMed Europe PMC Scholia
  181. Uyama T, Ikematsu N, Inoue M, Shinohara N, Jin XH, Tsuboi K, Tonai T, Tokumura A, Ueda N.; ''Generation of N-acylphosphatidylethanolamine by members of the phospholipase A/acyltransferase (PLA/AT) family.''; PubMed Europe PMC Scholia
  182. Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KW, Gros P.; ''Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association.''; PubMed Europe PMC Scholia
  183. Murakami M, Masuda S, Shimbara S, Ishikawa Y, Ishii T, Kudo I.; ''Cellular distribution, post-translational modification, and tumorigenic potential of human group III secreted phospholipase A(2).''; PubMed Europe PMC Scholia
  184. Simbeni R, Pon L, Zinser E, Paltauf F, Daum G.; ''Mitochondrial membrane contact sites of yeast. Characterization of lipid components and possible involvement in intramitochondrial translocation of phospholipids.''; PubMed Europe PMC Scholia
  185. Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G.; ''Cloning and recombinant expression of a structurally novel human secreted phospholipase A2.''; PubMed Europe PMC Scholia
  186. Forbes CD, Toth JG, Ozbal CC, Lamarr WA, Pendleton JA, Rocks S, Gedrich RW, Osterman DG, Landro JA, Lumb KJ.; ''High-throughput mass spectrometry screening for inhibitors of phosphatidylserine decarboxylase.''; PubMed Europe PMC Scholia
  187. Turkish AR, Henneberry AL, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano AM, Billheimer JT, Sturley SL.; ''Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily.''; PubMed Europe PMC Scholia
  188. Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R, Shimizu T.; ''Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity.''; PubMed Europe PMC Scholia
  189. Lord CC, Thomas G, Brown JM.; ''Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism.''; PubMed Europe PMC Scholia
  190. Golczak M, Kiser PD, Sears AE, Lodowski DT, Blaner WS, Palczewski K.; ''Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins.''; PubMed Europe PMC Scholia
  191. Sharma U, Pal D, Prasad R.; ''Alkaline phosphatase: an overview.''; PubMed Europe PMC Scholia
  192. Henneberry AL, McMaster CR.; ''Cloning and expression of a human choline/ethanolaminephosphotransferase: synthesis of phosphatidylcholine and phosphatidylethanolamine.''; PubMed Europe PMC Scholia
  193. Hiraoka M, Abe A, Shayman JA.; ''Cloning and characterization of a lysosomal phospholipase A2, 1-O-acylceramide synthase.''; PubMed Europe PMC Scholia
  194. Chakraborty TR, Vancura A, Balija VS, Haldar D.; ''Phosphatidic acid synthesis in mitochondria. Topography of formation and transmembrane migration.''; PubMed Europe PMC Scholia
  195. Köhn L, Kadzhaev K, Burstedt MS, Haraldsson S, Hallberg B, Sandgren O, Golovleva I.; ''Mutation in the PYK2-binding domain of PITPNM3 causes autosomal dominant cone dystrophy (CORD5) in two Swedish families.''; PubMed Europe PMC Scholia
  196. Heravi J, Waite M.; ''Transacylase formation of bis(monoacylglycerol)phosphate.''; PubMed Europe PMC Scholia
  197. Matsutani A, Takeuchi Y, Ishihara H, Kuwano S, Oka Y.; ''Molecular cloning of human mitochondrial glycerophosphate dehydrogenase gene: genomic structure, chromosomal localization, and existence of a pseudogene.''; PubMed Europe PMC Scholia
  198. Pan YH, Yu BZ, Singer AG, Ghomashchi F, Lambeau G, Gelb MH, Jain MK, Bahnson BJ.; ''Crystal structure of human group X secreted phospholipase A2. Electrostatically neutral interfacial surface targets zwitterionic membranes.''; PubMed Europe PMC Scholia
  199. Wakimoto K, Chiba H, Michibata H, Seishima M, Kawasaki S, Okubo K, Mitsui H, Torii H, Imai Y.; ''A novel diacylglycerol acyltransferase (DGAT2) is decreased in human psoriatic skin and increased in diabetic mice.''; PubMed Europe PMC Scholia
  200. Flores-Martin J, Rena V, Angeletti S, Panzetta-Dutari GM, Genti-Raimondi S.; ''The Lipid Transfer Protein StarD7: Structure, Function, and Regulation.''; PubMed Europe PMC Scholia
  201. Lin S, Ikegami M, Moon C, Naren AP, Shannon JM.; ''Lysophosphatidylcholine Acyltransferase 1 (LPCAT1) Specifically Interacts with Phospholipid Transfer Protein StarD10 to Facilitate Surfactant Phospholipid Trafficking in Alveolar Type II Cells.''; PubMed Europe PMC Scholia
  202. Carvou N, Holic R, Li M, Futter C, Skippen A, Cockcroft S.; ''Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum.''; PubMed Europe PMC Scholia
  203. Shindou H, Hishikawa D, Nakanishi H, Harayama T, Ishii S, Taguchi R, Shimizu T.; ''A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells. Cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase.''; PubMed Europe PMC Scholia
  204. Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL.; ''Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.''; PubMed Europe PMC Scholia
  205. Taylor WA, Hatch GM.; ''Identification of the human mitochondrial linoleoyl-coenzyme A monolysocardiolipin acyltransferase (MLCL AT-1).''; PubMed Europe PMC Scholia
  206. Schlame M, Haldar D.; ''Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria.''; PubMed Europe PMC Scholia
  207. Li J, Dong Y, Lü X, Wang L, Peng W, Zhang XC, Rao Z.; ''Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6.''; PubMed Europe PMC Scholia
  208. Saito K, Nishijima M, Kuge O.; ''Genetic evidence that phosphatidylserine synthase II catalyzes the conversion of phosphatidylethanolamine to phosphatidylserine in Chinese hamster ovary cells.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
115029view16:56, 25 January 2021ReactomeTeamReactome version 75
113474view11:55, 2 November 2020ReactomeTeamReactome version 74
112673view16:06, 9 October 2020ReactomeTeamReactome version 73
101590view11:46, 1 November 2018ReactomeTeamreactome version 66
101126view21:30, 31 October 2018ReactomeTeamreactome version 65
100654view20:04, 31 October 2018ReactomeTeamreactome version 64
100204view16:49, 31 October 2018ReactomeTeamreactome version 63
99755view15:15, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99317view12:47, 31 October 2018ReactomeTeamreactome version 62
93847view13:40, 16 August 2017ReactomeTeamreactome version 61
93404view11:22, 9 August 2017ReactomeTeamreactome version 61
87153view18:57, 18 July 2016MkutmonOntology Term : 'glycerophospholipid metabolic pathway' added !
86490view09:19, 11 July 2016ReactomeTeamreactome version 56
83341view10:51, 18 November 2015ReactomeTeamVersion54
81498view13:02, 21 August 2015ReactomeTeamVersion53
76974view08:26, 17 July 2014ReactomeTeamFixed remaining interactions
76679view12:04, 16 July 2014ReactomeTeamFixed remaining interactions
76007view10:06, 11 June 2014ReactomeTeamRe-fixing comment source
75714view11:06, 10 June 2014ReactomeTeamReactome 48 Update
75067view13:57, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74711view08:47, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
1-MMGMetaboliteCHEBI:75562 (ChEBI)
1-acyl LPAMetaboliteCHEBI:16975 (ChEBI)
1-acyl LPCMetaboliteCHEBI:17504 (ChEBI)
1-acyl LPEMetaboliteCHEBI:29017 (ChEBI)
1-acyl LPGMetaboliteCHEBI:62747 (ChEBI)
1-acyl LPIMetaboliteCHEBI:28914 (ChEBI)
1-acyl LPSMetaboliteCHEBI:52603 (ChEBI)
1AGPCMetaboliteCHEBI:11230 (ChEBI)
2-MAGMetaboliteCHEBI:17389 (ChEBI)
2-acyl LPAMetaboliteCHEBI:17936 (ChEBI)
2-acyl LPCMetaboliteCHEBI:16728 (ChEBI)
2-acyl LPEMetaboliteCHEBI:28936 (ChEBI)
2-acyl LPGMetaboliteCHEBI:27923 (ChEBI)
2-acyl LPIMetaboliteCHEBI:62746 (ChEBI)
2-acyl LPSMetaboliteCHEBI:37646 (ChEBI)
ABHD3ProteinQ8WU67 (Uniprot-TrEMBL)
ABHD4ProteinQ8TB40 (Uniprot-TrEMBL)
ACHE ProteinP22303 (Uniprot-TrEMBL)
ACP6ProteinQ9NPH0 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
AGK ProteinQ53H12 (Uniprot-TrEMBL)
AGK:Mg2+ComplexR-HSA-5696053 (Reactome)
AGPAT1 ProteinQ99943 (Uniprot-TrEMBL)
AGPAT2 ProteinO15120 (Uniprot-TrEMBL)
AGPAT3 ProteinQ9NRZ7 (Uniprot-TrEMBL)
AGPAT4 ProteinQ9NRZ5 (Uniprot-TrEMBL)
AGPAT5 ProteinQ9NUQ2 (Uniprot-TrEMBL)
AGPAT5ProteinQ9NUQ2 (Uniprot-TrEMBL)
AGPAT6 ProteinQ86UL3 (Uniprot-TrEMBL)
AGPAT6ProteinQ86UL3 (Uniprot-TrEMBL)
AGPAT9 ProteinQ53EU6 (Uniprot-TrEMBL)
AGPATComplexR-HSA-1500583 (Reactome)
ALPI ProteinP09923 (Uniprot-TrEMBL)
ALPI:2Ca2+:Mg2+ dimerComplexR-HSA-8878786 (Reactome)
ATPMetaboliteCHEBI:15422 (ChEBI)
AWAT2ProteinQ6E213 (Uniprot-TrEMBL)
Ac-CoAMetaboliteCHEBI:15351 (ChEBI)
AcChoMetaboliteCHEBI:15355 (ChEBI)
Acyl-CoAMetaboliteCHEBI:17984 (ChEBI)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
AlcoholMetaboliteCHEBI:30879 (ChEBI)
BCHE ProteinP06276 (Uniprot-TrEMBL)
BMPMetaboliteCHEBI:60815 (ChEBI)
CDIPT ProteinO14735 (Uniprot-TrEMBL)
CDIPT:Mg2+/Mn2+ComplexR-HSA-1500647 (Reactome)
CDP-ChoMetaboliteCHEBI:16436 (ChEBI)
CDP-DAGMetaboliteCHEBI:17962 (ChEBI)
CDP-ETAMetaboliteCHEBI:16732 (ChEBI)
CDS1 ProteinQ92903 (Uniprot-TrEMBL)
CDS1:Mg2+ComplexR-HSA-1500651 (Reactome)
CDS2ProteinO95674 (Uniprot-TrEMBL)
CEPT1 ProteinQ9Y6K0 (Uniprot-TrEMBL)
CEPT1/EPT1ComplexR-HSA-1500592 (Reactome)
CEPT1:Mg2+/Mn2+ComplexR-HSA-1500587 (Reactome)
CH3CHOMetaboliteCHEBI:15343 (ChEBI)
CHATProteinP28329 (Uniprot-TrEMBL)
CHK dimerComplexR-HSA-1524078 (Reactome)
CHK/ETNKComplexR-HSA-1500619 (Reactome)
CHKA ProteinP35790 (Uniprot-TrEMBL)
CHKB ProteinQ9Y259 (Uniprot-TrEMBL)
CHPT1 ProteinQ8WUD6 (Uniprot-TrEMBL)
CHPT1:Mg2+/Mn2+ComplexR-HSA-1500652 (Reactome)
CLMetaboliteCHEBI:28494 (ChEBI)
CO2MetaboliteCHEBI:16526 (ChEBI)
CPNE1 ProteinQ99829 (Uniprot-TrEMBL)
CPNE3 ProteinO75131 (Uniprot-TrEMBL)
CPNE6 ProteinO95741 (Uniprot-TrEMBL)
CPNE7 ProteinQ9UBL6 (Uniprot-TrEMBL)
CPNEs:PLComplexR-HSA-5333679 (Reactome)
CPNEsComplexR-HSA-5333699 (Reactome)
CRLS1ProteinQ9UJA2 (Uniprot-TrEMBL)
CSNK2A1 ProteinP68400 (Uniprot-TrEMBL)
CSNK2A2 ProteinP19784 (Uniprot-TrEMBL)
CSNK2B ProteinP67870 (Uniprot-TrEMBL)
CTL1-5ComplexR-HSA-444452 (Reactome)
CTPMetaboliteCHEBI:17677 (ChEBI)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Ca2+MetaboliteCHEBI:29108 (ChEBI)
Casein kinase IIComplexR-HSA-201711 (Reactome)
ChoMetaboliteCHEBI:15354 (ChEBI)
CholinesteraseComplexR-HSA-3640837 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
CoA-SHMetaboliteCHEBI:15346 (ChEBI)
DAG MetaboliteCHEBI:17815 (ChEBI)
DAGMetaboliteCHEBI:17815 (ChEBI)
DDHD1 ProteinQ8NEL9 (Uniprot-TrEMBL)
DDHD1,2ComplexR-HSA-6786649 (Reactome)
DDHD2 ProteinO94830 (Uniprot-TrEMBL)
DGAT1 ProteinO75907 (Uniprot-TrEMBL)
DGAT1/2ComplexR-HSA-1500588 (Reactome)
DGAT2 ProteinQ96PD7 (Uniprot-TrEMBL)
DGAT2L6 ProteinQ6ZPD8 (Uniprot-TrEMBL)
DGAT2L6,L7PComplexR-HSA-8933132 (Reactome)
