Signaling by EGFR (Homo sapiens)

From WikiPathways

Revision as of 11:23, 1 November 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
10, 79, 84, 992, 438, 44, 4915, 2573852926, 35, 43, 5616, 69518, 40, 818618, 2418, 2441, 527, 14, 4896, 1006353713, 33, 58, 92520, 33278398835311942, 6013, 33, 58, 92713639, 9115, 9330, 94193217, 40, 8151535451, 6143, 569585648528, 34, 5576, 9063, 6631, 9742, 604, 26, 37, 43, 70...6245plasma membraneplasma membranecytosolplasma membraneplasma membraneEGF:p-6Y-EGFR:GRB2:p-5Y-GAB1EGFREGFR p21 RAS:GDPGAB1 EGFR A289V EPS15L1 EGF EGFRvIII mutantdimerUBC(457-532) UBC(77-152) EGFR L747_T751del p-Y317-PAG1p-Y371-CBL p-Y371-CBL UBC(229-304) EGFR L861Q CDC42 HSP90EGFR A289T EGFR L747_A750delinsP EGFR L861Q EGF:p-6Y-EGFR:CBL:Ub-p-Y53/55-SPRY1/2EPS15L1 GRB2-1 Ubp-6Y-EGFR UBC(457-532) EGFR G719A ADAM12 CDC37 UBB(77-152) UBC(229-304) p-6Y-EGFR SH3KBP1 SH3KBP1 UBC(305-380) STAM2 EGFR A289D EGF:p-5Y-EGFR:GRB2:p-5Y-GAB1:SHP2EGFR E746_S752delinsV EGF:Ligand-responsive EGFR mutants dimerPI(3,4,5)P3 EGFR A289T EGF EGFR M766_A767insASV UBC(609-684) EGF:Ub-p-6Y-EGFR:p-Y371-CBL:GRB2EGFR T263P UbEGFR E746_A750del;T790M EGF EGFR G719S Irreversible EGFR-specific TKIs HSP90:BenzoquinoidansamycinsEPS15 EGFR L747_T751del EGFR L858R HSP90AA1 HRAS UBC(533-608) SH3GL1 PI(4,5)P2PAG1EGF:EGFRDimer:Covalent EGFRTKIsEGFR L858R p-6Y-EGFR EGFR L861Q EGFR L747_T751delinsP EGF:Ub-p-6Y-EGFR:p-Y371-CBLGRB2:GAB1:PIP3EGF UBC(609-684) SPRY2 ADAM10(215-824) EGFR L747_A750delinsP GRB2-1 CBL:Beta-Pix:CDC42:GTPUBC(305-380) p-6Y-EGFR p-Y-PXN UBA52(1-76) UBC(457-532) SH3GL1 EGF:p-6Y-EGFR:CBL:p-Y53/55-SPRY1/2EPN1 p-6Y-EGFR STAM EGFR L858R;T790M UBC(381-456) EGF:p-6Y-EGFR:GRB2:p-Y627,659-GAB1:SHP2PiSOS1 RPS27A(1-76) SH3GL3 UBB(1-76) CBL EGFR G598V EGFR R108K Sensitiveligand-responsiveEGFRmutants:Non-covalent EGFR TKIsSOS1 EGF EPN1 EGFR R108K PTPN11 EGFR D770_N771insNPH RPS27A(1-76) EGFR L858R EGFRvIIImutant:HSP90:CDC37UBC(229-304) EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:PI3KEGF:p-6Y-EGFR:p-Y371-CBL:GRB2EGF EGFR G719A UBA52(1-76) EPS15L1 GDPUBA52(1-76) CDC37 EGFR T263P p-Y55-SPRY2 p-Y349,Y350-SHC1 PXN HGS KRAS EGF EGFR E746_A750del;T790M EGF GRB2-1 EPS15:HGS:STAMp-6Y-EGFR GTP UBC(457-532) PTPN11 EGFR A289T EGFR L858R;T790M SOS1EGFR G719A ADAM:Zn2+UBB(153-228) HSP90AA1 UBB(1-76) EGFRvIII GRB2-1UBC(381-456) UBC(1-76) GRB2-1 GAB1 EGFR L858R;T790M p-5Y-GAB1 EGF:p-6Y-EGFR:p-Y349,350-SHC1:GRB2:SOS1SPRY2 CDC37 EPS15 EGFR D770_N771insNPH EGF EGF UBC(609-684) UBB(77-152) Irreversible EGFR-specific TKIs STAM2 EGFR V738_K739insKIPVAI EPS15 CDC42 UBC(77-152) EGFR L747_S752del SH3GL3 UBC(1-76) PIK3R1 UBC(381-456) Ligand-responsive EGFR mutants sensitive to non-covalent TKIs EGF:p-6Y-EGFR dimerp-6Y-EGFR EGF:p-6Y-EGFR:GRB2:SOS1EGFR E746_T751delinsA CDC37 SH3GL2 EGFR V738_K739insKIPVAI EGFR G719C Active dimers ofligand-responsiveEGFR mutantsUBC(381-456) EGF:p-6Y-EGFR:p-Y371-CBL:Ub-CIN85:Endophilin:Epsin:Eps15L1:Eps15EGFR E746_A750del;T790M EGFR G719A UBC(153-228) GRB2-1 EGFR G598V EGFR L747_T751delinsP PI(4,5)P2 p-6Y-EGFR UBC(305-380) EGFR L747_T751del UBC(1-76) UBB(153-228) H2OEGF EGFR M766_A767insASV UBA52(1-76) PTPN11 UBB(1-76) EGF EGFR G719S EGFR V738_K739insKIPVAI EGFR A289V SH3GL2 EGFR D770_N771insNPG EGFR G719C EGF:p-6Y-EGFR:CBLEGF:Ligand-responsive EGFR mutants:HSP90:CDC37ADPSH3GL3 H2OUBC(77-152) EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:EPS15:HGS:STAMEGFR D770_N771insNPH EGFR L747_P753delinsS UBC(229-304) UBB(77-152) p-Y371-CBL EGFR L858R;T790M UBA52(1-76) EGFR:CetuximabCDC37 Irreversible EGFR-specific TKIs UBC(153-228) EGF PiEGF EGFR D770_N771insNPG UBB(153-228) GTP MyrG,p-Y530-SRC CDC37 EGFGRB2-1 EGF:p-6Y-EGFR:p-Y371-CBLRPS27A(1-76) UBB(153-228) SH3GL3 EGF:EGFR dimerEGFR G719C GRB2-1 EGFR L747_S752del PLCG1CDC42 GRB2-1 Ligand-responsive EGFR mutants resistant to non-covalent TKIs EGFR Resistantligand-responsiveEGFR mutantsEGFR D770_N771insNPG EPN1 ADPEGFR L747_S752del UBB(1-76) p-Y-PXN:CSK:MyrG,p-Y530-SRCSPRY1 EGFR E746_A750del GRB2:GAB1ADPCDC37 HGS p-6Y-EGFR RPS27A(1-76) SH3GL2 SOS1 EGF EGFR D770_N771insNPH UBC(533-608) EPN1 UBC(1-76) CBL:GRB2UBC(77-152) EGFR L858R;T790M p-Y850 EPS15 Irreversible anti-EGFRplus TKIs p-Y371-CBL GRB2-1 EGFR A289V PI(4,5)P2ATPUBC(381-456) UBC(609-684) PI(3,4,5)P3SH3KBP1 EGFR V738_K739insKIPVAI Covalent EGFRtyrosine kinaseinhibitorsEGFR A289D CBL EGF ADPResistantligand-responsiveEGFRmutants:CovalentEGFR TKIsPTPN11GRB2-1 H2OUBC(609-684) CDC37SPRY1/2p-Y627,Y659-GAB1 EGFRvIIIIrreversible anti-EGFRplus TKIs p-5Y-GAB1 GRB2-1 EGF SH3GL3 UBC(1-76) EGFR T263P PTPN3UbEGF EGFR D770_N771insNPG EGFR L747_T751delinsP UBB(77-152) SH3GL2 p-Y992,Y1045,Y1068,Y1086,Y1173-EGFR EGFR D770_N771insNPH p-6Y-EGFR EGF:p-6Y-EGFR:GRB2:GAB1p-6Y-EGFR UbADAM17 EGFR E746_S752delinsV GRB2-1 CDC37 UBB(1-76) SH3KBP1 SH3GL1 STAM EGFR L747_T751del UBB(153-228) p-6Y-EGFR Reversible EGFR-specific TKIs EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2UbHGS PI(4,5)P2 UBC(609-684) UBC(609-684) H2Op-6Y-EGFR EGFR L747_S752del PI(3,4,5)P3 p-6Y-EGFR EGFR L747_A750delinsP ATPUBB(1-76) HSP90AA1 