DGAT2L7P ProteinQ6IED9 (Uniprot-TrEMBL)
DHAPMetaboliteCHEBI:16108 (ChEBI)
DLCLMetaboliteCHEBI:60431 (ChEBI)
EPT1 ProteinQ9C0D9 (Uniprot-TrEMBL)
ETAMetaboliteCHEBI:16000 (ChEBI)
ETNK1 ProteinQ9HBU6 (Uniprot-TrEMBL)
ETNK2 ProteinQ9NVF9 (Uniprot-TrEMBL)
ETNPPL ProteinQ8TBG4 (Uniprot-TrEMBL)
ETNPPL tetramerComplexR-HSA-5696413 (Reactome)
FADMetaboliteCHEBI:16238 (ChEBI)
FADH2MetaboliteCHEBI:17877 (ChEBI)
G3PMetaboliteCHEBI:15978 (ChEBI)
GNPATProteinO15228 (Uniprot-TrEMBL)
GO3PMetaboliteCHEBI:17197 (ChEBI)
GPAEAMetaboliteCHEBI:52571 (ChEBI)
GPAM(1-828) ProteinQ9HCL2 (Uniprot-TrEMBL)
GPAM/GPAT2ComplexR-HSA-1500606 (Reactome)
GPAT2 ProteinQ6NUI2 (Uniprot-TrEMBL)
GPCHO MetaboliteCHEBI:36313 (ChEBI)
GPCHO, GPETAMComplexR-ALL-8874450 (Reactome)
GPCPD1ProteinQ9NPB8 (Uniprot-TrEMBL)
GPChoMetaboliteCHEBI:16870 (ChEBI)
GPD1 ProteinP21695 (Uniprot-TrEMBL)
GPD1/GPD1L homodimerComplexR-HSA-1500610 (Reactome)
GPD1L ProteinQ8N335 (Uniprot-TrEMBL)
GPD2ProteinP43304 (Uniprot-TrEMBL)
GPETAMetaboliteCHEBI:16929 (ChEBI)
GPETAM MetaboliteCHEBI:36314 (ChEBI)
GlycerolMetaboliteCHEBI:17754 (ChEBI)
H+MetaboliteCHEBI:15378 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HADH octamerComplexR-HSA-1524100 (Reactome)
HADHA ProteinP40939 (Uniprot-TrEMBL)
HADHB ProteinP55084 (Uniprot-TrEMBL)
HRASLS ProteinQ9HDD0 (Uniprot-TrEMBL)
HRASLS2 ProteinQ9NWW9 (Uniprot-TrEMBL)
HRASLS5 ProteinQ96KN8 (Uniprot-TrEMBL)
HRASLSComplexR-HSA-8858540 (Reactome)
InsMetaboliteCHEBI:17268 (ChEBI)
L-SerMetaboliteCHEBI:33384 (ChEBI)
LCFA(-)MetaboliteCHEBI:57560 (ChEBI)
LCLAT1 ProteinQ6UWP7 (Uniprot-TrEMBL)
LCLAT1ProteinQ6UWP7 (Uniprot-TrEMBL)
LIPH ProteinQ8WWY8 (Uniprot-TrEMBL)
LIPH, IComplexR-HSA-6792447 (Reactome)
LIPI ProteinQ6XZB0 (Uniprot-TrEMBL)
LPA MetaboliteCHEBI:52288 (ChEBI)
LPA,PAComplexR-ALL-5696037 (Reactome)
LPC (22:6)MetaboliteCHEBI:64567 (ChEBI)
LPC(14:0)MetaboliteCHEBI:64483 (ChEBI)
LPCAT1 ProteinQ8NF37 (Uniprot-TrEMBL)
LPCAT1ProteinQ8NF37 (Uniprot-TrEMBL)
LPCAT2 ProteinQ7L5N7 (Uniprot-TrEMBL)
LPCAT3 ProteinQ6P1A2 (Uniprot-TrEMBL)
LPCAT4 ProteinQ643R3 (Uniprot-TrEMBL)
LPCATComplexR-HSA-1524029 (Reactome)
LPEATComplexR-HSA-1524035 (Reactome)
LPGAT1 ProteinQ92604 (Uniprot-TrEMBL)
LPGATComplexR-HSA-1524026 (Reactome)
LPIN1 ProteinQ14693 (Uniprot-TrEMBL)
LPIN2 ProteinQ92539 (Uniprot-TrEMBL)
LPIN3 ProteinQ9BQK8 (Uniprot-TrEMBL)
LPINComplexR-HSA-1500636 (Reactome)
LPSATComplexR-HSA-1524037 (Reactome)
LysoPtdChoMetaboliteCHEBI:58168 (ChEBI)
MAG MetaboliteCHEBI:17408 (ChEBI)
MAG,DAGComplexR-ALL-5696066 (Reactome)
MAGMetaboliteCHEBI:17408 (ChEBI)
MBOAT1 ProteinQ6ZNC8 (Uniprot-TrEMBL)
MBOAT2 ProteinQ6ZWT7 (Uniprot-TrEMBL)
MBOAT7ProteinQ96N66 (Uniprot-TrEMBL)
MFSD2AProteinQ8NA29 (Uniprot-TrEMBL)
MGLL ProteinQ99685 (Uniprot-TrEMBL)
MGLL dimerComplexR-HSA-1500601 (Reactome)
MIGA complexesComplexR-HSA-8954399 (Reactome)
MIGA1 ProteinQ8NAN2 (Uniprot-TrEMBL)
MIGA2 ProteinQ7L4E1 (Uniprot-TrEMBL)
MLCLMetaboliteCHEBI:60430 (ChEBI)
MYS-LPAMetaboliteCHEBI:62833 (ChEBI)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
Mn2+ MetaboliteCHEBI:29035 (ChEBI)
NAD+MetaboliteCHEBI:15846 (ChEBI)
NADHMetaboliteCHEBI:16908 (ChEBI)
NAPEMetaboliteCHEBI:61232 (ChEBI)
NH3MetaboliteCHEBI:16134 (ChEBI)
Na+MetaboliteCHEBI:29101 (ChEBI)
OSBPL10 ProteinQ9BXB5 (Uniprot-TrEMBL)
OSBPL5 ProteinQ9H0X9 (Uniprot-TrEMBL)
OSBPL5,8,10ComplexR-HSA-8867857 (Reactome)
OSBPL8 ProteinQ9BZF1 (Uniprot-TrEMBL)
PA MetaboliteCHEBI:16337 (ChEBI)
PAMetaboliteCHEBI:16337 (ChEBI)
PC MetaboliteCHEBI:16110 (ChEBI)
PC:PITPNBComplexR-HSA-1524110 (Reactome)
PC:PITPNBComplexR-HSA-1524122 (Reactome)
PCMetaboliteCHEBI:16110 (ChEBI)
PCTP ProteinQ9UKL6 (Uniprot-TrEMBL)
PCTP:PCComplexR-HSA-8873866 (Reactome)
PCTPProteinQ9UKL6 (Uniprot-TrEMBL)
PCYT1 dimerComplexR-HSA-1524125 (Reactome)
PCYT1A ProteinP49585 (Uniprot-TrEMBL)
PCYT1B ProteinQ9Y5K3 (Uniprot-TrEMBL)
PCYT2 ProteinQ99447 (Uniprot-TrEMBL)
PCYT2 dimerComplexR-HSA-1500642 (Reactome)
PChoMetaboliteCHEBI:36700 (ChEBI)
PEMetaboliteCHEBI:16038 (ChEBI)
PEMTProteinQ9UBM1 (Uniprot-TrEMBL)
PETAMetaboliteCHEBI:17553 (ChEBI)
PGMetaboliteCHEBI:17517 (ChEBI)
PGPMetaboliteCHEBI:37393 (ChEBI)
PGS1ProteinQ32NB8 (Uniprot-TrEMBL)
PHOSPHO1 ProteinQ8TCT1 (Uniprot-TrEMBL)
PHOSPHO1:Mg2+ComplexR-HSA-1500633 (Reactome)
PI MetaboliteCHEBI:16749 (ChEBI)
PI4PMetaboliteCHEBI:17526 (ChEBI)
PI:PITPNBComplexR-HSA-1524117 (Reactome)
PI:PITPNBComplexR-HSA-1524150 (Reactome)
PIMetaboliteCHEBI:16749 (ChEBI)
PISD(1-377) ProteinQ9UG56 (Uniprot-TrEMBL)
PISD(378-409) ProteinQ9UG56 (Uniprot-TrEMBL)
PISD:PyruvoylComplexR-HSA-1500656 (Reactome)
PITPNB ProteinP48739 (Uniprot-TrEMBL)
PITPNM1 ProteinO00562 (Uniprot-TrEMBL)
PITPNM1,2,3ComplexR-HSA-8869240 (Reactome)
PITPNM2 ProteinQ9BZ72 (Uniprot-TrEMBL)
PITPNM3 ProteinQ9BZ71 (Uniprot-TrEMBL)
PL MetaboliteCHEBI:16247 (ChEBI)
PLA1AProteinQ53H76 (Uniprot-TrEMBL)
PLA2(1)ComplexR-HSA-1500634 (Reactome)
PLA2(10)ComplexR-HSA-1524155 (Reactome)
PLA2(11)ComplexR-HSA-1524151 (Reactome)
PLA2(12)ComplexR-HSA-1524141 (Reactome)
PLA2(13)ComplexR-HSA-1524143 (Reactome)
PLA2(14)ComplexR-HSA-1524142 (Reactome)
PLA2(15)ComplexR-HSA-1602359 (Reactome)
PLA2(16)ComplexR-HSA-1602354 (Reactome)
PLA2(2)ComplexR-HSA-1524137 (Reactome)
PLA2(3)ComplexR-HSA-1524128 (Reactome)
PLA2(4)ComplexR-HSA-1524135 (Reactome)
PLA2(5)ComplexR-HSA-1524120 (Reactome)
PLA2(6)ComplexR-HSA-1524107 (Reactome)
PLA2(7)ComplexR-HSA-1524112 (Reactome)
PLA2(8)ComplexR-HSA-1524040 (Reactome)
PLA2(9)ComplexR-HSA-1524157 (Reactome)
PLA2G10 ProteinO15496 (Uniprot-TrEMBL)
PLA2G12A ProteinQ9BZM1 (Uniprot-TrEMBL)
PLA2G15ProteinQ8NCC3 (Uniprot-TrEMBL)
PLA2G16 ProteinP53816 (Uniprot-TrEMBL)
PLA2G1B ProteinP04054 (Uniprot-TrEMBL)
PLA2G2A ProteinP14555 (Uniprot-TrEMBL)
PLA2G2A:Ca2+ComplexR-HSA-1500630 (Reactome)
PLA2G2D ProteinQ9UNK4 (Uniprot-TrEMBL)
PLA2G2E ProteinQ9NZK7 (Uniprot-TrEMBL)
PLA2G2F ProteinQ9BZM2 (Uniprot-TrEMBL)
PLA2G3 ProteinQ9NZ20 (Uniprot-TrEMBL)
PLA2G4A ProteinP47712 (Uniprot-TrEMBL)
PLA2G4A:Ca2+ComplexR-HSA-1524095 (Reactome)
PLA2G4B ProteinP0C869 (Uniprot-TrEMBL)
PLA2G4C ProteinQ9UP65 (Uniprot-TrEMBL)
PLA2G4CProteinQ9UP65 (Uniprot-TrEMBL)
PLA2G4D ProteinQ86XP0 (Uniprot-TrEMBL)
PLA2G4E ProteinQ3MJ16 (Uniprot-TrEMBL)
PLA2G4F ProteinQ68DD2 (Uniprot-TrEMBL)
PLA2G5 ProteinP39877 (Uniprot-TrEMBL)
PLA2G6 ProteinO60733 (Uniprot-TrEMBL)
PLA2G6ProteinO60733 (Uniprot-TrEMBL)
PLA2GComplexR-HSA-3215272 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
PLA2R1(21-?)ProteinQ13018 (Uniprot-TrEMBL)
PLB1ProteinQ6P1J6 (Uniprot-TrEMBL)
PLBD1 ProteinQ6P4A8 (Uniprot-TrEMBL)
PLMetaboliteCHEBI:16247 (ChEBI)
PLD1 ProteinQ13393 (Uniprot-TrEMBL)
PLD1-4/6ComplexR-HSA-1524126 (Reactome)
PLD1/2ComplexR-HSA-1500639 (Reactome)
PLD2 ProteinO14939 (Uniprot-TrEMBL)
PLD3 ProteinQ8IV08 (Uniprot-TrEMBL)
PLD4 ProteinQ96BZ4 (Uniprot-TrEMBL)
PLD6 ProteinQ8N2A8 (Uniprot-TrEMBL)
PLD6 dimerComplexR-HSA-5601921 (Reactome)
PMCHO MetaboliteCHEBI:17810 (ChEBI)
PMCHO, PMETAMComplexR-ALL-8874447 (Reactome)
PMETAM MetaboliteCHEBI:17476 (ChEBI)
PNPLA2 ProteinQ96AD5 (Uniprot-TrEMBL)
PNPLA2/3ComplexR-HSA-1500579 (Reactome)
PNPLA3 ProteinQ9NST1 (Uniprot-TrEMBL)
PNPLA8 ProteinQ9NP80 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
PSMetaboliteCHEBI:18303 (ChEBI)
PTDSS1ProteinP48651 (Uniprot-TrEMBL)
PTDSS2ProteinQ9BVG9 (Uniprot-TrEMBL)
PTPMT1ProteinQ8WUK0 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
Pyruvoyl MetaboliteCHEBI:45360 (ChEBI)
RARRES3 ProteinQ9UL19 (Uniprot-TrEMBL)
RCOOHMetaboliteCHEBI:33575 (ChEBI)
SLC44A1 ProteinQ8WWI5 (Uniprot-TrEMBL)
SLC44A2 ProteinQ8IWA5 (Uniprot-TrEMBL)
SLC44A3 ProteinQ8N4M1 (Uniprot-TrEMBL)
SLC44A4 ProteinQ53GD3 (Uniprot-TrEMBL)
SLC44A5 ProteinQ8NCS7 (Uniprot-TrEMBL)
STARD10 ProteinQ9Y365 (Uniprot-TrEMBL)
STARD10:LPCAT1:PCComplexR-HSA-8873921 (Reactome)
STARD10:PCComplexR-HSA-8873863 (Reactome)
STARD10ProteinQ9Y365 (Uniprot-TrEMBL)
STARD7 ProteinQ9NQZ5 (Uniprot-TrEMBL)
STARD7:PCComplexR-HSA-8873896 (Reactome)
STARD7:PCComplexR-HSA-8873897 (Reactome)
STARD7ProteinQ9NQZ5 (Uniprot-TrEMBL)
TAGMetaboliteCHEBI:17855 (ChEBI)
TAZProteinQ16635 (Uniprot-TrEMBL)
TMEM86BProteinQ8N661 (Uniprot-TrEMBL)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
acetateMetaboliteCHEBI:30089 (ChEBI)
acyl groupMetaboliteCHEBI:22221 (ChEBI)
acyl-CoAMetaboliteCHEBI:17984 (ChEBI)
cardiolipinMetaboliteCHEBI:28494 (ChEBI)
cytidine 5'-monophosphateMetaboliteCHEBI:17361 (ChEBI)
fatty acidMetaboliteCHEBI:35366 (ChEBI)
fatty aldehydeMetaboliteCHEBI:35746 (ChEBI)
lysoPCMetaboliteCHEBI:60479 (ChEBI)
p-S284-STARD10ProteinQ9Y365 (Uniprot-TrEMBL)
phosphate monoesterMetaboliteCHEBI:7794 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
1-MMGArrowR-HSA-8878654 (Reactome)
1-acyl LPAArrowR-HSA-1482604 (Reactome)
1-acyl LPAArrowR-HSA-1482656 (Reactome)
1-acyl LPAArrowR-HSA-1482679 (Reactome)
1-acyl LPAArrowR-HSA-1482695 (Reactome)
1-acyl LPAArrowR-HSA-1602446 (Reactome)
1-acyl LPAArrowR-HSA-549112 (Reactome)
1-acyl LPAArrowR-HSA-6786650 (Reactome)
1-acyl LPAR-HSA-1482548 (Reactome)
1-acyl LPAR-HSA-75885 (Reactome)
1-acyl LPCArrowR-HSA-1482781 (Reactome)
1-acyl LPCArrowR-HSA-1482816 (Reactome)
1-acyl LPCArrowR-HSA-1482856 (Reactome)
1-acyl LPCArrowR-HSA-1602399 (Reactome)
1-acyl LPCArrowR-HSA-1602417 (Reactome)
1-acyl LPCR-HSA-1482547 (Reactome)
1-acyl LPCR-HSA-1482685 (Reactome)
1-acyl LPCR-HSA-1482696 (Reactome)
1-acyl LPCR-HSA-1482794 (Reactome)
1-acyl LPEArrowR-HSA-1482850 (Reactome)
1-acyl LPEArrowR-HSA-1482884 (Reactome)
1-acyl LPEArrowR-HSA-1482887 (Reactome)
1-acyl LPEArrowR-HSA-1602398 (Reactome)
1-acyl LPER-HSA-1482571 (Reactome)
1-acyl LPER-HSA-1482667 (Reactome)
1-acyl LPER-HSA-1482894 (Reactome)
1-acyl LPGArrowR-HSA-1482745 (Reactome)
1-acyl LPGArrowR-HSA-1482900 (Reactome)
1-acyl LPGArrowR-HSA-1482907 (Reactome)
1-acyl LPGArrowR-HSA-1602368 (Reactome)
1-acyl LPGR-HSA-1482539 (Reactome)
1-acyl LPGR-HSA-1482689 (Reactome)
1-acyl LPIArrowR-HSA-1482825 (Reactome)
1-acyl LPIArrowR-HSA-1482868 (Reactome)
1-acyl LPIArrowR-HSA-1602377 (Reactome)
1-acyl LPIR-HSA-1482598 (Reactome)
1-acyl LPSArrowR-HSA-1482771 (Reactome)
1-acyl LPSArrowR-HSA-1482776 (Reactome)
1-acyl LPSArrowR-HSA-1602374 (Reactome)
1-acyl LPSR-HSA-1482636 (Reactome)
1AGPCArrowR-HSA-5694485 (Reactome)
2-MAGArrowR-HSA-1482811 (Reactome)
2-MAGR-HSA-1482543 (Reactome)
2-MAGR-HSA-1482647 (Reactome)
2-MAGR-HSA-1482654 (Reactome)
2-acyl LPAArrowR-HSA-6792445 (Reactome)
2-acyl LPCArrowR-HSA-1482827 (Reactome)
2-acyl LPCArrowR-HSA-1482862 (Reactome)
2-acyl LPCR-HSA-1482533 (Reactome)
2-acyl LPCR-HSA-1482612 (Reactome)
2-acyl LPCR-HSA-1482629 (Reactome)
2-acyl LPEArrowR-HSA-1482828 (Reactome)
2-acyl LPEArrowR-HSA-1482892 (Reactome)
2-acyl LPER-HSA-1482545 (Reactome)
2-acyl LPER-HSA-1482646 (Reactome)
2-acyl LPGArrowR-HSA-1482847 (Reactome)
2-acyl LPGArrowR-HSA-1482920 (Reactome)
2-acyl LPGR-HSA-1482546 (Reactome)
2-acyl LPGR-HSA-1482635 (Reactome)
2-acyl LPIArrowR-HSA-1482932 (Reactome)
2-acyl LPIR-HSA-1482626 (Reactome)
2-acyl LPSArrowR-HSA-1482897 (Reactome)
2-acyl LPSArrowR-HSA-8869425 (Reactome)
2-acyl LPSR-HSA-1482691 (Reactome)
ABHD3mim-catalysisR-HSA-5694485 (Reactome)
ABHD4mim-catalysisR-HSA-5694583 (Reactome)
ACP6mim-catalysisR-HSA-8878654 (Reactome)
ADPArrowR-HSA-1483004 (Reactome)
ADPArrowR-HSA-1483222 (Reactome)
ADPArrowR-HSA-5696074 (Reactome)
ADPArrowR-HSA-8873929 (Reactome)
AGK:Mg2+mim-catalysisR-HSA-5696074 (Reactome)
AGPAT5mim-catalysisR-HSA-1482548 (Reactome)
AGPAT6mim-catalysisR-HSA-549112 (Reactome)
AGPATmim-catalysisR-HSA-75885 (Reactome)
ALPI:2Ca2+:Mg2+ dimermim-catalysisR-HSA-8878787 (Reactome)
ATPR-HSA-1483004 (Reactome)
ATPR-HSA-1483222 (Reactome)
ATPR-HSA-5696074 (Reactome)
ATPR-HSA-8873929 (Reactome)
AWAT2mim-catalysisR-HSA-5696448 (Reactome)
Ac-CoAR-HSA-264622 (Reactome)
AcChoArrowR-HSA-264622 (Reactome)
AcChoR-HSA-372519 (Reactome)
Acyl-CoAR-HSA-5696448 (Reactome)
AdoHcyArrowR-HSA-1483174 (Reactome)
AdoMetR-HSA-1483174 (Reactome)
AlcoholArrowR-HSA-8878787 (Reactome)
BMPArrowR-HSA-1483209 (Reactome)
CDIPT:Mg2+/Mn2+mim-catalysisR-HSA-1482976 (Reactome)
CDP-ChoArrowR-HSA-1483081 (Reactome)
CDP-ChoR-HSA-1482961 (Reactome)
CDP-ChoR-HSA-1482973 (Reactome)
CDP-DAGArrowR-HSA-1483121 (Reactome)
CDP-DAGArrowR-HSA-1483165 (Reactome)
CDP-DAGR-HSA-1482939 (Reactome)
CDP-DAGR-HSA-1482976 (Reactome)
CDP-DAGR-HSA-1483063 (Reactome)
CDP-ETAArrowR-HSA-1483190 (Reactome)
CDP-ETAR-HSA-1482962 (Reactome)
CDS1:Mg2+mim-catalysisR-HSA-1483121 (Reactome)
CDS2mim-catalysisR-HSA-1483165 (Reactome)
CEPT1/EPT1mim-catalysisR-HSA-1482962 (Reactome)
CEPT1:Mg2+/Mn2+mim-catalysisR-HSA-1482961 (Reactome)
CH3CHOArrowR-HSA-5696415 (Reactome)
CHATmim-catalysisR-HSA-264622 (Reactome)
CHK dimermim-catalysisR-HSA-1483004 (Reactome)
CHK/ETNKmim-catalysisR-HSA-1483222 (Reactome)
CHPT1:Mg2+/Mn2+mim-catalysisR-HSA-1482973 (Reactome)
CLArrowR-HSA-1482861 (Reactome)
CLR-HSA-1482857 (Reactome)
CO2ArrowR-HSA-1483212 (Reactome)
CPNEs:PLArrowR-HSA-5333678 (Reactome)
CPNEsR-HSA-5333678 (Reactome)
CRLS1mim-catalysisR-HSA-1482546 (Reactome)
CRLS1mim-catalysisR-HSA-1482689 (Reactome)
CRLS1mim-catalysisR-HSA-1483063 (Reactome)
CTL1-5mim-catalysisR-HSA-444433 (Reactome)
CTPR-HSA-1483081 (Reactome)
CTPR-HSA-1483121 (Reactome)
CTPR-HSA-1483165 (Reactome)
CTPR-HSA-1483190 (Reactome)
Ca2+ArrowR-HSA-5333678 (Reactome)
Casein kinase IImim-catalysisR-HSA-8873929 (Reactome)
ChoArrowR-HSA-1483116 (Reactome)
ChoArrowR-HSA-1483142 (Reactome)
ChoArrowR-HSA-1483159 (Reactome)
ChoArrowR-HSA-1483182 (Reactome)
ChoArrowR-HSA-1483186 (Reactome)
ChoArrowR-HSA-372519 (Reactome)
ChoArrowR-HSA-444433 (Reactome)
ChoR-HSA-1483004 (Reactome)
ChoR-HSA-264622 (Reactome)
ChoR-HSA-444433 (Reactome)
Cholinesterasemim-catalysisR-HSA-372519 (Reactome)
CoA-SHArrowR-HSA-1482533 (Reactome)
CoA-SHArrowR-HSA-1482539 (Reactome)
CoA-SHArrowR-HSA-1482546 (Reactome)
CoA-SHArrowR-HSA-1482547 (Reactome)
CoA-SHArrowR-HSA-1482548 (Reactome)
CoA-SHArrowR-HSA-1482598 (Reactome)
CoA-SHArrowR-HSA-1482626 (Reactome)
CoA-SHArrowR-HSA-1482635 (Reactome)
CoA-SHArrowR-HSA-1482636 (Reactome)
CoA-SHArrowR-HSA-1482646 (Reactome)
CoA-SHArrowR-HSA-1482667 (Reactome)
CoA-SHArrowR-HSA-1482689 (Reactome)
CoA-SHArrowR-HSA-1482691 (Reactome)
CoA-SHArrowR-HSA-1482695 (Reactome)
CoA-SHArrowR-HSA-1482775 (Reactome)
CoA-SHArrowR-HSA-1482861 (Reactome)
CoA-SHArrowR-HSA-1482867 (Reactome)
CoA-SHArrowR-HSA-1482889 (Reactome)
CoA-SHArrowR-HSA-1483002 (Reactome)
CoA-SHArrowR-HSA-264622 (Reactome)
CoA-SHArrowR-HSA-549112 (Reactome)
CoA-SHArrowR-HSA-5696448 (Reactome)
CoA-SHArrowR-HSA-75885 (Reactome)
CoA-SHArrowR-HSA-8848580 (Reactome)
DAGArrowR-HSA-1482654 (Reactome)
DAGArrowR-HSA-1482777 (Reactome)
DAGArrowR-HSA-1483203 (Reactome)
DAGArrowR-HSA-5696448 (Reactome)
DAGR-HSA-1482647 (Reactome)
DAGR-HSA-1482811 (Reactome)
DAGR-HSA-1482889 (Reactome)
DAGR-HSA-1482961 (Reactome)
DAGR-HSA-1482962 (Reactome)
DAGR-HSA-1482973 (Reactome)
DAGR-HSA-8848580 (Reactome)
DDHD1,2mim-catalysisR-HSA-6786650 (Reactome)
DGAT1/2mim-catalysisR-HSA-1482889 (Reactome)
DGAT2L6,L7Pmim-catalysisR-HSA-8848580 (Reactome)
DHAPArrowR-HSA-188467 (Reactome)
DHAPR-HSA-1483002 (Reactome)
DHAPR-HSA-75889 (Reactome)
DLCLArrowR-HSA-1482759 (Reactome)
DLCLArrowR-HSA-1482860 (Reactome)
DLCLR-HSA-1482860 (Reactome)
DLCLR-HSA-1482867 (Reactome)
ETAArrowR-HSA-1483089 (Reactome)
ETAArrowR-HSA-1483096 (Reactome)
ETAArrowR-HSA-1483107 (Reactome)
ETAR-HSA-1483222 (Reactome)
ETNPPL tetramermim-catalysisR-HSA-5696415 (Reactome)
FADH2ArrowR-HSA-188467 (Reactome)
FADR-HSA-188467 (Reactome)
G3PArrowR-HSA-1483107 (Reactome)
G3PArrowR-HSA-1483116 (Reactome)
G3PArrowR-HSA-75889 (Reactome)
G3PR-HSA-1482695 (Reactome)
G3PR-HSA-1482939 (Reactome)
G3PR-HSA-188467 (Reactome)
G3PR-HSA-549112 (Reactome)
GNPATmim-catalysisR-HSA-1483002 (Reactome)
GO3PArrowR-HSA-1483002 (Reactome)
GPAEAArrowR-HSA-5694583 (Reactome)
GPAM/GPAT2mim-catalysisR-HSA-1482695 (Reactome)
GPCHO, GPETAMArrowR-HSA-8874435 (Reactome)
GPCPD1mim-catalysisR-HSA-1483107 (Reactome)
GPCPD1mim-catalysisR-HSA-1483116 (Reactome)
GPChoArrowR-HSA-1482612 (Reactome)
GPChoArrowR-HSA-1482629 (Reactome)
GPChoArrowR-HSA-1482685 (Reactome)
GPChoArrowR-HSA-1482696 (Reactome)
GPChoArrowR-HSA-8952251 (Reactome)
GPChoR-HSA-1483116 (Reactome)
GPD1/GPD1L homodimermim-catalysisR-HSA-75889 (Reactome)
GPD2mim-catalysisR-HSA-188467 (Reactome)
GPETAArrowR-HSA-1482545 (Reactome)
GPETAArrowR-HSA-1482571 (Reactome)
GPETAR-HSA-1483107 (Reactome)
GlycerolArrowR-HSA-1482543 (Reactome)
GlycerolArrowR-HSA-1482647 (Reactome)
GlycerolArrowR-HSA-1482654 (Reactome)
GlycerolR-HSA-1483142 (Reactome)
H+R-HSA-75889 (Reactome)
H2OR-HSA-1482543 (Reactome)
H2OR-HSA-1482545 (Reactome)
H2OR-HSA-1482571 (Reactome)
H2OR-HSA-1482604 (Reactome)
H2OR-HSA-1482612 (Reactome)
H2OR-HSA-1482629 (Reactome)
H2OR-HSA-1482656 (Reactome)
H2OR-HSA-1482679 (Reactome)
H2OR-HSA-1482685 (Reactome)
H2OR-HSA-1482696 (Reactome)
H2OR-HSA-1482745 (Reactome)
H2OR-HSA-1482759 (Reactome)
H2OR-HSA-1482771 (Reactome)
H2OR-HSA-1482776 (Reactome)
H2OR-HSA-1482777 (Reactome)
H2OR-HSA-1482778 (Reactome)
H2OR-HSA-1482811 (Reactome)
H2OR-HSA-1482816 (Reactome)
H2OR-HSA-1482825 (Reactome)
H2OR-HSA-1482827 (Reactome)
H2OR-HSA-1482828 (Reactome)
H2OR-HSA-1482847 (Reactome)
H2OR-HSA-1482856 (Reactome)
H2OR-HSA-1482862 (Reactome)
H2OR-HSA-1482868 (Reactome)
H2OR-HSA-1482884 (Reactome)
H2OR-HSA-1482887 (Reactome)
H2OR-HSA-1482892 (Reactome)
H2OR-HSA-1482897 (Reactome)
H2OR-HSA-1482900 (Reactome)
H2OR-HSA-1482907 (Reactome)
H2OR-HSA-1482920 (Reactome)
H2OR-HSA-1482932 (Reactome)
H2OR-HSA-1483096 (Reactome)
H2OR-HSA-1483107 (Reactome)
H2OR-HSA-1483116 (Reactome)
H2OR-HSA-1483159 (Reactome)
H2OR-HSA-1483182 (Reactome)
H2OR-HSA-1483197 (Reactome)
H2OR-HSA-1483203 (Reactome)
H2OR-HSA-1602368 (Reactome)
H2OR-HSA-1602374 (Reactome)
H2OR-HSA-1602377 (Reactome)
H2OR-HSA-1602398 (Reactome)
H2OR-HSA-1602399 (Reactome)
H2OR-HSA-1602417 (Reactome)
H2OR-HSA-1602446 (Reactome)
H2OR-HSA-372519 (Reactome)
H2OR-HSA-5694485 (Reactome)
H2OR-HSA-5694583 (Reactome)
H2OR-HSA-5696415 (Reactome)
H2OR-HSA-6786650 (Reactome)
H2OR-HSA-6792445 (Reactome)
H2OR-HSA-8869425 (Reactome)
H2OR-HSA-8874435 (Reactome)
H2OR-HSA-8878654 (Reactome)
H2OR-HSA-8878787 (Reactome)
H2OR-HSA-8952251 (Reactome)
H2OR-HSA-8954398 (Reactome)
HADH octamermim-catalysisR-HSA-1482775 (Reactome)
HRASLSmim-catalysisR-HSA-8858298 (Reactome)
InsR-HSA-1482976 (Reactome)
L-SerR-HSA-1483089 (Reactome)
L-SerR-HSA-1483186 (Reactome)
LCFA(-)ArrowR-HSA-1482545 (Reactome)
LCFA(-)ArrowR-HSA-1482571 (Reactome)
LCFA(-)ArrowR-HSA-1482604 (Reactome)
LCFA(-)ArrowR-HSA-1482612 (Reactome)
LCFA(-)ArrowR-HSA-1482629 (Reactome)
LCFA(-)ArrowR-HSA-1482656 (Reactome)
LCFA(-)ArrowR-HSA-1482679 (Reactome)
LCFA(-)ArrowR-HSA-1482685 (Reactome)
LCFA(-)ArrowR-HSA-1482696 (Reactome)
LCFA(-)ArrowR-HSA-1482745 (Reactome)
LCFA(-)ArrowR-HSA-1482759 (Reactome)
LCFA(-)ArrowR-HSA-1482771 (Reactome)
LCFA(-)ArrowR-HSA-1482776 (Reactome)
LCFA(-)ArrowR-HSA-1482777 (Reactome)
LCFA(-)ArrowR-HSA-1482778 (Reactome)
LCFA(-)ArrowR-HSA-1482811 (Reactome)
LCFA(-)ArrowR-HSA-1482816 (Reactome)
LCFA(-)ArrowR-HSA-1482825 (Reactome)
LCFA(-)ArrowR-HSA-1482827 (Reactome)
LCFA(-)ArrowR-HSA-1482828 (Reactome)
LCFA(-)ArrowR-HSA-1482847 (Reactome)
LCFA(-)ArrowR-HSA-1482856 (Reactome)
LCFA(-)ArrowR-HSA-1482862 (Reactome)
LCFA(-)ArrowR-HSA-1482868 (Reactome)
LCFA(-)ArrowR-HSA-1482884 (Reactome)
LCFA(-)ArrowR-HSA-1482887 (Reactome)
LCFA(-)ArrowR-HSA-1482892 (Reactome)
LCFA(-)ArrowR-HSA-1482897 (Reactome)
LCFA(-)ArrowR-HSA-1482900 (Reactome)
LCFA(-)ArrowR-HSA-1482907 (Reactome)
LCFA(-)ArrowR-HSA-1482920 (Reactome)
LCFA(-)ArrowR-HSA-1482932 (Reactome)
LCFA(-)ArrowR-HSA-1602368 (Reactome)
LCFA(-)ArrowR-HSA-1602374 (Reactome)
LCFA(-)ArrowR-HSA-1602377 (Reactome)
LCFA(-)ArrowR-HSA-1602398 (Reactome)
LCFA(-)ArrowR-HSA-1602399 (Reactome)
LCFA(-)ArrowR-HSA-1602417 (Reactome)
LCFA(-)ArrowR-HSA-1602446 (Reactome)
LCFA(-)ArrowR-HSA-6786650 (Reactome)
LCFA(-)ArrowR-HSA-6792445 (Reactome)
LCFA(-)ArrowR-HSA-8869425 (Reactome)
LCFA(-)ArrowR-HSA-8952251 (Reactome)
LCLAT1mim-catalysisR-HSA-1482861 (Reactome)
LCLAT1mim-catalysisR-HSA-1482867 (Reactome)
LIPH, Imim-catalysisR-HSA-6792445 (Reactome)
LPA,PAArrowR-HSA-5696074 (Reactome)
LPC (22:6)ArrowR-HSA-8865637 (Reactome)
LPC (22:6)R-HSA-8865637 (Reactome)
LPC(14:0)R-HSA-5694485 (Reactome)
LPCAT1ArrowR-HSA-8873834 (Reactome)
LPCAT1R-HSA-8873923 (Reactome)
LPCATmim-catalysisR-HSA-1482533 (Reactome)
LPCATmim-catalysisR-HSA-1482547 (Reactome)
LPEATmim-catalysisR-HSA-1482646 (Reactome)
LPEATmim-catalysisR-HSA-1482667 (Reactome)
LPGATmim-catalysisR-HSA-1482539 (Reactome)
LPGATmim-catalysisR-HSA-1482635 (Reactome)
LPINmim-catalysisR-HSA-1483203 (Reactome)
LPSATmim-catalysisR-HSA-1482636 (Reactome)
LPSATmim-catalysisR-HSA-1482691 (Reactome)
LysoPtdChoArrowR-HSA-8858298 (Reactome)
MAG,DAGR-HSA-5696074 (Reactome)
MAGR-HSA-5696448 (Reactome)
MBOAT7mim-catalysisR-HSA-1482598 (Reactome)
MBOAT7mim-catalysisR-HSA-1482626 (Reactome)
MFSD2Amim-catalysisR-HSA-8865637 (Reactome)