EGFR R108K EGFR E746_S752delinsV UBC(229-304) LRIG1H2OATPEGFR E746_A750del EGFR G598V EGF RPS27A(1-76) UBB(1-76) UBC(153-228) Ligand-responsiveEGFR mutants dimerEPS15 p-4Y-EGFR p-Y371-CBL Ub-SH3KBP1 EGF UBB(153-228) EGFR A289D UBA52(1-76) ADPPiIrreversible anti-EGFRplus TKIs CBL GRB2:GAB1,GRB2:GAB1:PIP3EGFR A289V UBC(533-608) p-4Y-PLCG1 SPRY1 STAM EGF:p-6Y-EGFR:CBL:GRB2CSK DAG and IP3signalingEGF PIK3CA CBL UBC(153-228) EGFR L858R EGFR E746_A750del EGFR G719C p-6Y-EGFR EGFR L747_S752del GTPGRB2-1 UBC(533-608) EGF EGFR D770_N771insNPH UBC(77-152) EGF:p-EGFR dimerdephosphorylated atY1148 (Y1172)UBB(77-152) p-Y349,Y350-SHC1 CDC37 SH3GL1 EGFR R108K EPN1 ARHGEF7 EGFR A289V PI(3,4,5)P3 UBB(77-152) HSP90AA1 RPS27A(1-76) p-Y55-SPRY2GTP EGF GRB2-1UBC(381-456) EGFR E746_A750del;T790M RAF/MAP kinasecascadeReversible EGFR-specific TKIs p-Y371-CBL HSP90AA1 EGFR E746_A750del;T790M p-Y371-CBL CDC37 UBB(1-76) EGFR A289T CSKEGF EGFR V738_K739insKIPVAI p-Y371-CBL GRB2-1 SH3GL3 SHC1 EGFR V738_K739insKIPVAI EGFR M766_A767insASV Cetuximab CBLPXN:MyrG-SRCEGFR L861Q PI(3,4,5)P3 EPS15L1 EGF:EGFRADPHGS SH3GL2 EGFR D770_N771insNPH EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTP:CIN85EGFR A289D ARHGEF7 UBC(1-76) UBC(153-228) SPRY2 EGFR G719A p-Y53-SPRY1 HSP90AA1 GTP p-Y53-SPRY1 UBC(457-532) EGFR E746_T751delinsA EGFR G719S Ub-Beta-Pix:CDC42:GTPSH3GL3 ATPUBA52(1-76) EGFR E746_S752delinsV CBL EGF RPS27A(1-76) UBC(229-304) CBL UBC(381-456) UBC(381-456) SPRY1/2EGFR L861Q Ligand-responsiveEGFRmutants:HSP90:CDC37EGFR R108K UBC(533-608) EGFR L747_T751delinsP ATPUBC(153-228) EGFR L747_T751delinsP UBC(609-684) CBL:SPRY1/2HGS p-Y371-CBL EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:p-EPS15:HGS:STAMSPRY2 p-6Y-EGFR ATPUBC(77-152) UBC(1-76) UBC(533-608) p-6Y-EGFR EGFR L858R UBC(609-684) p-6Y-EGFR UBB(153-228) NRAS UBC(1-76) EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:Endophilin:Epsin:Eps15L1:Eps15EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:EndophilinEGFR D770_N771insNPG ARHGEF7 UBC(229-304) GRB2-1 UBC(305-380) SH3GL3 MyrG-SRC EGF Reversible anti-EGFRplus TKIs GRB2-1 EGFR L747_A750delinsP PIK3R1 H2OUBC(229-304) GAB1 SH3GL1 UBC(153-228) EGFR L747_P753delinsS EGFR L858R;T790M CBL HSP90AA1 PiEGFR T263P EGFR D770_N771insNPG EGFR L861Q Pip-5Y-GAB1 EGF SH3KBP1 EGF EPS15 EGF p-5Y-GAB1 EPS15L1UBC(229-304) p-Y55-SPRY2 EGFR E746_A750del;T790M SHC1Non-covalent EGFRtyrosine kinaseinhibitorsEGFR E746_A750del;T790M p-6Y-EGFR p-6Y-EGFR PiGRB2-1 Ligand-responsiveEGFR mutantsUBC(305-380) p-4Y-PLCG1EGF PIP3 activates AKTsignalingUBB(153-228) GRB2-1:SOS1UBC(153-228) UBC(381-456) UBB(77-152) GAB1 UBC(229-304) STAM2 EGFR M766_A767insASV ARHGEF7 EGFR M766_A767insASV HSP90AA1 EGF:p-6Y-EGFR:SHC1GRB2-1 EGFR E746_S752delinsV EGF EGFR M766_A767insASV EGFR A289T EGFR V738_K739insKIPVAI EGFR E746_A750del EGF:p-6Y-EGFR:PLCG1HSP90AA1 PI(3,4,5)P3 UBC(533-608) ATPUBC(533-608) UBB(1-76) STAM2 EGFRvIII UBA52(1-76) UBC(533-608) EGFR L747_S752del PIK3CA p-6Y-EGFR PIK3CA:PIK3R1EGFR A289V PLCG1 RPS27A(1-76) p-6Y-EGFR EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTPUBB(153-228) EGFR L858R PI(3,4,5)P3 EGFR L747_P753delinsS EGFR G598V UBC(457-532) EGFR E746_T751delinsA EGFR A289D UBC(305-380) EGF EGF UBA52(1-76) EGF HGS PI(3,4,5)P3 SH3GL1 UBC(153-228) Zn2+ EGFR G719S ARHGEF7 Beta-Pix:CDC42:GTPCDC42 EGFR L747_T751delinsP p-6Y-EGFR UBA52(1-76) Pro-EGFEGFR L747_T751del p-6Y-EGFR RPS27A(1-76) p21 RAS:GTPUBC(457-532) EPS15L1 UBC(77-152) UBB(153-228) STAM2 EGFR T263P EGFR G719A SH3KBP1 UBC(305-380) UBC(305-380) p-Y371-CBL GDP UBC(1-76) SH3GL1 EGFR A289D EGFR L747_A750delinsP EGFR L858R;T790M PTPN12EGFR R108K GTP HSP90AA1 UBB(77-152) EGFR L747_P753delinsS EGFR E746_T751delinsA STAM2 KRAS EGFR L747_A750delinsP EGF SH3GL2 HSP90AA1 p-6Y-EGFR SH3GL1 p-Y371-CBL EGF EGFR T263P SH3GL2 UBB(77-152) UBC(457-532) EGFR SPRY1 EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:SPRY1/2:Endophilin:Epsin:Eps15L1:EPS15UBC(153-228) GRB2-1 EGFR EGFR G598V RPS27A(1-76) UBC(609-684) UBC(381-456) SH3GL2 Reversible anti-EGFRplus TKIs GRB2-1 EGF UBC(305-380) CIN85:endophilinEGF:p-6Y-EGFR:p-Y472,771,783,1254-PLCG1UBC(77-152) HSP90AA1 UBC(1-76) EGFR L747_T751del EGFR L747_P753delinsS GAB1EGFR E746_T751delinsA NRAS EGFR L747_P753delinsS EGFR D770_N771insNPG UbGRB2-1 STAM UBC(533-608) p-Y371-CBL EGFR M766_A767insASV p-6Y-EGFR CetuximabEGFR G719S STAM p-6Y-EGFR UBC(77-152) EGFR E746_T751delinsA UBC(305-380) EGF EGFR G719C EGFR G598V ADPEGF:p-6Y-EGFR:p-Y349,350-SHC1BenzoquinoidansamycinsPTPRKATPp-6Y-EGFR EGF UBB(1-76) PI(3,4,5)P3 UBB(77-152) UBC(457-532) EGFR A289T EGFR E746_A750del EGFR E746_S752delinsV UBC(77-152) SPRY1 EPN1STAM SRC-1UBC(457-532) SH3KBP1 HRAS ADPEGFR E746_A750del EGFR G719C EGFR G719S CDC37 CDC42 GTP 477747473322774933, 6733, 67774733, 67473322, 6722, 673322222247335933, 4785, 88333, 223333, 6747477733222222, 673, 2233442222, 6722, 673, 22773387472282333333, 673, 2277223, 22474733, 473333476, 12, 13, 21, 23...772247333333, 477367, 894722, 67332233, 6777474747593347474722, 673377224733, 47473, 2233, 4733, 6733, 474777774777