MGLL dimermim-catalysisR-HSA-1482543 (Reactome)
MIGA complexesArrowR-HSA-8954398 (Reactome)
MLCLArrowR-HSA-1482773 (Reactome)
MLCLArrowR-HSA-1482778 (Reactome)
MLCLArrowR-HSA-1482794 (Reactome)
MLCLArrowR-HSA-1482867 (Reactome)
MLCLArrowR-HSA-1482894 (Reactome)
MLCLR-HSA-1482759 (Reactome)
MLCLR-HSA-1482773 (Reactome)
MLCLR-HSA-1482775 (Reactome)
MLCLR-HSA-1482781 (Reactome)
MLCLR-HSA-1482850 (Reactome)
MLCLR-HSA-1482861 (Reactome)
MYS-LPAR-HSA-8878654 (Reactome)
NAD+ArrowR-HSA-75889 (Reactome)
NADHR-HSA-75889 (Reactome)
NAPEArrowR-HSA-8858298 (Reactome)
NAPER-HSA-5694583 (Reactome)
NH3ArrowR-HSA-5696415 (Reactome)
Na+ArrowR-HSA-8865637 (Reactome)
Na+R-HSA-8865637 (Reactome)
OSBPL5,8,10mim-catalysisR-HSA-8867876 (Reactome)
PAArrowR-HSA-1482548 (Reactome)
PAArrowR-HSA-1483099 (Reactome)
PAArrowR-HSA-1483182 (Reactome)
PAArrowR-HSA-75885 (Reactome)
PAArrowR-HSA-8869241 (Reactome)
PAArrowR-HSA-8954398 (Reactome)
PAR-HSA-1482604 (Reactome)
PAR-HSA-1482656 (Reactome)
PAR-HSA-1482679 (Reactome)
PAR-HSA-1483099 (Reactome)
PAR-HSA-1483121 (Reactome)
PAR-HSA-1483165 (Reactome)
PAR-HSA-1483203 (Reactome)
PAR-HSA-1602446 (Reactome)
PAR-HSA-6786650 (Reactome)
PAR-HSA-6792445 (Reactome)
PAR-HSA-8869241 (Reactome)
PC:PITPNBArrowR-HSA-1483087 (Reactome)
PC:PITPNBArrowR-HSA-1483211 (Reactome)
PC:PITPNBR-HSA-1483211 (Reactome)
PC:PITPNBR-HSA-1483219 (Reactome)
PCArrowR-HSA-1482533 (Reactome)
PCArrowR-HSA-1482547 (Reactome)
PCArrowR-HSA-1482794 (Reactome)
PCArrowR-HSA-1482961 (Reactome)
PCArrowR-HSA-1482973 (Reactome)
PCArrowR-HSA-1483174 (Reactome)
PCArrowR-HSA-1483219 (Reactome)
PCR-HSA-1482781 (Reactome)
PCR-HSA-1482816 (Reactome)
PCR-HSA-1482827 (Reactome)
PCR-HSA-1482856 (Reactome)
PCR-HSA-1482862 (Reactome)
PCR-HSA-1483087 (Reactome)
PCR-HSA-1483142 (Reactome)
PCR-HSA-1483182 (Reactome)
PCR-HSA-1483186 (Reactome)
PCR-HSA-1602399 (Reactome)
PCR-HSA-1602417 (Reactome)
PCR-HSA-8858298 (Reactome)
PCR-HSA-8873794 (Reactome)
PCR-HSA-8873923 (Reactome)
PCR-HSA-8877153 (Reactome)
PCTP:PCArrowR-HSA-8873794 (Reactome)
PCTPR-HSA-8873794 (Reactome)
PCYT1 dimermim-catalysisR-HSA-1483081 (Reactome)
PCYT2 dimermim-catalysisR-HSA-1483190 (Reactome)
PChoArrowR-HSA-1483004 (Reactome)
PChoR-HSA-1483081 (Reactome)
PChoR-HSA-1483159 (Reactome)
PEArrowR-HSA-1482646 (Reactome)
PEArrowR-HSA-1482667 (Reactome)
PEArrowR-HSA-1482894 (Reactome)
PEArrowR-HSA-1482962 (Reactome)
PEArrowR-HSA-1483077 (Reactome)
PEArrowR-HSA-1483212 (Reactome)
PEMTmim-catalysisR-HSA-1483174 (Reactome)
PER-HSA-1482828 (Reactome)
PER-HSA-1482850 (Reactome)
PER-HSA-1482884 (Reactome)
PER-HSA-1482887 (Reactome)
PER-HSA-1482892 (Reactome)
PER-HSA-1483077 (Reactome)
PER-HSA-1483089 (Reactome)
PER-HSA-1483174 (Reactome)
PER-HSA-1602398 (Reactome)
PER-HSA-8858298 (Reactome)
PETAArrowR-HSA-1483222 (Reactome)
PETAR-HSA-1483096 (Reactome)
PETAR-HSA-1483190 (Reactome)
PETAR-HSA-5696415 (Reactome)
PGArrowR-HSA-1482539 (Reactome)
PGArrowR-HSA-1482546 (Reactome)
PGArrowR-HSA-1482635 (Reactome)
PGArrowR-HSA-1482689 (Reactome)
PGArrowR-HSA-1483142 (Reactome)
PGArrowR-HSA-1483197 (Reactome)
PGArrowR-HSA-1483218 (Reactome)
PGArrowR-HSA-8954398 (Reactome)
PGPArrowR-HSA-1482939 (Reactome)
PGPR-HSA-1483197 (Reactome)
PGR-HSA-1482745 (Reactome)
PGR-HSA-1482847 (Reactome)
PGR-HSA-1482900 (Reactome)
PGR-HSA-1482907 (Reactome)
PGR-HSA-1482920 (Reactome)
PGR-HSA-1483063 (Reactome)
PGR-HSA-1483209 (Reactome)
PGR-HSA-1483218 (Reactome)
PGR-HSA-1602368 (Reactome)
PGS1mim-catalysisR-HSA-1482939 (Reactome)
PHOSPHO1:Mg2+mim-catalysisR-HSA-1483096 (Reactome)
PHOSPHO1:Mg2+mim-catalysisR-HSA-1483159 (Reactome)
PI4PArrowR-HSA-8867876 (Reactome)
PI4PR-HSA-8867876 (Reactome)
PI:PITPNBArrowR-HSA-1483219 (Reactome)
PI:PITPNBArrowR-HSA-1483229 (Reactome)
PI:PITPNBR-HSA-1483087 (Reactome)
PI:PITPNBR-HSA-1483229 (Reactome)
PIArrowR-HSA-1482598 (Reactome)
PIArrowR-HSA-1482626 (Reactome)
PIArrowR-HSA-1482976 (Reactome)
PIArrowR-HSA-1483087 (Reactome)
PIArrowR-HSA-8869241 (Reactome)
PIR-HSA-1482825 (Reactome)
PIR-HSA-1482868 (Reactome)
PIR-HSA-1482932 (Reactome)
PIR-HSA-1483219 (Reactome)
PIR-HSA-1602377 (Reactome)
PIR-HSA-8869241 (Reactome)
PISD:Pyruvoylmim-catalysisR-HSA-1483212 (Reactome)
PITPNM1,2,3mim-catalysisR-HSA-8869241 (Reactome)
PLA1Amim-catalysisR-HSA-8869425 (Reactome)
PLA2(1)mim-catalysisR-HSA-1482604 (Reactome)
PLA2(1)mim-catalysisR-HSA-1482656 (Reactome)
PLA2(1)mim-catalysisR-HSA-1482900 (Reactome)
PLA2(10)mim-catalysisR-HSA-1482897 (Reactome)
PLA2(11)mim-catalysisR-HSA-1482825 (Reactome)
PLA2(12)mim-catalysisR-HSA-1482868 (Reactome)
PLA2(13)mim-catalysisR-HSA-1482932 (Reactome)
PLA2(14)mim-catalysisR-HSA-1482920 (Reactome)
PLA2(15)mim-catalysisR-HSA-1602374 (Reactome)
PLA2(15)mim-catalysisR-HSA-1602377 (Reactome)
PLA2(15)mim-catalysisR-HSA-1602446 (Reactome)
PLA2(16)mim-catalysisR-HSA-1602368 (Reactome)
PLA2(16)mim-catalysisR-HSA-1602398 (Reactome)
PLA2(16)mim-catalysisR-HSA-1602417 (Reactome)
PLA2(2)mim-catalysisR-HSA-1482884 (Reactome)
PLA2(3)mim-catalysisR-HSA-1482887 (Reactome)
PLA2(4)mim-catalysisR-HSA-1482828 (Reactome)
PLA2(5)mim-catalysisR-HSA-1482856 (Reactome)
PLA2(6)mim-catalysisR-HSA-1482816 (Reactome)
PLA2(7)mim-catalysisR-HSA-1482862 (Reactome)
PLA2(8)mim-catalysisR-HSA-1482612 (Reactome)
PLA2(8)mim-catalysisR-HSA-1482685 (Reactome)
PLA2(9)mim-catalysisR-HSA-1482771 (Reactome)
PLA2G15mim-catalysisR-HSA-8952251 (Reactome)
PLA2G2A:Ca2+mim-catalysisR-HSA-1482679 (Reactome)
PLA2G2A:Ca2+mim-catalysisR-HSA-1482776 (Reactome)
PLA2G2A:Ca2+mim-catalysisR-HSA-1482907 (Reactome)
PLA2G4A:Ca2+mim-catalysisR-HSA-1482759 (Reactome)
PLA2G4Cmim-catalysisR-HSA-1482545 (Reactome)
PLA2G4Cmim-catalysisR-HSA-1482571 (Reactome)
PLA2G4Cmim-catalysisR-HSA-1482629 (Reactome)
PLA2G4Cmim-catalysisR-HSA-1482696 (Reactome)
PLA2G4Cmim-catalysisR-HSA-1482827 (Reactome)
PLA2G4Cmim-catalysisR-HSA-1482892 (Reactome)
PLA2G6mim-catalysisR-HSA-1482778 (Reactome)
PLA2Gmim-catalysisR-HSA-1482745 (Reactome)
PLA2Gmim-catalysisR-HSA-1482847 (Reactome)
PLA2R1(21-?)TBarR-HSA-1602368 (Reactome)
PLA2R1(21-?)TBarR-HSA-1602374 (Reactome)
PLA2R1(21-?)TBarR-HSA-1602377 (Reactome)
PLA2R1(21-?)TBarR-HSA-1602398 (Reactome)
PLA2R1(21-?)TBarR-HSA-1602417 (Reactome)
PLA2R1(21-?)TBarR-HSA-1602446 (Reactome)
PLB1mim-catalysisR-HSA-1602399 (Reactome)
PLD1-4/6mim-catalysisR-HSA-1483142 (Reactome)
PLD1/2mim-catalysisR-HSA-1483182 (Reactome)
PLD6 dimermim-catalysisR-HSA-8954398 (Reactome)
PLR-HSA-5333678 (Reactome)
PMCHO, PMETAMR-HSA-8874435 (Reactome)
PNPLA2/3mim-catalysisR-HSA-1482647 (Reactome)
PNPLA2/3mim-catalysisR-HSA-1482654 (Reactome)
PNPLA2/3mim-catalysisR-HSA-1482777 (Reactome)
PNPLA2/3mim-catalysisR-HSA-1482811 (Reactome)
PPiArrowR-HSA-1483081 (Reactome)
PPiArrowR-HSA-1483121 (Reactome)
PPiArrowR-HSA-1483165 (Reactome)
PPiArrowR-HSA-1483190 (Reactome)
PSArrowR-HSA-1482636 (Reactome)
PSArrowR-HSA-1482691 (Reactome)
PSArrowR-HSA-1483089 (Reactome)
PSArrowR-HSA-1483170 (Reactome)
PSArrowR-HSA-1483186 (Reactome)
PSArrowR-HSA-8867876 (Reactome)
PSR-HSA-1482771 (Reactome)
PSR-HSA-1482776 (Reactome)
PSR-HSA-1482897 (Reactome)
PSR-HSA-1483170 (Reactome)
PSR-HSA-1483212 (Reactome)
PSR-HSA-1602374 (Reactome)
PSR-HSA-8867876 (Reactome)
PSR-HSA-8869425 (Reactome)
PTDSS1mim-catalysisR-HSA-1483186 (Reactome)
PTDSS2mim-catalysisR-HSA-1483089 (Reactome)
PTPMT1mim-catalysisR-HSA-1483197 (Reactome)
PiArrowR-HSA-1483096 (Reactome)
PiArrowR-HSA-1483159 (Reactome)
PiArrowR-HSA-1483197 (Reactome)
PiArrowR-HSA-1483203 (Reactome)
PiArrowR-HSA-5696415 (Reactome)
PiArrowR-HSA-8878654 (Reactome)
PiArrowR-HSA-8878787 (Reactome)
R-HSA-1482533 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferases acylate 2-acyl lysophosphatidylcholine (LPC) to form phosphatidylcholine (PC). The lysophospholipid acyltransferases involved are: lysophosphatidylcholine acyltransferase 1 (LPCAT1) (Nakanishi et al. 2006, Chen et al. 2006); lysophosphatidylcholine acyltransferase 2 (LPCAT2) (Shindou et al. 2006); lysophospholipid acyltransferase 5 (LPCAT3) (Hishikawa et al. 2008, Zhao et al. 2008, Gijon et al. 2008, Jain et al. 2009, Kazachkov et al. 2008); lysophospholipid acyltransferase LPCAT4 (LPCAT4) aka LPEAT2 (Cao et al. 2008, Ye et al. 2005); or lysophospholipid acyltransferase 2 (MBOAT2) aka LPCAT4 (Hishikawa et al. 2008, Gijon et al. 2008).
R-HSA-1482539 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferases acylate 1-acyl lysophosphatidylglycerol (LPG) to form phosphatidylglycerol (PG). The lysophospholipid acyltransferases involved are: lysophosphatidylcholine acyltransferase 1 (LPCAT1) (Nakanishi et al. 2006, Chen et al. 2006), lysophospholipid acyltransferase LPCAT4 (LPCAT4) aka LPEAT2 (Cao et al. 2008, Ye et al. 2005); or acyl-CoA:lysophosphatidylglycerol acyltransferase (LPGAT1) (Yang et al. 2004).
R-HSA-1482543 (Reactome) At the endoplasmic reticulum (ER) membrane, monoglyceride lipase (MGLL) hydrolyzes 2-monoacylglycerol (2-MAG) to form a fatty acid and glycerol (Dinh et al. 2004, Zvonok et al. 2008, Bertrand et al. 2010, Labar et al. 2010).
R-HSA-1482545 (Reactome) At the endoplasmic reticulum (ER) membrane, membrane-bound cytosolic phospholipase A2 gamma (PLA2G4C) hydrolyzes 2-acyl lysophosphatidylethanolamine (LPE) to produce glycerophosphoethanolamine (GPETA) (Yamashita et al. 2005, Yamashita et al. 2009).
R-HSA-1482546 (Reactome) At the inner mitochondrial membrane (IM), cardiolipin synthase (CRLS1) acylates 2-acyl lysophosphatidylglycerol (LPG) to form phosphatidylglycerol (PG) (Nie et al. 2010).
R-HSA-1482547 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferases acylate 1-acyl lysophosphatidylcholine (LPC) to form phosphatidylcholine (PC). The lysophospholipid acyltransferases involved are: lysophosphatidylcholine acyltransferase 1 (LPCAT1) (Nakanishi et al. 2006, Chen et al. 2006); lysophosphatidylcholine acyltransferase 2 (LPCAT2) (Shindou et al. 2006); lysophospholipid acyltransferase 5 (LPCAT3) (Hishikawa et al. 2008, Zhao et al. 2008, Gijon et al. 2008, Jain et al. 2009, Kazachkov et al. 2008); lysophospholipid acyltransferase LPCAT4 (LPCAT4) aka LPEAT2 (Cao et al. 2008, Ye et al. 2005); or lysophospholipid acyltransferase 2 (MBOAT2) aka LPCAT4 (Hishikawa et al. 2008, Gijon et al. 2008).
R-HSA-1482548 (Reactome) At the outer mitochondrial (OM) membrane, 1-acyl lysophosphatidic acid (LPA) is acylated to phosphatidic acid (PA) by the enzyme 1-acyl-sn-glycerol-3-phosphate acyltransferases epsilon (AGPAT5) (Prasad et al. 2011).
R-HSA-1482571 (Reactome) At the endoplasmic reticulum (ER) membrane, membrane-bound cytosolic phospholipase A2 gamma (PLA2G4C) hydrolyzes 1-acyl lysophosphatidylethanolamine (LPE) to produce glycerophosphoethanolamine (GPETA) (Yamashita et al. 2005, Yamashita et al. 2009).
R-HSA-1482598 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferase 7 (MBOAT7) aka LPIAT acylates 1-acyl lysophosphatidylinositol (LPI) to form phosphatidylinositol (PI) (Gijon et al. 2008, Lee et al. 2008).
R-HSA-1482604 (Reactome) At the outer mitochondrial (OM) membrane, phosphatidic acid (PA) is hydrolyzed, and has one of its acyl chains cleaved off, by phospholipase A2 alpha/beta/delta/zeta (PLA2G4A/B/D/F) to form 1-acyl lysophosphatidic acid (LPA) (Ghomashchi et al. 2010).
R-HSA-1482612 (Reactome) At the endoplasmic reticulum (ER) membrane, 2-acyl lysophosphatidylcholine (LPC) is hydrolyzed to glycerophosphocholine (GPCho) by cytosolic phospholipase A2 alpha/beta/delta/epsilon/zeta (PLA2G4A/B/D/E/F) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009, Sharp et al. 1994) or by Phospholipase B1-like (PLBD1) (Xu et al. 2009). PLBD1 also acts as a phospholipase A2 but in addition has the propensity to hydrolyze the lysophospholipid formed in its initial reaction.
R-HSA-1482626 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferase 7 (MBOAT7) aka LPIAT acylates 2-acyl lysophosphatidylinositol (LPI) to form phosphatidylinositol (PI) (Gijon et al. 2008, Lee et al. 2008).
R-HSA-1482629 (Reactome) At the endoplasmic reticulum (ER) membrane, 2-acyl lysophosphatidylcholine (LPC) is hydrolyzed to glycerophosphocholine (GPCho) by membrane-bound cytosolic phospholipase A2 gamma (PLA2G4C) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009).
R-HSA-1482635 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferases acylate 2-acyl lysophosphatidylglycerol (LPG) to form phosphatidylglycerol (PG). The lysophospholipid acyltransferases involved are: lysophosphatidylcholine acyltransferase 1 (LPCAT1) (Nakanishi et al. 2006, Chen et al. 2006), lysophospholipid acyltransferase LPCAT4 (LPCAT4) aka LPEAT2 (Cao et al. 2008, Ye et al. 2005); or acyl-CoA:lysophosphatidylglycerol acyltransferase (LPGAT1) (Yang et al. 2004).
R-HSA-1482636 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferases acylate 1-acyl lysophosphatidylserine (LPS) to form phosphatidylserine (PS). The lysophospholipid acyltransferases involved are: lysophospholipid acyltransferase 5 (LPCAT3) (Gijon et al. 2008, Hishikawa et al. 2008); lysophospholipid acyltransferase LPCAT4 (LPCAT4) aka LPEAT2 (Cao et al. 2008); or lysophospholipid acyltransferase 1 (MBOAT1) aka LPEAT1 (Hishikawa et al. 2008, Gijon et al. 2008).
R-HSA-1482646 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferases acylate 2-acyl lysophosphatidylethanolamine (LPE) to form phosphatidylethanolamine (PE). The lysophospholipid acyltransferases involved are: lysophospholipid acyltransferase 1 (MBOAT1) aka LPEAT1 (Gijon et al. 2008, Hishikawa et al. 2008); lysophospholipid acyltransferase LPCAT4 (LPCAT4) aka LPEAT2 (Cao et al. 2008, Ye et al. 2005); lysophospholipid acyltransferase 2 (MBOAT2) aka LPCAT4 (Hishikawa et al. 2008, Gijon et al. 2008); lysophospholipid acyltransferase 5 (LPCAT3) (Hishikawa et al. 2008, Zhao et al. 2008, Gijon et al. 2008, Jain et al. 2009, Kazachkov et al. 2008).
R-HSA-1482647 (Reactome) At the endoplasmic reticulum (ER) membrane, a 2-monoacylglycerol (2-MAG) molecule and a diacylglycerol (DAG) molecule are transacylated by patatin-like phospholipase domain-containing proteins 2/3 (PNPLA2/3). This forms triacylglycerol (TAG) and glycerol (Jenkins et al. 2004).
R-HSA-1482654 (Reactome) At the endoplasmic reticulum (ER) membrane, two 2-monoacylglycerol (2-MAG) molecules are transacylated by patatin-like phospholipase domain-containing proteins 2/3 (PNPLA2/3) to form diacylglycerol (DAG) and glycerol (Jenkins et al. 2004).
R-HSA-1482656 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidic acid (PA) is hydrolyzed, and has one of its acyl chains cleaved off, by phospholipase A2 alpha/beta/delta/zeta (PLA2G4A/B/D/F) to form 1-acyl lysophosphatidic acid (LPA) (Ghomashchi et al. 2010).
R-HSA-1482667 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferases acylate 1-acyl lysophosphatidylethanolamine (LPE) to form phosphatidylethanolamine (PE). The lysophospholipid acyltransferases involved are: lysophospholipid acyltransferase 1 (MBOAT1) aka LPEAT1 (Gijon et al. 2008, Hishikawa et al. 2008); lysophospholipid acyltransferase LPCAT4 (LPCAT4) aka LPEAT2 (Cao et al. 2008, Ye et al., 2005); lysophospholipid acyltransferase 2 (MBOAT2) aka LPCAT4 (Hishikawa et al. 2008, Gijon et al. 2008); lysophospholipid acyltransferase 5 (LPCAT3) (Hishikawa et al. 2008, Zhao et al. 2008, Gijon et al. 2008, Jain et al. 2009, Kazachkov et al. 2008).
R-HSA-1482679 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidic acid (PA) is hydrolyzed, and has one of its acyl chains cleaved off, by membrane-associated phospholipase A2 gamma 2A (PLA2G2A), to form 1-acyl lysophosphatidic acid (LPA) (Singer et al. 2002).
R-HSA-1482685 (Reactome) At the endoplasmic reticulum (ER) membrane, 1-acyl lysophosphatidylcholine (LPC) is hydrolyzed to glycerophosphocholine (GPCho) by cytosolic phospholipase A2 alpha/beta/delta/epsilon/zeta (PLA2G4A/B/D/E/F) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009, Sharp et al. 1994) or by Phospholipase B1-like (PLBD1) (Xu et al. 2009). PLBD1 also acts as a phospholipase A2 but in addition has the propensity to hydrolyze the lysophospholipid formed in its initial reaction.
R-HSA-1482689 (Reactome) At the inner mitochondrial (IR) membrane, cardiolipin synthase (CRLS1) acylates 1-acyl lysophosphatidylglycerol (LPG) to form phosphatidylglycerol (PG) (Nie et al. 2010).
R-HSA-1482691 (Reactome) At the endoplasmic reticulum (ER) membrane, lysophospholipid acyltransferases acylate 2-acyl lysophosphatidylserine (LPS) to form phosphatidylserine (PS). The lysophospholipid acyltransferases involved are: lysophospholipid acyltransferase 5 (LPCAT3) (Gijon et al. 2008, Hishikawa et al. 2008); lysophospholipid acyltransferase LPCAT4 (LPCAT4) aka LPEAT2 (Cao et al. 2008); or lysophospholipid acyltransferase 1 (MBOAT1) aka LPEAT1 (Hishikawa et al. 2008, Gijon et al. 2008).
R-HSA-1482695 (Reactome) Glycerol-3-phosphate (G3P) is acylated to 1-acyl lysophosphatidic acid (LPA) by the enzymes glycerol-3-phosphate acyltransferase 1 (GPAT, also known as GPAM) and glycerol-3-phosphate acyltransferase 2 (GPAT2), at the outer mitochondrial (OM) membrane (Shindou & Shimizu 2009, Chen et al. 2008, Takeuchi & Reue 2009).
R-HSA-1482696 (Reactome) At the endoplasmic reticulum (ER) membrane, 1-acyl lysophosphatidylcholine (LPC) is hydrolyzed to glycerophosphocholine (GPCho) by membrane-bound cytosolic phospholipase A2 gamma (PLA2G4C) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009).
R-HSA-1482745 (Reactome) At the inner mitochondrial membrane (IM), phosphatidylglycerol (PG) is hydrolyzed, and has one of its acyl chains cleaved off, by phospholipase A2 beta (PLA2G4B) to form 1-acyl lysophosphatidylglycerol (LPG) (Ghomashchi et al. 2010, Singer et al. 2002).
R-HSA-1482759 (Reactome) At the inner mitochondrial membrane (IM), the phospholipase A2 group IV alpha (PLA2G4A) protein hydrolyzes monolysocardiolipin (MLCL) and produces dilysocardiolipin (DLCL) (Buckland et al. 1998, Sharp et al. 1994).
R-HSA-1482771 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylserine (PS) is hydrolyzed, and has one of its acyl chains cleaved off, by cytosolic phospholipase A2 alpha/beta/delta/epsilon/zeta (PLA2G4A,B,D/E/F) (Ghomashchi et al. 2010), or by group XVI phospholipase A2 (PLA2G16) (Duncan et al. 2008). This produces 1-acyl lysophosphatidylserine (LPS).
R-HSA-1482773 (Reactome) Monolysocardiolipin (MLCL) transports via membrane contact sites between the endoplasmic reticulum (ER) and the inner mitochondria membranes (IM) (Cao et al. 2004, Zhao et al. 2009, Taylor & Hatch 2009).
R-HSA-1482775 (Reactome) At the inner mitochondrial membrane (IM), the trifunctional enzyme HADH (3-hydroxyacyl-CoA dehydrogenase), an octamer of four alpha (HADHA) and four beta (HADHB) subunits, acylates monolysocardiolipin (MLCL) to cardiolipin (CL) (Taylor & Hatch 2009).
R-HSA-1482776 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylserine (PS) is hydrolyzed, and has one of its acyl chains cleaved off, by membrane-associated phospholipase A2 gamma 2A, PLA2G2A, to form 1-acyl lysophosphatidylserine (LPS) (Singer et al. 2002).
R-HSA-1482777 (Reactome) At the endoplasmic reticulum (ER) membrane, triacylglycerol (TAG) is hydrolyzed, removing one of its acyl groups to form diacylglycerol (DAG) by patatin-like phospholipase domain-containing protein 2/3 (PNPLA2/3) (He et al. 2010, Jenkins et al. 2004, Basantani et al. 2011).
R-HSA-1482778 (Reactome) At the inner mitochondrial membrane (IM), calcium-independent phospholipase A2 gamma (PLA2G6) hydrolyzes, removing one of the acyl chains, cardiolipin (CL) to form monolysocardiolipin (MLCL). This reaction is inferred from rats. PLA2G6 has also been characterized in humans (Larsson et al. 1998, Ma et al. 1999, Larsson Forsell et al. 1999).
R-HSA-1482781 (Reactome) At the inner mitochondrial membrane (IM), tafazzin (TAZ) converts monolysocardiolipin (MLCL) and phosphatidylcholine (PC) to cardiolipin (CL) and 1-acyl lysophosphatidylcholine (LPC) (Xu et al. 2003, Xu et al. 2006, Malhotra et al. 2009). Although this reaction is reversible, the net effect of the phospholipase A and acyltransferase reactions drives it towards the formation of LPC and CL.
R-HSA-1482794 (Reactome) At the inner mitochondrial membrane (IM), tafazzin (TAZ) converts cardiolipin (CL) and 1-acyl lysophosphatidylcholine (LPC) to monolysocardiolipin (MLCL) and phosphatidylcholine (PC) (Xu et al. 2003, Xu et al. 2006, Malhotra et al. 2009).
R-HSA-1482811 (Reactome) At the endoplasmic reticulum (ER) membrane, patatin-like phospholipase domain-containing proteins 2/3 (PNPLA2/3) hydrolyze diacylglycerol (DAG), removing an acyl group to form 2-monoacylglycerol (2-MAG) (He et al. 2010, Jenkins et al. 2004, Basantani et al. 2011).
R-HSA-1482816 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylcholine (PC) is hydrolyzed, and has one of its acyl chains cleaved off, by a membrane-associated phospholipase A2 to form 1-acyl lysophosphatidylcholine (LPC). The phospholipases are either phospholipase A2 group II alpha (PLA2G2A) (Seihamer et al. 1989, Singer et al. 2002), cytosolic phospholipase A2 group IV gamma (PLA2G4C) (Yamashita et al. 2005, Pickard et al. 1999, Ghomashchi et al. 2010, Yamashita et al. 2009), or calcium-independent phospholipase A2-gamma (PNPLA8) (Murakami et al. 2005, Underwood et al. 1998).
R-HSA-1482825 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylinositol (PI) is hydrolyzed, and has one of its acyl chains cleaved off, by a phospholipase A2 to form 1-acyl lysophosphatidylinositol (LPI). The phospholipases are either cytosolic phospholipase A2 alpha/beta/zeta (PLA2G4A/D/F) (Ghomashchi et al. 2010), group XVI phospholipase A2 (PLA2G16) (Duncan et al. 2008), or Phospholipase B-like 1 (PLBD1) (Xu et al. 2009). PLBD1 also acts as a phospholipase A2 but in addition has the propensity to hydrolyze the lysophospholipid formed in its initial reaction.
R-HSA-1482827 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylcholine (PC) is hydrolyzed, and has one of its acyl chains cleaved off, by membrane-associated phospholipase A2 gamma 4C, PLA2G4C (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009), to form 2-acyl lysophosphatidylcholine (LPC). Cytosolic phospholipase A2 enzymes show not only PLA2 hydrolysing activity to form the 1-acyl lysophospholipid but also have a degree of PLA1 activity, producing a 2-acyl lysophospholipid.
R-HSA-1482828 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylethanolamine (PE) is hydrolyzed, and has one of its acyl chains cleaved off by cytosolic phospholipase A2 alpha/delta/epsilon/zeta (PLA2G4A/D/E/F) (Ghomashchi et al. 2010). This produces 2-acyl lysophosphatidylethanolamine (LPE). Cytosolic phospholipase A2 enzymes show not only PLA2 hydrolyzing activity to form the 1-acyl lysophospholipid but also have a degree of PLA1 activity, producing a 2-acyl lysophospholipid.
R-HSA-1482847 (Reactome) At the inner mitochondrial (IR) membrane, phosphatidylglycerol (PG) is hydrolysed, and has one of its acyl chains cleaved off, by phospholipase A2 beta (PLA2G4B) (Ghomashchi et al. 2010) to form 2-acyl lysophosphatidylglycerol (LPG). Phospholipase A2 enzymes show not only PLA2 hydrolysing activity to form the 1-acyl lysophospholipid but also have a degree of PLA1 activity, producing a 2-acyl lysophospholipid.
R-HSA-1482850 (Reactome) At the inner mitochondrial membrane (IM), tafazzin (TAZ) converts monolysocardiolipin (MLCL) and phosphatidylethanolamine (PE) to cardiolipin (CL) and 1-acyl lysophosphatidylethanolamine (LPE) (Xu et al. 2003, Xu et al. 2006, Malhotra et al. 2009). Although this reaction is reversible, the net effect of the phospholipase A and acyltransferase reactions drives it towards the formation of LPE and CL.
R-HSA-1482856 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylcholine (PC) is hydrolyzed and has one of its acyl chains cleaved off by a phospholipase A2 to form 1-acyl lysophosphatidylcholine (LPC). The phospholipases are either cytosolic phospholipase A2 alpha/beta/delta/zeta (PLA2G4A/B/D/F) (Ghomashchi et al. 2010, Clarke et al. 1991, Sharp et al. 1994, Song et al. 1999, Chiba et al. 2004), 85 kDa calcium-independent phospholipase A2 (PLA2G6) (Larsson et al. 1998, Ma et al. 1999, Larsson Forsell et al. 1999), group XVI phospholipase A2 (PLA2G16) (Duncan et al. 2008), or Phospholipase B-like 1 (PLBD1) (Xu et al. 2009). PLBD1 acts as a phospholipase A2 but in addition has the propensity to hydrolyze the lysophospholipid formed in its initial reaction.
R-HSA-1482857 (Reactome) Cardiolipin (CL) transports via membrane contact sites between the endoplasmic reticulum (ER) and the inner mitochondria membranes (IM) (Osman et al. 2011, Vance 1990, Gaigg et al. 1995, Zhao et al. 2009, Simbeni et al. 1991, Ardail et al. 1993, Shiao et al., 1995).
R-HSA-1482860 (Reactome) Dilysocardiolipin (DLCL) transports via membrane contact sites between the endoplasmic reticulum (ER) and the inner mitochondria membranes (IM) (Zhao et al. 2009, Buckland et al. 1998).