Description

The epidermal growth factor receptor (EGFR) is one member of the ERBB family of transmembrane glycoprotein tyrosine receptor kinases (RTK). Binding of EGFR to its ligands induces conformational change that unmasks the dimerization interface in the extracellular domain of EGFR, leading to receptor homo- or heterodimerization at the cell surface. Dimerization of the extracellular regions of EGFR triggers additional conformational change of the cytoplasmic EGFR regions, enabling the kinase domains of two EGFR molecules to achieve the catalytically active conformation. Ligand activated EGFR dimers trans-autophosphorylate on tyrosine residues in the cytoplasmic tail of the receptor. Phosphorylated tyrosines serve as binding sites for the recruitment of signal transducers and activators of intracellular substrates, which then stimulate intracellular signal transduction cascades that are involved in regulating cellular proliferation, differentiation, and survival. Recruitment of complexes containing GRB2 and SOS1 to phosphorylated EGFR dimers either directly, through phosphotyrosine residues that serve as GRB2 docking sites, or indirectly, through SHC1 recruitment, promotes GDP to GTP exchange on RAS, resulting in the activation of RAF/MAP kinase cascade. Binding of complexes of GRB2 and GAB1 to phosphorylated EGFR dimers leads to formation of the active PI3K complex, conversion of PIP2 into PIP3, and activation of AKT signaling. Phospholipase C-gamma1 (PLCG1) can also be recruited directly, through EGFR phosphotyrosine residues that serve as PLCG1 docking sites, which leads to PLCG1 phosphorylation by EGFR and activation of DAG and IP3 signaling. EGFR signaling is downregulated by the action of ubiquitin ligase CBL. CBL binds directly to the phosphorylated EGFR dimer through the phosphotyrosine Y1045 in the C-tail of EGFR, and after CBL is phosphorylated by EGFR, it becomes active and ubiquitinates phosphorylated EGFR dimers, targeting them for degradation. For a recent review of EGFR signaling, please refer to Avraham and Yarden, 2011. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 177929
Reactome-version 
Reactome version: 65
Reactome Author 
Reactome Author: Jassal, Bijay, Castagnoli, L