R-HSA-1482861 (Reactome) At the endoplasmic reticulum (ER) membrane, lysocardiolipin acyltransferase 1 (LCLAT1) aka ALCAT1 acylates monolysocardiolipin (MLCL) to cardiolipin (CL) (Cao et al. 2004, Zhao et al. 2009).
R-HSA-1482862 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylcholine (PC) is hydrolysed, and has one of its acyl chains cleaved off, by cytosolic phospholipase A2 alpha/beta/delta/epsilon/zeta (PLA2G4A/B/D/E/F) (Ghomashchi et al. 2010). This produces 2-acyl lysophosphatidylcholine (LPC). Cytosolic phospholipase A2 enzymes show not only PLA2 hydrolysing activity to form the 1-acyl lysophospholipid but also have a degree of PLA1 activity, producing a 2-acyl lysophospholipid.
R-HSA-1482867 (Reactome) At the endoplasmic reticulum (ER) membrane, lysocardiolipin acyltransferase 1 (LCLAT1) aka ALCAT1 acylates dilysocardiolipin (DLCL) to produce monolysocardiolipin (MLCL) (Zhao et al. 2009).
R-HSA-1482868 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylinositol (PI) is hydrolyzed, and has one of its acyl chains cleaved off, by membrane-associated phospholipase A2 gamma 2A (PLA2G2A) (Singer et al. 2002) or by cytosolic phospholipase A2 gamma (PLA2G4C) (Ghomashchi et al. 2010), to form 1-acyl lysophosphatidylinositol (LPI).
R-HSA-1482884 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylethanolamine (PE) is hydrolyzed, and has one of its acyl chains cleaved off, by phospholipase A2 to form 1-acyl lysophosphatidylethanolamine (LPE). The phospholipases are either cytosolic phospholipase A2 alpha/beta/delta/epsilon/zeta (PLA2G(4A/B/D/E/F) (Ghosh et al. 2006, Yamashita et al. 2009, Yamashita et al. 1999, Ghomashchi et al. 2010), 85 kDa calcium-independent phospholipase A2 (PLA2G6) (Larsson et al. 1998, Ma et al. 1999, Larsson Forsell et al. 1999), group XVI phospholipase A2 (PLA2G16) (Duncan et al. 2008), or Phospholipase B-like 1 (PLBD1) (Xu et al. 2009). PLBD1 acts as a phospholipase A2 but in addition has the propensity to hydrolyze the lysophospholipid formed in its initial reaction.
R-HSA-1482887 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylethanolamine (PE) is hydrolyzed, and has one of its acyl chains cleaved off, by membrane-associated phospholipase A2 gamma 2A, (PLA2G2A) or by calcium-independent phospholipase A2-gamma (PNPLA8), to form 1-acyl lysophosphatidylethanolamine (LPE) (Murakami et al. 2005, Kramer et al. 1989, Singer et al. 2002).
R-HSA-1482889 (Reactome) At the endoplasmic reticulum (ER) membrane, diacylglycerol (DAG) is acylated and forms triacylglycerol (TAG) by the action of diacylglycerol O-acyltransferase 1 (DGAT1) tetramer or by diacylglycerol O-acyltransferase 2 (DGAT2) (Wakimoto et al. 2003, Oelkers et al. 1998, Cases et al. 2001).
R-HSA-1482892 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylethanolamine (PE) is hydrolyzed, and has one of its acyl chains cleaved off by membrane-associated phospholipase A2 gamma 2A, PLA2G2A, to form 2-acyl lysophosphatidylethanolamine (LPE) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009). Cytosolic phospholipase A2 enzymes show not only PLA2 hydrolyzing activity to form the 1-acyl lysophospholipid but also have a degree of PLA1 activity, producing a 2-acyl lysophospholipid.
R-HSA-1482894 (Reactome) At the inner mitochondrial membrane (IM), tafazzin (TAZ) converts cardiolipin (CL) and 1-acyl lysophosphatidylethanolamine (LPE) to monolysocardiolipin (MLCL) and phosphatidylethanolamine (PE) (Xu et al. 2003, Xu et al. 2006, Malhotra et al. 2009).
R-HSA-1482897 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylserine (PS) is hydrolyzed, and has one of its acyl chains cleaved off, by cytosolic phospholipase A2 alpha/delta/zeta (PLA2G4A/D/F) (Ghomashchi et al. 2010). This produces 2-acyl lysophosphatidylserine (LPS). Cytosolic phospholipase A2 enzymes show not only PLA2 hydrolyzing activity to form the 1-acyl lysophospholipid but also have a degree of PLA1 activity, producing a 2-acyl lysophospholipid.
R-HSA-1482900 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylglycerol (PG) is hydrolyzed, and has one of its acyl chains cleaved off, by cytosolic phospholipase A2 alpha/beta/delta/zeta (PLA2G4A/B/D/F) (Ghomashchi et al. 2010) to form 1-acyl lysophosphatidylglycerol (LPG).
R-HSA-1482907 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylglycerol (PG) is hydrolyzed, and has one of its acyl chains cleaved off, by membrane-associated phospholipase A2 gamma 2A, PLA2G2A (Singer et al. 2002), to form 1-acyl lysophosphatidylglycerol (LPG).
R-HSA-1482920 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylglycerol (PG) is hydrolyzed, and has one of its acyl chains cleaved off, by cytosolic phospholipase A2 delta/zeta (PLA2G4D/F) (Ghomashchi et al. 2010) to form 2-acyl lysophosphatidylglycerol (LPG). Cytosolic phospholipase A2 enzymes show not only PLA2 hydrolyzing activity to form the 1-acyl lysophospholipid but also have a degree of PLA1 activity, producing a 2-acyl lysophospholipid.
R-HSA-1482932 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylinositol (PI) is hydrolyzed, and has one of its acyl chains cleaved off, by cytosolic phospholipase A2 delta/epsilon (PLA2G4D/E) Ghomashchi et al. 2010). This produces 2-acyl lysophosphatidylinositol (LPI). Cytosolic phospholipase A2 enzymes show not only PLA2 hydrolyzing activity to form the 1-acyl lysophospholipid but also have a degree of PLA1 activity, producing a 2-acyl lysophospholipid.
R-HSA-1482939 (Reactome) At the inner mitochondrial (IM) membrane, CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase (PGS1) converts cytidine diphosphate-diacylglycerol (CDP-DAG) and glycerol-3-phosphate (G3P) to phosphatidylglycerophosphate (PGP) and cytidine monophosphate (CMP). This event is inferred from rats. The enzyme PGS1 has been characterized in humans (Ota et al. 2004).
R-HSA-1482961 (Reactome) At the endoplasmic reticulum (ER) membrane, choline/ethanolaminephosphotransferase (CEPT1) converts CDP-choline (CDP-Cho) and diacylglycerol (DAG) to phosphatidylcholine (PC) and cytidine monophosphate (CMP) (Wright et al. 2002, Henneberry et al. 1999, Henneberry et al. 2002, Henneberry et al. 2000).
R-HSA-1482962 (Reactome) At the endoplasmic reticulum (ER) membrane, choline/ethanolaminephosphotransferase 1 (CEPT1) or ethanolaminephosphotransferase 1 (EPT1) converts CDP- ethanolamine (CDP-ETA) and diacylglycerol (DAG) to phosphatidylethanolamine (PE) and cytidine monophosphate (CMP) (Horibata et al. 2007, Wright et al. 2002, Henneberry et al. 1999, Henneberry et al. 2002, Henneberry et al. 2000).
R-HSA-1482973 (Reactome) At the Golgi membrane, cholinephosphotransferase 1 (CHPT1) converts CDP-choline (CDP-Cho) and diacylglycerol (DAG) to phosphatidylcholine (PC) and cytidine monophosphate (CMP) (Wright et al. 2002, Henneberry et al. 1999, Henneberry et al. 2002, Henneberry et al. 2000).
R-HSA-1482976 (Reactome) At the endoplasmic reticulum (ER) membrane, CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) converts cytidine diphosphate-diacylglycerol (CDP-DAG) and inositol (Ins) into phosphatidylinositol (PI) and cytidine monophosphate (CMP) (Lykidis et al. 1997).
R-HSA-1483002 (Reactome) Dihydroxyacetone phosphate (DHAP) is converted to 1-acyl glycerone 3-phosphate (GO3P) by the enzyme dihydroxyacetone phosphate acyltransferase (GNPAT) (de Vet et al. 1999, Ofman et al. 1994). This reaction step links Glycerolipid metabolism to Ether lipid metabolism.
R-HSA-1483004 (Reactome) In the cytosol, choline kinase alpha subunit (CHKA) homodimer, choline kinase beta subunit (CHKB) dimer, or CHKA:CHKB heterodimer phosphorylates choline (Cho) to produce phosphocholine (PCho) (Malito et al. 2006, Gallego-Ortega et al. 2009).
R-HSA-1483063 (Reactome) At the inner mitochondrial membrane (IM), cardiolipin synthase (CRLS1) converts phosphatidylglycerol (PG) and cytidine diphosphate-diacylglycerol (CDP-DAG) into cardiolipin (CL) (Lu et al. 2006, Houtkooper et al. 2006).
R-HSA-1483077 (Reactome) Transport of phosphatidylethanolamine (PE) occurs via membrane contact sites between the mitochondrial membrane and the endoplasmic reticulum (ER) membrane. The event is inferred from rats (Vance 1990, Vance 1991).
R-HSA-1483081 (Reactome) At the endoplasmic reticulum (ER) membrane, active membrane-bound choline-phosphate cytidylyltransferase A (PCYT1A) or B (PCYT1B) homodimer condenses phosphocholine (PCho) and cytidine triphosphate (CTP) to produce CDP-choline (CDP-Cho) (Lykidis et al. 1998).
R-HSA-1483087 (Reactome) At the Golgi membrane, phosphatidylinositol (PI) is exchanged for phosphatidylcholine (PC) within the phosphatidylinositol transfer protein beta isoform (PITPNB) complex (Tilley et al. 2004, Yolder et al. 2001, Carvou et al. 2010, Schouten et al. 2002, Vordtriede et al. 2005, Shadan et al. 2008).
R-HSA-1483089 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylserine synthase 2 (PTDSS2) converts phosphatidylethanolamine (PE) into phosphatidylserine (PS) by facilitating the exchange of L-Serine (L-Ser) with the ethanolamine (ETA) head group (Saito et al. 1998, Tomohiro et al. 2009).
R-HSA-1483096 (Reactome) In the cytosol, phosphoethanolamine (PETA) is dephosphorylated to ethanolamine (ETA) by phosphoethanolamine/phosphocholine phosphatase (PHOSPHO1) (Roberts et al. 2004).
R-HSA-1483099 (Reactome) Phosphatidic acid (PA) transport within the mitochondrion occurs as free diffusion through the aqueous phase and not mediated by phospholipid transfer proteins. This event is inferred from rats (Chakraborty et al. 1999, Wojtczak et al. 1990).
R-HSA-1483107 (Reactome) In the cytosol, glycerophosphocholine phosphodiesterase (GPCPD1, also known as GDE5) hydrolyzes glycerophosphoethanolamine (GPETA) to produce ethanolamine (ETA) and glycerol-3-phosphate (G3P). This event has been inferred from mice. GPCPD1 has also been characterized in humans (Ota et al. 2004).
R-HSA-1483116 (Reactome) In the cytosol, glycerophosphocholine phosphodiesterase (GPCPD1, also known as GDE5) hydrolyzes glycerophosphocholine (GPCho) to produce choline (Cho) and glycerol-3-phosphate (G3P). This event has been inferred from mice. GPCPD1 has also been characterized in humans (Ota et al. 2004).
R-HSA-1483121 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidate cytidylyltransferase 1 (CDS1) converts phosphatidic acid (PA) and cytidine triphosphate (CTP) into cytidine diphosphate-diacylglycerol (CDP-DAG). Both ER and mitochondrial membranes have the capability to synthesize cytidine diphosphate-diacylglycerol (CDP-DAG) with phosphatidate cytidylyltransferase 1 and 2 (CDS1 and CDS2) (Lykidis et al. 1997). However, transport of CDP-DAG between organelles cannot be ruled out (Stuhne-Sekalec et al. 1986).
R-HSA-1483142 (Reactome) In the endoplasmic reticulum (ER) membrane, phospholipase D1-4,6 (PLD1-4,6) transphosphatidylates phosphatidylcholine (PC) with glycerol to displace choline (Cho) and form phosphatidylglycerol (PG). This reaction is inferred from rats, but PLD enzymes are present in humans (Hammond et al. 1995, Steed et al. 1998, Cao et al. 1997).
R-HSA-1483159 (Reactome) In the cytosol, the phosphoethanolamine/phosphocholine phosphatase (PHOSPHO1) dephosphorylates phosphocholine (PCho) to choline (Cho) (Roberts et al. 2004).
R-HSA-1483165 (Reactome) At the inner mitochondrial (IM) membrane, phosphatidate cytidylyltransferase 2 (CDS2) converts phosphatidic acid (PA) and cytidine triphosphate (CTP) into cytidine diphosphate-diacylglycerol (CDP-DAG). Both ER and mitochondrial membranes have the capability to synthesise cytidine diphosphate-diacylglycerol (CDP-DAG) with phosphatidate cytidylyltransferase 1 and 2 (CDS1 and CDS2) (Lykidis et al. 1997, Schlame & Haldar 1993). However, transport of CDP-DAG between organelles cannot be ruled out (Stuhne-Sekalec et al. 1986).
R-HSA-1483170 (Reactome) Transport of phosphatidylserine (PS) occurs via membrane contact sites between the endoplasmic reticulum (ER) membrane and the inner mitochondrial (IM) membrane. This event has been inferred from rats (Vance 1990, Vance 1991).
R-HSA-1483174 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylethanolamine N-methyltransferase (PEMT) methylates phosphatidylethanolamine (PE) and produces phosphatidylcholine (PC) (Vance & Ridgway 1998, Shields et al. 2001, Guan et al. 1999).
R-HSA-1483182 (Reactome) Phosphatidylcholine (PC) is hydrolyzed to phosphatidic acid (PA) and choline (Cho) by the enzymes phospholipase D1/2 (PLD1/2), at the endoplasmic reticulum (ER) membrane (Lopez et al. 1998, Hammond et al. 1995).
R-HSA-1483186 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidylserine synthase 1 (PTDSS1) converts phosphatidylcholine (PC) into phosphatidylserine (PS) by facilitating the exchange of L-Serine (L-Ser) with the choline (Cho) head group (Saito et al. 1998, Tomohiro et al. 2009).
R-HSA-1483190 (Reactome) At the endoplasmic reticulum (ER) membrane, active membrane-bound ethanolamine-phosphate cytidylyltransferase (PCY2) dimer condenses phosphoethanolamine (PETA) and cytidine triphosphate (CTP) to produce CDP-ethanolamine (CDP-ETA) (Zhu et al. 2008, Nakashima et al. 1997).
R-HSA-1483197 (Reactome) At the inner mitochondrial (IM) membrane, PTPMT1 (phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1) catalyzes the dephosphorylation of phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG). The biochemical properties of human PTPMT1 have not been determined; this reaction is inferred from the one catalyzed by the homologous mouse protein (Zhang et al. 2011).
R-HSA-1483203 (Reactome) At the endoplasmic reticulum (ER) membrane, phosphatidate phosphatase 1-3 (LPIN) dephosphorylates phosphatidic acid (PA) to form diacylglycerol (DAG) (Grimsey et al. 2008, Donkor et al. 2007).
R-HSA-1483209 (Reactome) The biosynthetic pathway of lysobisphosphatidic acid, also known as bis(monoacylglycerol) hydrogen phosphate (BMP), is still not fully understood with the in vivo enzymes responsible yet to be fully identified. It appears to involve multiple steps including hydrolysis of phosphatidylglycerol (PG) by a phospholipase A2, acylation, and a reorientation of the phosphoryl ester (Poorthuis & Hostetler 1978, Heravi & Waite 1999, Hullin-Matsuda et al. 2007, Gallala & Sandhoff 2010).
R-HSA-1483211 (Reactome) The complex between phosphatidylcholine (PC) and phosphatidylinositol transfer protein beta isoform (PITPNB) transports from the Golgi membrane to the ER membrane (Carvou et al. 2010, Shadan et al. 2008).
R-HSA-1483212 (Reactome) At the inner mitochondrial (IM) membrane, phosphatidylserine decarboxylase proenzyme (heterodimer of two chains from the same protein) (PISD) decarboxylates phosphatidylserine (PS) to phosphatidylethanolamine (PE). This event has been inferred from rats and limited data for a human PISD (Forbes et al. 2007).
R-HSA-1483218 (Reactome) Lysobisphosphatidic acid, also known as bis(monoacylglycerol) hydrogen phosphate (BMP), is enriched in late endosomes and not found in the endoplasmic reticulum (ER) or mitochondria where phosphatidylglycerol (PG) is synthesised. Late endosomes form membrane contact sites with the ER, providing a means for PG to enter the late endosome and be converted to BMP (Levine 2004, Eden et al. 2010, Kobayashi et al. 1998, Hullin-Matsuda et al. 2007, Kobayashi et al. 1999).
R-HSA-1483219 (Reactome) At the ER membrane, phosphatidylcholine (PC) is exchanged for phosphatidylinositol (PI) within the phosphatidylinositol transfer protein beta isoform (PITPNB) complex (Tilley et al. 2004, Yolder et al. 2001, Carvou et al. 2010, Schouten et al. 2002, Vordtriede et al. 2005, Shadan et al. 2008).
R-HSA-1483222 (Reactome) In the cytosol, ethanolamine (ETA) is phosphorylated to phosphoethanolamine (PETA) by choline kinase (CHK) dimer or by ethanolamine kinase 1/2 (ETNK1/2) (Lykidis et al. 2001, Gallego-Ortega et al. 2009). CHK dimer consists of either choline kinase alpha subunit (CHKA) or beta subunit (CHKB) homodimer, or of CHKA:CHKB heterodimer.
R-HSA-1483229 (Reactome) The phosphatidylinositol transfer protein beta isoform (PITPNB) bound to phosphatidylinositol (PI) complex transports from the endoplasmic reticulum (ER) membrane to the Golgi membrane (Carvou et al. 2010, Shadan et al. 2008).
R-HSA-1602368 (Reactome) At the plasma membrane, phosphatidylglycerol (PG) is hydrolyzed, removing one of its acyl groups, to 1-acyl lysophosphatidylglycerol (LPG) by secretory phospholipase A2 proteins (Singer et al. 2002, Ishizaki et al. 1999). These include: Group IB (PLA2G1B) (Grataroli et al. 1982); Group IIA (PLA2G2A) (Seilhamer et al. 1989); Group IID (PLA2G2D) (Ishizaki et al. 1999); Group IIE (PLA2G2E) (Suzuki et al. 2000); Group IIF (PLA2G2F) (Valentin et al. 2000); Group III (PLA2G3) (Murakami et al. 2003, Murakami et al. 2005); Calcium-dependent Group V (PLA2G5) (Chen et al. 1994); Group X (PLA2G10) (Cupillard et al. 1997, Pan et al. 2002); and Group XIIA (PLA2G12A) (Gelb et al. 2000, Murakami et al. 2003).
R-HSA-1602374 (Reactome) At the plasma membrane, phosphatidylserine (PS) is hydrolyzed, removing one of its acyl groups, to 1-acyl lysophosphatidylserine (LPS) by secretory phospholipase A2 proteins (Singer et al. 2002, Ishizaki et al. 1999). These include: Group IB (PLA2G1B) (Grataroli et al. 1982); Group IIA (PLA2G2A) (Seilhamer et al. 1989); Group IID (PLA2G2D) (Ishizaki et al. 1999); Group IIE (PLA2G2E) (Suzuki et al. 2000); Group IIF (PLA2G2F) (Valentin et al. 2000); Calcium-dependent Group V (PLA2G5) (Chen et al. 1994); Group X (PLA2G10) (Cupillard et al. 1997, Pan et al. 2002); and Group XIIA (PLA2G12A) (Gelb et al. 2000, Murakami et al. 2003).
R-HSA-1602377 (Reactome) At the plasma membrane, phosphatidylinositol (PI) is hydrolyzed, removing one of its acyl groups, to 1-acyl lysophosphatidylinositol (LPI) by secretory phospholipase A2 proteins (Singer et al. 2002, Ishizaki et al. 1999). These include: Group IB (PLA2G1B) (Grataroli et al. 1982); Group IIA (PLA2G2A) (Seilhamer et al. 1989); Group IID (PLA2G2D) (Ishizaki et al. 1999); Group IIE (PLA2G2E) (Suzuki et al. 2000); Group IIF (PLA2G2F) (Valentin et al. 2000); Calcium-dependent Group V (PLA2G5) (Chen et al. 1994); Group X (PLA2G10) (Cupillard et al. 1997, Pan et al. 2002); and Group XIIA (PLA2G12A) (Gelb et al. 2000, Murakami et al. 2003).
R-HSA-1602398 (Reactome) At the plasma membrane, phosphatidylethanolamine (PE) is hydrolyzed, removing one of its acyl groups, to 1-acyl phosphatidylethanolamine (LPE) by secretory phospholipase A2 proteins (Singer et al. 2002, Ishizaki et al. 1999). These include: Group IB (PLA2G1B) (Grataroli et al. 1982); Group IIA (PLA2G2A) (Seilhamer et al. 1989); Group IID (PLA2G2D) (Ishizaki et al. 1999); Group IIE (PLA2G2E) (Suzuki et al. 2000); Group IIF (PLA2G2F) (Valentin et al. 2000); Group III (PLA2G3) (Murakami et al. 2003, Murakami et al. 2005); Calcium-dependent Group V (PLA2G5) (Chen et al. 1994); Group X (PLA2G10) (Cupillard et al. 1997, Pan et al. 2002); and Group XIIA (PLA2G12A) (Gelb et al. 2000, Murakami et al. 2003).
R-HSA-1602399 (Reactome) At the plasma membrane, phosphatidylcholine (PC) is hydrolyzed, removing one of its acyl groups, to 1-acyl lysophosphatidylcholine (LPC) by membrane-associated phospholipase B1 (PLB1) (Maury et al. 2002, Gassama-Diagne et al. 1992).
R-HSA-1602417 (Reactome) At the plasma membrane, phosphatidylcholine (PC) is hydrolyzed, removing one of its acyl groups, to 1-acyl lysophosphatidylcholine (LPC) by secretory phospholipase A2 proteins (Singer et al. 2002, Ishizaki et al. 1999). These include: Group IB (PLA2G1B) (Grataroli et al. 1982); Group IIA (PLA2G2A) (Seilhamer et al. 1989); Group IID (PLA2G2D) (Ishizaki et al. 1999); Group IIE (PLA2G2E) (Suzuki et al. 2000); Group IIF (PLA2G2F) (Valentin et al. 2000); Group III (PLA2G3) (Murakami et al. 2003, Murakami et al. 2005); Calcium-dependent Group V (PLA2G5) (Chen et al. 1994); Group X (PLA2G10) (Cupillard et al. 1997, Pan et al. 2002); and Group XIIA (PLA2G12A) (Gelb et al. 2000, Murakami et al. 2003).
R-HSA-1602446 (Reactome) At the plasma membrane, phosphatidic acid (PA) is hydrolyzed, removing one of its acyl groups, to 1-acyl lysophosphatidic acid (LPA) by secretory phospholipase A2 proteins (Singer et al. 2002, Ishizaki et al. 1999). These include: Group IB (PLA2G1B) (Grataroli et al. 1982); Group IIA (PLA2G2A) (Seilhamer et al. 1989); Group IID (PLA2G2D) (Ishizaki et al. 1999); Group IIE (PLA2G2E) (Suzuki et al. 2000); Group IIF (PLA2G2F) (Valentin et al. 2000); Calcium-dependent Group V (PLA2G5) (Chen et al. 1994); Group X (PLA2G10) (Cupillard et al. 1997, Pan et al. 2002); and Group XIIA (PLA2G12A) (Gelb et al. 2000, Murakami et al. 2003).
R-HSA-188467 (Reactome) FAD-linked mitochondrial glycerol 3-phosphate dehydrogenase (GPD2, alias: mGPDH) and its NAD-linked cytosolic isoform (GPD1, alias:cGPDH) constitute glycerol phosphate shuttle. GPD2 catalyzes the unidirectional conversion of glycerol-3-phosphate (G-3-P) to dihydroxyacetone phosphate (DHAP) with concomitant reduction of the enzyme-bound FAD. Impaired activity of GPD2 has been suggested to be one of the primary causes of insulin secretory defects in beta-cells and thus it is a candidate gene for type 2 diabetes.
R-HSA-264622 (Reactome) In the cytosol, choline O-acetyltransferase (CHAT) acetylates choline (Cho) to produce acetylcholine (AcCho) (Toussaint 1992).

AcCho is synthesised in the cytoplasm of cholinergic neurons from acetyl-CoA and Cho by CHAT enzyme.
R-HSA-372519 (Reactome) Acetylcholinesterase (ACHE) oligomers (comprising monomers, dimers and tetramers), anchored to the extracellular side of the plasma membrane, hydrolyze acetylcholine (AcCho) to form choline (Cho) and acetate (Weinstock & Groner 2008, Velan et al. 1991, Kryger et al. 2000).

Acetylcholine from the synaptic cleft is degraded into inactive molecules, Cho and acetate by ACHE, which is located in the synaptic cleft (Weinstock & Groner 2008).
R-HSA-444433 (Reactome) Choline (Cho) transports from the extracellular space through the plasma membrane via the choline transporter-like proteins (SLC44A1-5 also known as CTL1-5) to the cytosol (Okuda & Haga 2000, Traiffort et al. 2005, O'Regan et al. 2000).

CTL1 is broadly expressed on leukocytes and endothelial cells (Wille et al. 2001). CTL2 is highly expressed in human inner ear and is the target of antibody-induced hearing loss (Nair et al. 2004).
R-HSA-5333678 (Reactome) Copine 1, 3, 6 and 7 (CPNE1,3,6,7) are a family of calcium-dependent phospholipid-binding proteins thought to be involved in membrane trafficking processes. They contain two C2 domains, one each for the Ca2+- and phospholipid-binding properties (Creutz et al. 1998, Tomsig & Creutz 2002).
R-HSA-549112 (Reactome) Glycerol-3-phosphate (G3P) is acylated to 1-acyl lysophosphatidic acid (LPA) by the enzymes glycerol-3-phosphate acyltransferase 4 (AGPAT6) at the endoplasmic reticulum (ER) membrane (Cao et al., 2006; Chen et al., 2008).
R-HSA-5694485 (Reactome) Phospholipase ABHD3 selectively cleaves medium-chain and oxidatively-truncated phospholipids, having much higher phospholipase activity toward C14-containing phosphatidylcholines such as lysophosphatidylcholine (LPC(14:0)) and producing 1-acylglycerophosphocholine (1AGPC) (Long et al. 2011). ABHD3 is ubiquitously expressed with highest expression in brain and small intestine (Lord et al. 2013).
R-HSA-5694583 (Reactome) Abhydrolase domain-containing protein 4 (ABHD4) is a regulator of endocannabinoid signalling and suppressor of tumor growth. Its physiological substrates are both N-acyl phosphatidylethanolamine (NAPE) and a wide range of lysoNAPEs. Shown here, ANHD4 mediates the hydrolysis of NAPE to glycerophospho-arachidonyl ethanolamine (GPAEA), an endocannabanoid (Simon & Cravatt 2006).
R-HSA-5696074 (Reactome) The bioactive phospholipids lysophosphatidic acid (LPA) and phosphatidic acid (PA) regulate processes related to cancer pathogenesis. Mitochondrial acylglycerol kinase (AGK) can phosphorylate both monoacylglycerol (MAG) and diacylglycerol (DAG) in the mitochondrial intermembrane space to form LPA and PA, respectively thus may play an important role in the pathophysiology of certain cancers (Bektas et al. 2005). AGK is mitochondrial outer membrane-bound (Hung et al. 2014) and requires Mg2+ as cofactor.
Defects in AGK can cause mitochondrial DNA depletion syndrome 10 (MTDPS10 aka Sengers syndrome; MIM:212350), an autosomal recessive mitochondrial disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Mental development is normal, but affected individuals may die early from cardiomyopathy (Sengers et al. 1975, Mayr et al. 2012).
R-HSA-5696415 (Reactome) In mitochondria, ethanolamine-phosphate phospho-lyase and 5-phosphohydroxy-L-lysine phospho-lyase (ETNPPL and PHYKPL respectively) are two closely related pyridoxal-phosphate-dependent, homotetrameric ammoniophospholyases that hydrolyse phosphoethanolamine (PETA) and 5-phosphohydroxylysine (5PHL) respectively (Veiga-da-Cunha et al. 2012). PETA is a component and a precursor of phospholipids whereas 5PHL is a breakdown product of collagen.
R-HSA-5696448 (Reactome) Acyl-CoA wax alcohol acyltransferase 2 (AWAT2 aka MFAT) is an enzyme highly expressed in skin and thought to play an important role in lipid metabolism in skin. AWAT2 can transfer an acyl group from acyl-CoA to monoacylglycerol, long-chain alcohol, and retinol to form diacylglycerols, wax monoesters and retinyl esters, respectively. Human skin surface lipids are mainly composed of triacylglycerol and wax monoesters (Yen et al. 2005, Turkish et al. 2005).
R-HSA-6786650 (Reactome) Glycerophospholipids are important structural and functional components of biological membranes, of serum lipoproteins and pulmonary surfactant and act as precursors of lipid mediators such as platelet-activating factor and eicosanoids. Phosphatidic acid (PA) is a common glycerophospholipid and its hydrolysis can mediate its functions described above. Phospholipases DDHD1 and 2 can mediate the hydrolysis of PA (Inoue et al. 2012, Nakajima et al. 2002). Defects in DDHD1 or DDHD2 can cause autosomal recessive spastic paraplegias 28 or 54 respectively (SPG28, MIM:609340; SPG54, MIM:615033). These are forms of neurodegenerative spastic paraplegia, characterised by slow, gradual, progressive weakness and spasticity of the lower limbs (Tesson et al. 2012, Schuurs-Hoeijmakers et al. 2012).
R-HSA-6792445 (Reactome) Lipase members H and I (LIPH, I) specifically hydrolyse phosphatidic acid (PA) to the potent bioactive lipid mediator 2-acyl lysophosphatidic acid (2-acyl LPA) (Hiramatsu et al. 2003, Sonoda et al. 2002). LIPH is expressed in most tissues at low levels whereas LIPI is mainly expressed in the testis.
R-HSA-75885 (Reactome) At the endoplasmic reticulum (ER) membrane, 1-acyl-lysophosphatidic acid (LPA) is acylated to phosphatidic acid (PA) by the enzymes 1-acyl-sn-glycerol-3-phosphate acyltransferases (AGPAT1 through 11), and lysophosphatidylcholine acyltransferase (LPCAT1) (Aguado and Campbell 1998).

See recent review by Agarwal (2012, in press).

AGPAT1, 2, 3 and LPCAT1 have been characterized biochemically (AGPAT1, 2: Yamashita et al. 2007, West et al. 1997, Aguado and Campbell 1998, Gale et al. 2006; AGPAT3: Agarwal et al. 2006; LPCAT1: Nakanishi et al. 2006, Chen et al. 2006). Two additional proteins, AGPAT4 and AGPAT5, are inferred to have such activity based on studies of homologous mouse enzymes (Lu et al. 2005). These enzymes differ in their tissue specific patterns of expression in the body and in their preferences for specific acyl CoA molecules (Shindou and Shimizu 2009; Takeuchi and Reue 2009).

R-HSA-75889 (Reactome) Dihydroxyacetone phosphate (DHAP) is converted to glycerol-3-phosphate (G3P) by glycerol-3-phosphate dehydrogenase (GPD1) or by glycerol-3-phosphate dehydrogenase-like (GPD1L) enzymes (Ou et al. 2006, Valdivia et al. 2009). The active forms of both enzymes are homodimers. This reaction may be found in white adipose tissues where glycerol-3-kinase activity is not observed in sufficient levels. GPD1/GPD1L reduces dihydroxyacetone phosphate with NADH donating electrons to this reduction.
R-HSA-8848580 (Reactome) DGAT2L6 (Diacylglycerol O-acyltransferase 2-like protein 6, also known as DC3) catalyzes the transfer of an acyl group from acyl-CoA to DAG (diacylglycerol) to form TAG (triacylglycerol). DGAT2L6 catalyzes this reaction with low efficiency in vitro so its physiological role is uncertain. Based on its similarity to other proteins of the DGAT family it is inferred to be localized to the endoplasmic reticulum membrane (Turkish et al. 2005). The putative diacylglycerol O-acyltransferase 2-like protein DGAT2L7P may also possess the same activity as DGAT2L6.
R-HSA-8858298 (Reactome) The H-RAS-like suppressor (HRASLS) subfamily consists of five enzymes (1–5) in humans that share sequence homology with lecithin:retinol acyltransferase (LRAT). All HRASLS members possess in vitro phospholipid metabolizing abilities including phospholipase A1/2 (PLA1/2) activities and O-acyltransferase activities for the remodeling of glycerophospholipid acyl chains (Golczak et al. 2012), as well as N-acyltransferase activities for the production of N-acylphosphatidylethanolamines (Mardian et al. 2015). Acyl chain remodelling can play a key role in regulating triglyceride accumulation and energy expenditure in adipocytes, making this process a potential target for treatment of metabolic disorders causing obesity. The example here describes the N-acyltransferase activity of HRASLSs for the production of N-acylphosphatidylethanolamines (NAPEs) (Uyama et al. 2012).