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Roskoski R.; ''RAF protein-serine/threonine kinases: structure and regulation.''; PubMed Europe PMC Scholia
  2. Yang S, Qu S, Perez-Tores M, Sawai A, Rosen N, Solit DB, Arteaga CL.; ''Association with HSP90 inhibits Cbl-mediated down-regulation of mutant epidermal growth factor receptors.''; PubMed Europe PMC Scholia
  3. Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T, Luo J, Thompson JA, Schraven BL, Philips MR, Neel BG.; ''Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment.''; PubMed Europe PMC Scholia
  4. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I.; ''Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors.''; PubMed Europe PMC Scholia
  5. Kyriakis JM, Avruch J.; ''Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update.''; PubMed Europe PMC Scholia
  6. Hall AB, Jura N, DaSilva J, Jang YJ, Gong D, Bar-Sagi D.; ''hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl.''; PubMed Europe PMC Scholia
  7. Walton GM, Chen WS, Rosenfeld MG, Gill GN.; ''Analysis of deletions of the carboxyl terminus of the epidermal growth factor receptor reveals self-phosphorylation at tyrosine 992 and enhanced in vivo tyrosine phosphorylation of cell substrates.''; PubMed Europe PMC Scholia
  8. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC.; ''The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase.''; PubMed Europe PMC Scholia
  9. Cseh B, Doma E, Baccarini M.; ''"RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway.''; PubMed Europe PMC Scholia
  10. Panchamoorthy G, Fukazawa T, Miyake S, Soltoff S, Reedquist K, Druker B, Shoelson S, Cantley L, Band H.; ''p120cbl is a major substrate of tyrosine phosphorylation upon B cell antigen receptor stimulation and interacts in vivo with Fyn and Syk tyrosine kinases, Grb2 and Shc adaptors, and the p85 subunit of phosphatidylinositol 3-kinase.''; PubMed Europe PMC Scholia
  11. Kassenbrock CK, Anderson SM.; ''Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations.''; PubMed Europe PMC Scholia
  12. Schmidt MHH, Husnjak K, Szymkiewicz I, Haglund K, Dikic I.; ''Cbl escapes Cdc42-mediated inhibition by downregulation of the adaptor molecule betaPix.''; PubMed Europe PMC Scholia
  13. Roskoski R.; ''ERK1/2 MAP kinases: structure, function, and regulation.''; PubMed Europe PMC Scholia
  14. McKay MM, Morrison DK.; ''Integrating signals from RTKs to ERK/MAPK.''; PubMed Europe PMC Scholia
  15. Helin K, Beguinot L.; ''Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines.''; PubMed Europe PMC Scholia
  16. Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, Lemmon MA, Carpenter G.; ''The juxtamembrane region of the EGF receptor functions as an activation domain.''; PubMed Europe PMC Scholia
  17. Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M.; ''Shc phosphotyrosine-binding domain dominantly interacts with epidermal growth factor receptors and mediates Ras activation in intact cells.''; PubMed Europe PMC Scholia
  18. Wells A.; ''EGF receptor.''; PubMed Europe PMC Scholia
  19. de Melker AA, van der Horst G, Borst J.; ''Ubiquitin ligase activity of c-Cbl guides the epidermal growth factor receptor into clathrin-coated pits by two distinct modes of Eps15 recruitment.''; PubMed Europe PMC Scholia
  20. Pao W, Chmielecki J.; ''Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer.''; PubMed Europe PMC Scholia
  21. Kapoor GS, Zhan Y, Johnson GR, O'Rourke DM.; ''Distinct domains in the SHP-2 phosphatase differentially regulate epidermal growth factor receptor/NF-kappaB activation through Gab1 in glioblastoma cells.''; PubMed Europe PMC Scholia
  22. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA.; ''Mutations of the BRAF gene in human cancer.''; PubMed Europe PMC Scholia
  23. Sherrill JM, Kyte J.; ''Activation of epidermal growth factor receptor by epidermal growth factor.''; PubMed Europe PMC Scholia
  24. Turjanski AG, Vaqué JP, Gutkind JS.; ''MAP kinases and the control of nuclear events.''; PubMed Europe PMC Scholia
  25. Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J.; ''A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling.''; PubMed Europe PMC Scholia
  26. Wahl MI, Nishibe S, Kim JW, Kim H, Rhee SG, Carpenter G.; ''Identification of two epidermal growth factor-sensitive tyrosine phosphorylation sites of phospholipase C-gamma in intact HSC-1 cells.''; PubMed Europe PMC Scholia
  27. Fukumoto T, Kubota Y, Kitanaka A, Yamaoka G, Ohara-Waki F, Imataki O, Ohnishi H, Ishida T, Tanaka T.; ''Gab1 transduces PI3K-mediated erythropoietin signals to the Erk pathway and regulates erythropoietin-dependent proliferation and survival of erythroid cells.''; PubMed Europe PMC Scholia
  28. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA, Eastern Cooperative Oncology Group.; ''Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study.''; PubMed Europe PMC Scholia
  29. Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW, Prodromou C, Pearl LH.; ''The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37).''; PubMed Europe PMC Scholia
  30. Grøvdal LM, Stang E, Sorkin A, Madshus IH.; ''Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation.''; PubMed Europe PMC Scholia
  31. Lock LS, Royal I, Naujokas MA, Park M.; ''Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and -independent recruitment of Gab1 to receptor tyrosine kinases.''; PubMed Europe PMC Scholia
  32. Fan YX, Wong L, Deb TB, Johnson GR.; ''Ligand regulates epidermal growth factor receptor kinase specificity: activation increases preference for GAB1 and SHC versus autophosphorylation sites.''; PubMed Europe PMC Scholia
  33. Roskoski R.; ''MEK1/2 dual-specificity protein kinases: structure and regulation.''; PubMed Europe PMC Scholia
  34. Batzer AG, Blaikie P, Nelson K, Schlessinger J, Margolis B.; ''The phosphotyrosine interaction domain of Shc binds an LXNPXY motif on the epidermal growth factor receptor.''; PubMed Europe PMC Scholia
  35. Carpenter G, Ji Q.; ''Phospholipase C-gamma as a signal-transducing element.''; PubMed Europe PMC Scholia
  36. Cargnello M, Roux PP.; ''Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.''; PubMed Europe PMC Scholia
  37. Li MY, Lai PL, Chou YT, Chi AP, Mi YZ, Khoo KH, Chang GD, Wu CW, Meng TC, Chen GC.; ''Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation.''; PubMed Europe PMC Scholia
  38. Patterson RL, van Rossum DB, Nikolaidis N, Gill DL, Snyder SH.; ''Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling.''; PubMed Europe PMC Scholia
  39. Sun T, Aceto N, Meerbrey KL, Kessler JD, Zhou C, Migliaccio I, Nguyen DX, Pavlova NN, Botero M, Huang J, Bernardi RJ, Schmitt E, Hu G, Li MZ, Dephoure N, Gygi SP, Rao M, Creighton CJ, Hilsenbeck SG, Shaw CA, Muzny D, Gibbs RA, Wheeler DA, Osborne CK, Schiff R, Bentires-Alj M, Elledge SJ, Westbrook TF.; ''Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase.''; PubMed Europe PMC Scholia
  40. Montagner A, Yart A, Dance M, Perret B, Salles JP, Raynal P.; ''A novel role for Gab1 and SHP2 in epidermal growth factor-induced Ras activation.''; PubMed Europe PMC Scholia
  41. Huang F, Khvorova A, Marshall W, Sorkin A.; ''Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference.''; PubMed Europe PMC Scholia
  42. Lavictoire SJ, Parolin DA, Klimowicz AC, Kelly JF, Lorimer IA.; ''Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII.''; PubMed Europe PMC Scholia
  43. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M.; ''EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.''; PubMed Europe PMC Scholia
  44. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J.; ''An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor.''; PubMed Europe PMC Scholia
  45. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA.; ''Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.''; PubMed Europe PMC Scholia
  46. Greulich H, Chen TH, Feng W, Jänne PA, Alvarez JV, Zappaterra M, Bulmer SE, Frank DA, Hahn WC, Sellers WR, Meyerson M.; ''Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants.''; PubMed Europe PMC Scholia
  47. Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S, Elson A, Jovin T, Yarden Y.; ''A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling.''; PubMed Europe PMC Scholia
  48. Benmerah A, Poupon V, Cerf-Bensussan N, Dautry-Varsat A.; ''Mapping of Eps15 domains involved in its targeting to clathrin-coated pits.''; PubMed Europe PMC Scholia
  49. Carpenter G.; ''Employment of the epidermal growth factor receptor in growth factor-independent signaling pathways.''; PubMed Europe PMC Scholia
  50. Wellbrock C, Karasarides M, Marais R.; ''The RAF proteins take centre stage.''; PubMed Europe PMC Scholia
  51. Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY, Guy GR.; ''Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling.''; PubMed Europe PMC Scholia
  52. Lehr S, Kotzka J, Herkner A, Klein E, Siethoff C, Knebel B, Noelle V, Brüning JC, Klein HW, Meyer HE, Krone W, Müller-Wieland D.; ''Identification of tyrosine phosphorylation sites in human Gab-1 protein by EGF receptor kinase in vitro.''; PubMed Europe PMC Scholia
  53. Cunnick JM, Mei L, Doupnik CA, Wu J.; ''Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2.''; PubMed Europe PMC Scholia
  54. Shimamura T, Lowell AM, Engelman JA, Shapiro GI.; ''Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins.''; PubMed Europe PMC Scholia
  55. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S.; ''Clathrin-independent endocytosis of ubiquitinated cargos.''; PubMed Europe PMC Scholia
  56. Agazie YM, Hayman MJ.; ''Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling.''; PubMed Europe PMC Scholia
  57. van Bergen En Henegouwen PM.; ''Eps15: a multifunctional adaptor protein regulating intracellular trafficking.''; PubMed Europe PMC Scholia
  58. Confalonieri S, Salcini AE, Puri C, Tacchetti C, Di Fiore PP.; ''Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis.''; PubMed Europe PMC Scholia
  59. Roberts PJ, Der CJ.; ''Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.''; PubMed Europe PMC Scholia
  60. Haglund K, Schmidt MHH, Wong ES, Guy GR, Dikic I.; ''Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation.''; PubMed Europe PMC Scholia
  61. Patterson J, Palombella VJ, Fritz C, Normant E.; ''IPI-504, a novel and soluble HSP-90 inhibitor, blocks the unfolded protein response in multiple myeloma cells.''; PubMed Europe PMC Scholia
  62. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ.; ''Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity.''; PubMed Europe PMC Scholia
  63. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP.; ''Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent.''; PubMed Europe PMC Scholia
  64. Margolis B, Bellot F, Honegger AM, Ullrich A, Schlessinger J, Zilberstein A.; ''Tyrosine kinase activity is essential for the association of phospholipase C-gamma with the epidermal growth factor receptor.''; PubMed Europe PMC Scholia
  65. Margolis BL, Lax I, Kris R, Dombalagian M, Honegger AM, Howk R, Givol D, Ullrich A, Schlessinger J.; ''All autophosphorylation sites of epidermal growth factor (EGF) receptor and HER2/neu are located in their carboxyl-terminal tails. Identification of a novel site in EGF receptor.''; PubMed Europe PMC Scholia
  66. Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Chardin P, Bar-Sagi D, Margolis B, Schlessinger J.; ''Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling.''; PubMed Europe PMC Scholia
  67. Batzer AG, Rotin D, Ureña JM, Skolnik EY, Schlessinger J.; ''Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor.''; PubMed Europe PMC Scholia
  68. Rubin C, Litvak V, Medvedovsky H, Zwang Y, Lev S, Yarden Y.; ''Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops.''; PubMed Europe PMC Scholia
  69. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E.; ''Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer.''; PubMed Europe PMC Scholia
  70. Galisteo ML, Dikic I, Batzer AG, Langdon WY, Schlessinger J.; ''Tyrosine phosphorylation of the c-cbl proto-oncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation.''; PubMed Europe PMC Scholia
  71. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM.; ''Structural basis for inhibition of the epidermal growth factor receptor by cetuximab.''; PubMed Europe PMC Scholia
  72. Marmor MD, Yarden Y.; ''Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases.''; PubMed Europe PMC Scholia
  73. Onishi-Haraikawa Y, Funaki M, Gotoh N, Shibuya M, Inukai K, Katagiri H, Fukushima Y, Anai M, Ogihara T, Sakoda H, Ono H, Kikuchi M, Oka Y, Asano T.; ''Unique phosphorylation mechanism of Gab1 using PI 3-kinase as an adaptor protein.''; PubMed Europe PMC Scholia
  74. Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Jänne PA.; ''Novel mutant-selective EGFR kinase inhibitors against EGFR T790M.''; PubMed Europe PMC Scholia
  75. Fernandes H, Cohen S, Bishayee S.; ''Glycosylation-induced conformational modification positively regulates receptor-receptor association: a study with an aberrant epidermal growth factor receptor (EGFRvIII/DeltaEGFR) expressed in cancer cells.''; PubMed Europe PMC Scholia
  76. Holgado-Madruga M, Moscatello DK, Emlet DR, Dieterich R, Wong AJ.; ''Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor.''; PubMed Europe PMC Scholia
  77. Klapisz E, Sorokina I, Lemeer S, Pijnenburg M, Verkleij AJ, van Bergen en Henegouwen PM.; ''A ubiquitin-interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination.''; PubMed Europe PMC Scholia
  78. VanderKuur J, Allevato G, Billestrup N, Norstedt G, Carter-Su C.; ''Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2.''; PubMed Europe PMC Scholia
  79. Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K, Takenawa T, Kasuga M.; ''Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells.''; PubMed Europe PMC Scholia
  80. Soler C, Alvarez CV, Beguinot L, Carpenter G.; ''Potent SHC tyrosine phosphorylation by epidermal growth factor at low receptor density or in the absence of receptor autophosphorylation sites.''; PubMed Europe PMC Scholia
  81. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H.; ''EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.''; PubMed Europe PMC Scholia
  82. Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, Chiang A, Yang G, Ouerfelli O, Kris MG, Ladanyi M, Miller VA, Pao W.; ''Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors.''; PubMed Europe PMC Scholia
  83. Haglund K, Shimokawa N, Szymkiewicz I, Dikic I.; ''Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors.''; PubMed Europe PMC Scholia
  84. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ.; ''The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP.''; PubMed Europe PMC Scholia
  85. Bache KG, Raiborg C, Mehlum A, Stenmark H.; ''STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes.''; PubMed Europe PMC Scholia
  86. Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D.; ''Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2.''; PubMed Europe PMC Scholia
  87. Cantwell-Dorris ER, O'Leary JJ, Sheils OM.; ''BRAFV600E: implications for carcinogenesis and molecular therapy.''; PubMed Europe PMC Scholia
  88. Kazazic M, Bertelsen V, Pedersen KW, Vuong TT, Grandal MV, Rødland MS, Traub LM, Stang E, Madshus IH.; ''Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits.''; PubMed Europe PMC Scholia
  89. Songyang Z, Margolis B, Chaudhuri M, Shoelson SE, Cantley LC.; ''The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif.''; PubMed Europe PMC Scholia
  90. Lombardo CR, Consler TG, Kassel DB.; ''In vitro phosphorylation of the epidermal growth factor receptor autophosphorylation domain by c-src: identification of phosphorylation sites and c-src SH2 domain binding sites.''; PubMed Europe PMC Scholia
  91. Plotnikov A, Zehorai E, Procaccia S, Seger R.; ''The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation.''; PubMed Europe PMC Scholia
  92. Meisenhelder J, Suh PG, Rhee SG, Hunter T.; ''Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro.''; PubMed Europe PMC Scholia
  93. Wu WJ, Tu S, Cerione RA.; ''Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation.''; PubMed Europe PMC Scholia
  94. Herbst RS.; ''Review of epidermal growth factor receptor biology.''; PubMed Europe PMC Scholia
  95. Brown MD, Sacks DB.; ''Protein scaffolds in MAP kinase signalling.''; PubMed Europe PMC Scholia
  96. Lock LS, Frigault MM, Saucier C, Park M.; ''Grb2-independent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the Met receptor kinase domain.''; PubMed Europe PMC Scholia
  97. Schlessinger J.; ''Ligand-induced, receptor-mediated dimerization and activation of EGF receptor.''; PubMed Europe PMC Scholia
  98. Ren Y, Meng S, Mei L, Zhao ZJ, Jove R, Wu J.; ''Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor.''; PubMed Europe PMC Scholia
  99. Lee JC, Vivanco I, Beroukhim R, Huang JH, Feng WL, DeBiasi RM, Yoshimoto K, King JC, Nghiemphu P, Yuza Y, Xu Q, Greulich H, Thomas RK, Paez JG, Peck TC, Linhart DJ, Glatt KA, Getz G, Onofrio R, Ziaugra L, Levine RL, Gabriel S, Kawaguchi T, O'Neill K, Khan H, Liau LM, Nelson SF, Rao PN, Mischel P, Pieper RO, Cloughesy T, Leahy DJ, Sellers WR, Sawyers CL, Meyerson M, Mellinghoff IK.; ''Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.''; PubMed Europe PMC Scholia
  100. Gual P, Giordano S, Williams TA, Rocchi S, Van Obberghen E, Comoglio PM.; ''Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
123308view06:57, 15 July 2022EgonwMarked from chemical compounds as Type="Metabolite"
101353view11:23, 1 November 2018ReactomeTeamreactome version 66
100891view20:57, 31 October 2018ReactomeTeamreactome version 65
100432view19:32, 31 October 2018ReactomeTeamreactome version 64
99981view16:16, 31 October 2018ReactomeTeamreactome version 63
99535view14:52, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93859view13:41, 16 August 2017ReactomeTeamreactome version 61
93424view11:23, 9 August 2017ReactomeTeamreactome version 61
86511view09:19, 11 July 2016ReactomeTeamreactome version 56
83196view10:21, 18 November 2015ReactomeTeamVersion54
81574view13:06, 21 August 2015ReactomeTeamVersion53
77036view08:33, 17 July 2014ReactomeTeamFixed remaining interactions
76741view12:10, 16 July 2014ReactomeTeamFixed remaining interactions
76066view10:12, 11 June 2014ReactomeTeamRe-fixing comment source
75776view11:29, 10 June 2014ReactomeTeamReactome 48 Update
75126view14:07, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74773view08:51, 30 April 2014ReactomeTeamReactome46
45218view17:28, 7 October 2011KhanspersOntology Term : 'epidermal growth factor/neuregulin signaling pathway' added !
42126view21:59, 4 March 2011MaintBotAutomatic update
39936view05:57, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ADAM10(215-824) ProteinO14672 (Uniprot-TrEMBL)
ADAM12 ProteinO43184 (Uniprot-TrEMBL)
ADAM17 ProteinP78536 (Uniprot-TrEMBL)
ADAM:Zn2+ComplexR-HSA-179842 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
ARHGEF7 ProteinQ14155 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
Active dimers of