R-HSA-8865637 (Reactome) Sodium-dependent lysophosphatidylcholine symporter 1 (MFSD2A, aka NLS1) plays an essential role in blood-brain barrier (BBB) formation and function and transports LPC into the brain via a flipping motion (Nguyen et al. 2014, Guemez-Gamboa et al. 2015, Quek et al. 2016). LPCs are synthesised by the liver, circulate bound to albumin and serve as the chemical carrier for DHA uptake via MFSD2A. LPC can contain docosahexanoic acid (DHA), the most abundant omega-3 fatty acid in brain. Despite large DHA content in phospholipids, the brain does not synthesise it. MFSD2A is highly enriched in cerebral vasculature, where it is exclusively found in BBB endothelium.
R-HSA-8867876 (Reactome) Phosphatidylserine (PS) is a lipid component of cellular membranes. It is synthesised in the endoplasmic reticulum and then preferentially associates with the inner leaflet of the plasma membrane by as-yet unknown mechanisms. Intracellular lipids can travel through aqueous phases via transport vesicles or lipid-transfer proteins (LTPs). Oxysterol-binding protein-related proteins 5, 8 and 10 (OSBPL5, OSBPL8 and OSBPL10) bind and transport PS from ER compartments to the plasma membrane. They tether the ER to the plasma membrane via interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) and mediate PI4P/PS countertransport between the ER and the plasma membrane (Du et al. 2011, Chung et al. 2015, Perttila et al. 2009, Maeda et al. 2013). OSBPL10 is also implicated in apolipoprotein B100 secretion (Nissila et al. 2012).
R-HSA-8869241 (Reactome) Phosphatidylinositol 4,5-bisphosphate (PIP2) at the plasma membrane (PM) constitutively controls many cellular functions, and its hydrolysis via receptor stimulation can mediate cell signalling. A steady delivery of phosphatidylinositol (PI) from its site of synthesis in the endoplasmic reticulum (ER) to the PM is essential to maintain PIP2 levels. In addition, phosphatidic acid (PA), generated from diacylglycerol in the PM, has to reach the ER for PI resynthesis. The ubiquitously-expressed membrane-associated phosphatidylinositol transfer proteins 1, 2 and 3 (PITPNM1,2,3) (Lev et al. 1999) detect PIP2 hydrolysis and translocate to ER-PM junctions where they mediate the exchange of PI for PA (Kim et al. 2015, Chang & Liou 2015). Defects in PITPNM3 can cause cone-rod dystrophy 5 (CORD5; MIM:600977), a retinal dystrophy manifested as progressive loss of central vision, defective color vision, and photophobia. The missense mutation Q626H lacks the N-terminal PIT domain needed for transport of phospholipids and renewal of photoreceptors membranes is impaired (Kohn et al. 2007).
R-HSA-8869425 (Reactome) Phospholipase A1 member A (PLA1A, aka PS-PLA1) is a widely expressed, extracellular protein belonging to the pancreatic lipase family. Phospholipases are conserved in a wide range of organisms. PLA1A specifically hydrolyses PS to produce its corresponding lysophospholipid 2-acyl LPS. Lysophospholipids in general can act as lipid mediators with multiple biological functions so PLA1A could play an important role in mediating 2-acyl LPS production (Nagai et al. 1999, Aoki et al. 2007).
R-HSA-8873794 (Reactome) Phosphatidylcholine transfer protein (PCTP aka STARD2) is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain superfamily, a functionally diverse group of proteins that share a unique structural motif for binding lipids (the START domain). PCTP is widely expressed with highest expression levels in oxidative tissues, including liver, heart, muscle, kidney and brown fat but very little expression in white adipose tissue. PCTP exclusively binds phosphatidylcholine (PC) in the cytosol of cells and may mediate PC exchange at cellular membranes (Roderick et al. 2002). Recent mouse studies reveals a key regulatory role for PCTP in lipid and glucose metabolism. PCTP appears to limit access of fatty acids to mitochondria by binding to (Ersoy et al. 2013) and stimulating the activity of acyl-coenzyme A thioesterase 13 (ACOT13, aka Acyl-CoA thioesterase 13, THEM2), an enzyme that catalyses the hydrolysis of acyl-CoAs to their free fatty acids (Kawano et al. 2014). Ultimately, insulin signaling is downregulated (Kang et al. 2010).
R-HSA-8873830 (Reactome) The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. Human StAR-related lipid transfer protein 7 (STARD7, aka GTT1) is a member of the StarD2/phosphatidylcholine transfer protein (PCTP) subfamily that can bind phospholipids and sphingolipids (Flores-Martin et al. 2013). It was first identified as a gene overexpressed in a choriocarcinoma cell line (Durand et al. 2004). Human STARD7 is thought to transport phosphatidylcholine (PC) from ER membranes to mitochondrial membranes, inferred from rat experiments (Horibata & Sugimoto 2010). Increasing evidence suggests that asthma pathogenesis is linked to mitochondrial dysfunction and STARD7 could play a protective role in mucosal tissues by preventing pathogenic immune responses (Yang et al. 2015).
R-HSA-8873834 (Reactome) The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. Human PCTP-like protein (STARD10) (Olayioye et al. 2005) is thought to be a dual specificity lipid transfer protein capable of shuttling phosphatidylcholine (PC) (and phosphatidylethanolamine (PE), not shown here) between intracellular membranes, especially to lamellar body membranes. Saturated PC is a major component of pulmonary surfactant, a mixture of proteins and phospholipids that plays an important role in facilitating gas exchange by maintaining alveolar stability. After synthesis in the endoplasmic reticulum, saturated PC is transported to lamellar bodies (LBs) for storage prior to secretion. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediated reacylation is a final step in saturated PC synthesis prior to transport and LPCAT1 is proposed to form a complex with STARD10 at the ER membrane to facilitate the synthesis then transport of saturated PC to LBs (Lin et al. 2015).
R-HSA-8873923 (Reactome) The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. Human PCTP-like protein (STARD10) (Olayioye et al. 2005) is thought to be a dual specificity lipid transfer protein capable of shuttling phosphatidylcholine (PC) (and phosphatidylethanolamine (PE), not shown here) between intracellular membranes, especially to lamellar body membranes. Saturated PC is a major component of pulmonary surfactant, a mixture of proteins and phospholipids that plays an important role in facilitating gas exchange by maintaining alveolar stability. After synthesis in the endoplasmic reticulum, saturated PC is transported to lamellar bodies (LBs) for storage prior to secretion. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediated reacylation is a final step in saturated PC synthesis prior to transport and LPCAT1 is proposed to form a complex with STARD10 at the ER membrane to facilitate the synthesis then transport of saturated PC to LBs (Lin et al. 2015).
R-HSA-8873929 (Reactome) PCTP-like protein (STARD10) is a member of the steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins that are implicated in lipid transport, metabolism, and signaling. STARD10 is thought to function as a dual specificity lipid transfer protein capable of shuttling phosphatidylcholine and phosphatidylethanolamine between membranes. Its lipid transfer activity is negatively regulated by casein kinase, a serine/threonine-protein kinase which phosphorylates STARD10 on a serine residue at position 284 (Olayioye et al. 2007).
R-HSA-8874435 (Reactome) Plasmalogens (1-alk-1'-enyl- 2-acyl-sn-glycero-3-phosphoethanolamine or 1-alk-1'-enyl-2-acyl-sn-glycero-3-phosphocholine) are abundant (4-32% of total membrane phospholipids) membrane glycerophospholipids found throughout bacterial, invertebrate and vertebrate animal kingdoms. They differ from other membrane glycerophospholipids by having an alk-1'-enyl ether-linked chain at the glycerol sn-1 carbon. Plasmalogens are critical for normal cell function and development and their levels are altered in disease states; decreased in peroxisomal disorders, Alzheimer disease and Down syndrome, and elevated in tumours. Plasmalogens can be hydrolysed into lysoplasmalogens (1-alk-1'-enyl-2-hydroxy-sn-glycero-3-phosphoethanolamine or 1-alk-1'-enyl-2-hydroxy-sn-glycero-3-phosphocholine). Lysoplasmalogens are bioactive metabolites which have membrane-perturbing and cell lysis effects. Their levels are normally maintained at very low levels in cells, with lysoplasmalogens formed by plasmalogen hydrolysis converted back to plasmalogen in a transacylation reaction (a remodelling pathway). Alternatively, lysoplasmalogen may be degraded enzymatically by several hydrolytic enzymes that includes lysoplasmalogenase (THEM86B). THEM86B catalyses the hydrolysis of the vinyl ether bond of lysoplasmenylcholine (PMCHO) and lysoplasmenylethanolamine (PMETAM) to form a fatty aldehyde and glycerophosphocholine (GPCHO) and glycerophosphoethanolamine (GPETAM) respectively. THEM86B is localised to the ER membrane of liver and small intestinal mucosal cells where it is highly active and is probably an important enzyme there, maintaining the balance between plasmalogen and lysoplasmalogen, thereby preserving membrane stability and function (Wu et al. 2011, Honsho et al. 2015).
R-HSA-8877153 (Reactome) The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. Human StAR-related lipid transfer protein 7 (STARD7, aka GTT1) is a member of the StarD2/phosphatidylcholine transfer protein (PCTP) subfamily that can bind phospholipids and sphingolipids such as phosphatidylcholine (PC). STARD7 is located on the outer mitochondrial membrane and binds ER-membrane PC (Flores-Martin et al. 2013).
R-HSA-8878654 (Reactome) Lysophosphatidic acid (LPA) is a bioactive phospholipid. It consists of a single fatty acyl chain, a glycerol backbone and a free phosphate group. The acyl chain can be of varying length and degree of saturation hence many forms of LPA can exist. LPA is an important extracellular signalling molecule and an intermediate lipid in phospholipid metabolism inside the cell, playing an important role in modulating the structure and fluidity of lipid rafts. Degradation of LPA is important for termination of signalling and for the finetuning of lipid raft structure. Degradation of LPA can occur via either acylation or hydrolysis. Lysophosphatidic acid phosphatase type 6 (ACP6) can hydrolyse LPA of varying lengths. It is a monomeric enzyme located in mitochondria where it preferentially hydrolyses myristoyl LPA (C14:0) and other LPAs such as monounsaturated oleate (C18:1) or palmitate (C16:0) (latter two not shown here) (Hiroyama & Takenawa 1999, Li et al. 2013).
R-HSA-8878787 (Reactome) Alkaline phosphatases (ALPs) are ubiquitous membrane-bound glycoproteins that catalyse the hydrolysis of phosphate monoesters in alkaline conditions (Sharma et al. 2014). To date, little is known about the physiological function of ALPs in most tissues. In humans, four isozymes exist, named from their tissue localisations. One isozyme, intestinal-type alkaline phosphatase (ALPI, IAP), possesses alkaline phosphatase activity but has no specific physiological substrate defiend for it yet. It may be involved in the hydrolysis of pro-drugs in the intestine (Lowe et al. 1990).
R-HSA-8952251 (Reactome) Lecithin cholesterol acyltransferase (LCAT) is a key enzyme in the esterification of plasma cholesterol. Group XV phospholipase A2 (PLA2G15 aka LCAT-like lysophospholipase, LLPL or lysosomal phospholipase A2, LPLA2) bears 49% sequence similarity to LCAT (Taniyama et al. 1999) and is present in plasma. PLA2G15 possesses both calcium-independent phospholipase A(2) and transacylase activities (Abe & Shayman 1998) and could hydrolyse lysophosphatidylcholine (lysoPC), a proatherogenic lipid, to glycerophosphorylcholine (GPCho) and a free fatty acid anion (LCFA(-)) (Taniyama et al. 1999, Hiraoka et al. 2002).
R-HSA-8954398 (Reactome) Mitochondrial cardiolipin hydrolase (PLD6 aka MitoPLD) is located on the outer mitochondrial membrane and promotes trans-mitochondrial membrane adherence (mitochondrial fusion) in a Mfn-dependent manner by hydrolysing cardiolipin to generate the acidic fusogenic lipid phosphatidic acid (PA) and phosphatidylglycerol (PG) (Choi et al. 2006). Although cardiolipin is primarily an inner mitochondrial membrane-located protein, the outer mitochondrial membrane also contains around 10-20% cardiolipin and cardiolipin has been shown to translocate in a regulatable manner between the compartments (Liu et al. 2003). Mitoguardin 1 and 2 (MIGA1 and MIGA2) are regulators of mitochondrial membrane fusion. They form homo- or hetero-dimers at the mitochondrial outer membrane where they interact with PLD6 to stabilise it and/or facilitate PLD6 dimer formation (Zhang et al. 2016).
RCOOHArrowR-HSA-5694485 (Reactome)
STARD10:LPCAT1:PCArrowR-HSA-8873923 (Reactome)
STARD10:LPCAT1:PCR-HSA-8873834 (Reactome)
STARD10:PCArrowR-HSA-8873834 (Reactome)
STARD10R-HSA-8873923 (Reactome)
STARD10R-HSA-8873929 (Reactome)
STARD7:PCArrowR-HSA-8873830 (Reactome)
STARD7:PCArrowR-HSA-8877153 (Reactome)
STARD7:PCR-HSA-8873830 (Reactome)
STARD7R-HSA-8877153 (Reactome)
TAGArrowR-HSA-1482647 (Reactome)
TAGArrowR-HSA-1482889 (Reactome)
TAGArrowR-HSA-8848580 (Reactome)
TAGR-HSA-1482777 (Reactome)
TAZmim-catalysisR-HSA-1482781 (Reactome)
TAZmim-catalysisR-HSA-1482794 (Reactome)
TAZmim-catalysisR-HSA-1482850 (Reactome)
TAZmim-catalysisR-HSA-1482894 (Reactome)
TMEM86Bmim-catalysisR-HSA-8874435 (Reactome)
acetateArrowR-HSA-372519 (Reactome)
acyl groupArrowR-HSA-5694583 (Reactome)
acyl-CoAR-HSA-1482533 (Reactome)
acyl-CoAR-HSA-1482539 (Reactome)
acyl-CoAR-HSA-1482546 (Reactome)
acyl-CoAR-HSA-1482547 (Reactome)
acyl-CoAR-HSA-1482548 (Reactome)
acyl-CoAR-HSA-1482598 (Reactome)
acyl-CoAR-HSA-1482626 (Reactome)
acyl-CoAR-HSA-1482635 (Reactome)
acyl-CoAR-HSA-1482636 (Reactome)
acyl-CoAR-HSA-1482646 (Reactome)
acyl-CoAR-HSA-1482667 (Reactome)
acyl-CoAR-HSA-1482689 (Reactome)
acyl-CoAR-HSA-1482691 (Reactome)
acyl-CoAR-HSA-1482695 (Reactome)
acyl-CoAR-HSA-1482775 (Reactome)
acyl-CoAR-HSA-1482861 (Reactome)
acyl-CoAR-HSA-1482867 (Reactome)
acyl-CoAR-HSA-1482889 (Reactome)
acyl-CoAR-HSA-1483002 (Reactome)
acyl-CoAR-HSA-549112 (Reactome)
acyl-CoAR-HSA-75885 (Reactome)
acyl-CoAR-HSA-8848580 (Reactome)
cardiolipinArrowR-HSA-1482775 (Reactome)
cardiolipinArrowR-HSA-1482781 (Reactome)
cardiolipinArrowR-HSA-1482850 (Reactome)
cardiolipinArrowR-HSA-1482857 (Reactome)
cardiolipinArrowR-HSA-1483063 (Reactome)
cardiolipinR-HSA-1482778 (Reactome)
cardiolipinR-HSA-1482794 (Reactome)
cardiolipinR-HSA-1482894 (Reactome)
cardiolipinR-HSA-8954398 (Reactome)
cytidine 5'-monophosphateArrowR-HSA-1482939 (Reactome)
cytidine 5'-monophosphateArrowR-HSA-1482961 (Reactome)
cytidine 5'-monophosphateArrowR-HSA-1482962 (Reactome)
cytidine 5'-monophosphateArrowR-HSA-1482973 (Reactome)
cytidine 5'-monophosphateArrowR-HSA-1482976 (Reactome)
cytidine 5'-monophosphateArrowR-HSA-1483063 (Reactome)
fatty acidArrowR-HSA-1482543 (Reactome)
fatty aldehydeArrowR-HSA-8874435 (Reactome)
lysoPCR-HSA-8952251 (Reactome)
p-S284-STARD10ArrowR-HSA-8873929 (Reactome)
phosphate monoesterR-HSA-8878787 (Reactome)
Personal tools