ligand-responsive

EGFR mutants
ComplexR-HSA-1220582 (Reactome)
Benzoquinoid ansamycinsComplexR-ALL-1217511 (Reactome)
Beta-Pix:CDC42:GTPComplexR-HSA-182917 (Reactome)
CBL ProteinP22681 (Uniprot-TrEMBL)
CBL:Beta-Pix:CDC42:GTPComplexR-HSA-182956 (Reactome)
CBL:GRB2ComplexR-HSA-182910 (Reactome)
CBL:SPRY1/2ComplexR-HSA-182914 (Reactome)
CBLProteinP22681 (Uniprot-TrEMBL)
CDC37 ProteinQ16543 (Uniprot-TrEMBL)
CDC37ComplexR-HSA-1225828 (Reactome)
CDC42 ProteinP60953 (Uniprot-TrEMBL)
CHEBI:5292 (ChEBI)
CHEBI:5674 (ChEBI)
CHEBI:64153 (ChEBI)
CHEBI:65324 (ChEBI)
CHEBI:71956 (ChEBI)
CIN85:endophilinComplexR-HSA-8875480 (Reactome)
CSK ProteinP41240 (Uniprot-TrEMBL)
CSKProteinP41240 (Uniprot-TrEMBL)
Cetuximab R-ALL-1248673 (Reactome)
CetuximabR-ALL-1248673 (Reactome)
Covalent EGFR

tyrosine kinase

inhibitors
ComplexR-ALL-1216522 (Reactome)
DAG and IP3 signalingPathwayR-HSA-1489509 (Reactome) This pathway describes the generation of DAG and IP3 by the PLCgamma-mediated hydrolysis of PIP2 and the subsequent downstream signaling events.
EGF ProteinP01133 (Uniprot-TrEMBL)
EGF:EGFR

Dimer:Covalent EGFR

TKIs
ComplexR-HSA-1225979 (Reactome)
EGF:EGFR dimerComplexR-HSA-179845 (Reactome)
EGF:EGFRComplexR-HSA-179847 (Reactome)
EGF:Ligand-responsive EGFR mutants dimerComplexR-HSA-1500847 (Reactome)
EGF:Ligand-responsive EGFR mutants:HSP90:CDC37ComplexR-HSA-1220578 (Reactome)
EGF:Ub-p-6Y-EGFR:p-Y371-CBL:GRB2ComplexR-HSA-182945 (Reactome)
EGF:Ub-p-6Y-EGFR:p-Y371-CBLComplexR-HSA-182930 (Reactome)
EGF:p-5Y-EGFR:GRB2:p-5Y-GAB1:SHP2ComplexR-HSA-180326 (Reactome)
EGF:p-6Y-EGFR dimerComplexR-HSA-179882 (Reactome)
EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTP:CIN85ComplexR-HSA-8951489 (Reactome)
EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTPComplexR-HSA-182932 (Reactome)
EGF:p-6Y-EGFR:CBL:GRB2ComplexR-HSA-182928 (Reactome)
EGF:p-6Y-EGFR:CBL:Ub-p-Y53/55-SPRY1/2ComplexR-HSA-182939 (Reactome)
EGF:p-6Y-EGFR:CBL:p-Y53/55-SPRY1/2ComplexR-HSA-182935 (Reactome)
EGF:p-6Y-EGFR:CBLComplexR-HSA-182960 (Reactome)
EGF:p-6Y-EGFR:GRB2:GAB1ComplexR-HSA-180348 (Reactome)
EGF:p-6Y-EGFR:GRB2:SOS1ComplexR-HSA-179820 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:PI3KComplexR-HSA-179791 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2ComplexR-HSA-180269 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1ComplexR-HSA-180286 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-Y627,659-GAB1:SHP2ComplexR-HSA-180503 (Reactome)
EGF:p-6Y-EGFR:PLCG1ComplexR-HSA-212717 (Reactome)
EGF:p-6Y-EGFR:SHC1ComplexR-HSA-180301 (Reactome)
EGF:p-6Y-EGFR:p-Y349,350-SHC1:GRB2:SOS1ComplexR-HSA-180331 (Reactome)
EGF:p-6Y-EGFR:p-Y349,350-SHC1ComplexR-HSA-180337 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:Endophilin:Epsin:Eps15L1:Eps15ComplexR-HSA-182961 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:SPRY1/2:Endophilin:Epsin:Eps15L1:EPS15ComplexR-HSA-182931 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:EPS15:HGS:STAMComplexR-HSA-8867034 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:p-EPS15:HGS:STAMComplexR-HSA-8867035 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:EndophilinComplexR-HSA-182946 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2ComplexR-HSA-182948 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:Ub-CIN85:Endophilin:Epsin:Eps15L1:Eps15ComplexR-HSA-182936 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBLComplexR-HSA-182953 (Reactome)
EGF:p-6Y-EGFR:p-Y472,771,783,1254-PLCG1ComplexR-HSA-212703 (Reactome)
EGF:p-EGFR dimer

dephosphorylated at

Y1148 (Y1172)
ComplexR-HSA-8864028 (Reactome)
EGFProteinP01133 (Uniprot-TrEMBL)
EGFR A289D ProteinP00533 (Uniprot-TrEMBL)
EGFR A289T ProteinP00533 (Uniprot-TrEMBL)
EGFR A289V ProteinP00533 (Uniprot-TrEMBL)
EGFR D770_N771insNPG ProteinP00533 (Uniprot-TrEMBL)
EGFR D770_N771insNPH ProteinP00533 (Uniprot-TrEMBL)
EGFR E746_A750del ProteinP00533 (Uniprot-TrEMBL)
EGFR E746_A750del;T790M ProteinP00533 (Uniprot-TrEMBL) Secondary mutation T790M in EGFR E746_A750del mutant confers TKI resistance and results in cancer progression in patients initially responsive to TKI therapy (Balak et al. 2006).
EGFR E746_S752delinsV ProteinP00533 (Uniprot-TrEMBL)
EGFR E746_T751delinsA ProteinP00533 (Uniprot-TrEMBL)
EGFR G598V ProteinP00533 (Uniprot-TrEMBL)
EGFR G719A ProteinP00533 (Uniprot-TrEMBL)
EGFR G719C ProteinP00533 (Uniprot-TrEMBL)
EGFR G719S ProteinP00533 (Uniprot-TrEMBL)
EGFR L747_A750delinsP ProteinP00533 (Uniprot-TrEMBL)
EGFR L747_P753delinsS ProteinP00533 (Uniprot-TrEMBL)
EGFR L747_S752del ProteinP00533 (Uniprot-TrEMBL)
EGFR L747_T751del ProteinP00533 (Uniprot-TrEMBL)
EGFR L747_T751delinsP ProteinP00533 (Uniprot-TrEMBL)
EGFR L858R ProteinP00533 (Uniprot-TrEMBL) L858R, a substitution of leucine 858 with arginine, accounts for ~40% of EGFR mutations in the non-small-cell lung cancer. L858R, encoded by exon 21, localizes to the N-terminal portion of the activation loop (A loop) of the kinase domain of EGFR. By locking the EGFR in its active conformation, L858R mutation results in constitutive catalytic activity of EGFR which is ~50-fold higher than the activity of the wild-type enzyme (Yun et al. 2007). The L858R EGFR mutant is inhibited by binding of small EGFR-specific tyrosine kinase inhibitors from the 4-anilinoquinazoline group, erlotinib and gefitinib, as well as the pyrrolopyrimidine compound AEE788. Gefitinib is ~100-fold more potent against the L858R mutant than against the wild-type EGFR kinase (Yun et al. 2007). Erlotinib (Pao et al. 2004) and AEE788 (Yun et al. 2007) are also more efficient in inhibiting the L858R mutant than the wild-type EGFR.
EGFR L858R;T790M ProteinP00533 (Uniprot-TrEMBL) Secondary mutation T790M in EGFR L858R mutant confers TKI resistance and results in cancer progression in patients initially responsive to TKI therapy (Balak et al. 2006).
EGFR L861Q ProteinP00533 (Uniprot-TrEMBL) L861Q, a substitution of leucine 861 with glutamine, is a documented EGFR mutation in the non-small-cell lung cancer (NSCLC). Leu861, encoded by exon 21, localizes to the N-terminal portion of the activation loop (A loop) of the kinase domain of EGFR and together with Leu858 participates in hydrophobic interactions that keep the kinase in the inactive conformation (Zhang et al. 2006). Replacement of Leu861 with glutamine is expected to destabilize the inactive conformation of EGFR and result in constitutive catalytic activity (Zhang et al. 2006). NSCLCs harboring L861Q mutation in EGFR are responsive to small EGFR-specific tyrosine kinase inhibitors from the 4-anilinoquinazoline group gefitinib (Lynch et al. 2004) and are expected to be responsive to the related drug, erlotinib.
EGFR M766_A767insASV ProteinP00533 (Uniprot-TrEMBL)
EGFR ProteinP00533 (Uniprot-TrEMBL)
EGFR R108K ProteinP00533 (Uniprot-TrEMBL)
EGFR T263P ProteinP00533 (Uniprot-TrEMBL)
EGFR V738_K739insKIPVAI ProteinP00533 (Uniprot-TrEMBL)
EGFR:CetuximabComplexR-HSA-1248675 (Reactome)
EGFRProteinP00533 (Uniprot-TrEMBL)
EGFRvIII mutant:HSP90:CDC37ComplexR-HSA-1248004 (Reactome)
EGFRvIII ProteinP00533 (Uniprot-TrEMBL) EGFR V30_R297delinsG mutant of EGFR, commonly known as EGFRvIII, is found in ~25% high-grade glioblastomas and can also be found in squamous cell carcinoma of the lung. EGFRvIII lacks the ligand biding domain and is constitutively active.
EGFRvIII mutant dimerComplexR-HSA-1248010 (Reactome)
EGFRvIIIProteinP00533 (Uniprot-TrEMBL) EGFR V30_R297delinsG mutant of EGFR, commonly known as EGFRvIII, is found in ~25% high-grade glioblastomas and can also be found in squamous cell carcinoma of the lung. EGFRvIII lacks the ligand biding domain and is constitutively active.
EPN1 ProteinQ9Y6I3 (Uniprot-TrEMBL)
EPN1ProteinQ9Y6I3 (Uniprot-TrEMBL)
EPS15 ProteinP42566 (Uniprot-TrEMBL)
EPS15:HGS:STAMComplexR-HSA-182947 (Reactome)
EPS15L1 ProteinQ9UBC2 (Uniprot-TrEMBL)
EPS15L1ProteinQ9UBC2 (Uniprot-TrEMBL)
GAB1 ProteinQ13480 (Uniprot-TrEMBL)
GAB1ProteinQ13480 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GRB2-1 ProteinP62993-1 (Uniprot-TrEMBL)
GRB2-1:SOS1ComplexR-HSA-109797 (Reactome)
GRB2-1ProteinP62993-1 (Uniprot-TrEMBL)
GRB2:GAB1,GRB2:GAB1:PIP3ComplexR-HSA-9038397 (Reactome)
GRB2:GAB1:PIP3ComplexR-HSA-180282 (Reactome)
GRB2:GAB1ComplexR-HSA-179849 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HGS ProteinO14964 (Uniprot-TrEMBL)
HRAS ProteinP01112 (Uniprot-TrEMBL)
HSP90:Benzoquinoid ansamycinsComplexR-HSA-1218829 (Reactome)
HSP90AA1 ProteinP07900 (Uniprot-TrEMBL)
HSP90ComplexR-HSA-1221657 (Reactome)
Irreversible EGFR-specific TKIs R-ALL-1216530 (Reactome)
Irreversible anti-EGFRplus TKIs R-ALL-1216531 (Reactome)
KRAS ProteinP01116 (Uniprot-TrEMBL)
LRIG1ProteinQ96JA1 (Uniprot-TrEMBL)
Ligand-responsive

EGFR

mutants:HSP90:CDC37
ComplexR-HSA-1218825 (Reactome)
Ligand-responsive EGFR mutants dimerComplexR-HSA-1500849 (Reactome)
Ligand-responsive EGFR mutantsComplexR-HSA-1182966 (Reactome)
Ligand-responsive EGFR mutants resistant to non-covalent TKIs R-HSA-1182967 (Reactome)
Ligand-responsive EGFR mutants sensitive to non-covalent TKIs R-HSA-1176052 (Reactome)
MyrG,p-Y530-SRC ProteinP12931 (Uniprot-TrEMBL)
MyrG-SRC ProteinP12931 (Uniprot-TrEMBL)
NRAS ProteinP01111 (Uniprot-TrEMBL)
Non-covalent EGFR

tyrosine kinase

inhibitors
ComplexR-ALL-1216523 (Reactome)
PAG1ProteinQ9NWQ8 (Uniprot-TrEMBL)
PI(3,4,5)P3 MetaboliteCHEBI:16618 (ChEBI)
PI(3,4,5)P3MetaboliteCHEBI:16618 (ChEBI)
PI(4,5)P2 MetaboliteCHEBI:18348 (ChEBI)
PI(4,5)P2MetaboliteCHEBI:18348 (ChEBI)
PIK3CA ProteinP42336 (Uniprot-TrEMBL)
PIK3CA:PIK3R1ComplexR-HSA-1806218 (Reactome)
PIK3R1 ProteinP27986 (Uniprot-TrEMBL)
PIP3 activates AKT signalingPathwayR-HSA-1257604 (Reactome) Signaling by AKT is one of the key outcomes of receptor tyrosine kinase (RTK) activation. AKT is activated by the cellular second messenger PIP3, a phospholipid that is generated by PI3K. In ustimulated cells, PI3K class IA enzymes reside in the cytosol as inactive heterodimers composed of p85 regulatory subunit and p110 catalytic subunit. In this complex, p85 stabilizes p110 while inhibiting its catalytic activity. Upon binding of extracellular ligands to RTKs, receptors dimerize and undergo autophosphorylation. The regulatory subunit of PI3K, p85, is recruited to phosphorylated cytosolic RTK domains either directly or indirectly, through adaptor proteins, leading to a conformational change in the PI3K IA heterodimer that relieves inhibition of the p110 catalytic subunit. Activated PI3K IA phosphorylates PIP2, converting it to PIP3; this reaction is negatively regulated by PTEN phosphatase. PIP3 recruits AKT to the plasma membrane, allowing TORC2 to phosphorylate a conserved serine residue of AKT. Phosphorylation of this serine induces a conformation change in AKT, exposing a conserved threonine residue that is then phosphorylated by PDPK1 (PDK1). Phosphorylation of both the threonine and the serine residue is required to fully activate AKT. The active AKT then dissociates from PIP3 and phosphorylates a number of cytosolic and nuclear proteins that play important roles in cell survival and metabolism. For a recent review of AKT signaling, please refer to Manning and Cantley, 2007.
PLCG1 ProteinP19174 (Uniprot-TrEMBL)
PLCG1ProteinP19174 (Uniprot-TrEMBL)
PTPN11 ProteinQ06124 (Uniprot-TrEMBL)
PTPN11ProteinQ06124 (Uniprot-TrEMBL)
PTPN12ProteinQ05209 (Uniprot-TrEMBL)
PTPN3ProteinP26045 (Uniprot-TrEMBL)
PTPRKProteinQ15262 (Uniprot-TrEMBL)
PXN ProteinP49023 (Uniprot-TrEMBL)
PXN:MyrG-SRCComplexR-HSA-180523 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-EGFProteinP01133 (Uniprot-TrEMBL)
RAF/MAP kinase cascadePathwayR-HSA-5673001 (Reactome) The RAS-RAF-MEK-ERK pathway regulates processes such as proliferation, differentiation, survival, senescence and cell motility in response to growth factors, hormones and cytokines, among others. Binding of these stimuli to receptors in the plasma membrane promotes the GEF-mediated activation of RAS at the plasma membrane and initiates the three-tiered kinase cascade of the conventional MAPK cascades. GTP-bound RAS recruits RAF (the MAPK kinase kinase), and promotes its dimerization and activation (reviewed in Cseh et al, 2014; Roskoski, 2010; McKay and Morrison, 2007; Wellbrock et al, 2004). Activated RAF phosphorylates the MAPK kinase proteins MEK1 and MEK2 (also known as MAP2K1 and MAP2K2), which in turn phophorylate the proline-directed kinases ERK1 and 2 (also known as MAPK3 and MAPK1) (reviewed in Roskoski, 2012a, b; Kryiakis and Avruch, 2012). Activated ERK proteins may undergo dimerization and have identified targets in both the nucleus and the cytosol; consistent with this, a proportion of activated ERK protein relocalizes to the nucleus in response to stimuli (reviewed in Roskoski 2012b; Turjanski et al, 2007; Plotnikov et al, 2010; Cargnello et al, 2011). Although initially seen as a linear cascade originating at the plasma membrane and culminating in the nucleus, the RAS/RAF MAPK cascade is now also known to be activated from various intracellular location. Temporal and spatial specificity of the cascade is achieved in part through the interaction of pathway components with numerous scaffolding proteins (reviewed in McKay and Morrison, 2007; Brown and Sacks, 2009).
The importance of the RAS/RAF MAPK cascade is highlighted by the fact that components of this pathway are mutated with high frequency in a large number of human cancers. Activating mutations in RAS are found in approximately one third of human cancers, while ~8% of tumors express an activated form of BRAF (Roberts and Der, 2007; Davies et al, 2002; Cantwell-Dorris et al, 2011).
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
Resistant

ligand-responsive EGFR mutants:Covalent

EGFR TKIs
ComplexR-HSA-1220579 (Reactome)
Resistant

ligand-responsive

EGFR mutants
ComplexR-HSA-1220585 (Reactome)
Reversible EGFR-specific TKIs R-ALL-1176053 (Reactome)
Reversible anti-EGFRplus TKIs R-ALL-1216525 (Reactome)
SH3GL1 ProteinQ99961 (Uniprot-TrEMBL)
SH3GL2 ProteinQ99962 (Uniprot-TrEMBL)
SH3GL3 ProteinQ99963 (Uniprot-TrEMBL)
SH3KBP1 ProteinQ96B97 (Uniprot-TrEMBL)
SHC1 ProteinP29353 (Uniprot-TrEMBL)
SHC1ProteinP29353 (Uniprot-TrEMBL)
SOS1 ProteinQ07889 (Uniprot-TrEMBL)
SOS1ProteinQ07889 (Uniprot-TrEMBL)
SPRY1 ProteinO43609 (Uniprot-TrEMBL)
SPRY1/2ComplexR-HSA-182909 (Reactome)
SPRY1/2ComplexR-HSA-182912 (Reactome)
SPRY2 ProteinO43597 (Uniprot-TrEMBL)
SRC-1ProteinP12931-1 (Uniprot-TrEMBL)
STAM ProteinQ92783 (Uniprot-TrEMBL)
STAM2 ProteinO75886 (Uniprot-TrEMBL)
Sensitive

ligand-responsive EGFR

mutants:Non-covalent EGFR TKIs
ComplexR-HSA-1220587 (Reactome)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-Beta-Pix:CDC42:GTPComplexR-HSA-182915 (Reactome)
Ub-SH3KBP1 ProteinQ96B97 (Uniprot-TrEMBL)
UbComplexR-HSA-113595 (Reactome)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
p-4Y-EGFR ProteinP00533 (Uniprot-TrEMBL)
p-4Y-PLCG1 ProteinP19174 (Uniprot-TrEMBL)
p-4Y-PLCG1ProteinP19174 (Uniprot-TrEMBL)
p-5Y-GAB1 ProteinQ13480 (Uniprot-TrEMBL)
p-6Y-EGFR ProteinP00533 (Uniprot-TrEMBL)
p-Y-PXN ProteinP49023 (Uniprot-TrEMBL)
p-Y-PXN:CSK:MyrG,p-Y530-SRCComplexR-HSA-180522 (Reactome)
p-Y317-PAG1ProteinQ9NWQ8 (Uniprot-TrEMBL)
p-Y349,Y350-SHC1 ProteinP29353 (Uniprot-TrEMBL)
p-Y371-CBL ProteinP22681 (Uniprot-TrEMBL)
p-Y53-SPRY1 ProteinO43609 (Uniprot-TrEMBL)
p-Y55-SPRY2 ProteinO43597 (Uniprot-TrEMBL)
p-Y55-SPRY2ProteinO43597 (Uniprot-TrEMBL)
p-Y627,Y659-GAB1 ProteinQ13480 (Uniprot-TrEMBL)
p-Y850 EPS15 ProteinP42566 (Uniprot-TrEMBL)
p-Y992,Y1045,Y1068,Y1086,Y1173-EGFR ProteinP00533 (Uniprot-TrEMBL)
p21 RAS:GDPComplexR-HSA-109796 (Reactome)
p21 RAS:GTPComplexR-HSA-109783 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADAM:Zn2+mim-catalysisR-HSA-177946 (Reactome)
ADPArrowR-HSA-177930 (Reactome)
ADPArrowR-HSA-177933 (Reactome)
ADPArrowR-HSA-177934 (Reactome)
ADPArrowR-HSA-177937 (Reactome)
ADPArrowR-HSA-177939 (Reactome)
ADPArrowR-HSA-182969 (Reactome)
ADPArrowR-HSA-183058 (Reactome)
ADPArrowR-HSA-212710 (Reactome)
ADPArrowR-HSA-8867041 (Reactome)
ATPR-HSA-177930 (Reactome)
ATPR-HSA-177933 (Reactome)
ATPR-HSA-177934 (Reactome)
ATPR-HSA-177937 (Reactome)
ATPR-HSA-177939 (Reactome)
ATPR-HSA-182969 (Reactome)
ATPR-HSA-183058 (Reactome)
ATPR-HSA-212710 (Reactome)
ATPR-HSA-8867041 (Reactome)
Active dimers of

ligand-responsive

EGFR mutants
R-HSA-1220610 (Reactome)
Benzoquinoid ansamycinsR-HSA-1218824 (Reactome)
Beta-Pix:CDC42:GTPR-HSA-183002 (Reactome)
Beta-Pix:CDC42:GTPR-HSA-183094 (Reactome)
CBL:Beta-Pix:CDC42:GTPArrowR-HSA-183094 (Reactome)
CBL:GRB2ArrowR-HSA-183052 (Reactome)
CBL:GRB2R-HSA-183067 (Reactome)
CBL:SPRY1/2ArrowR-HSA-182988 (Reactome)
CBLR-HSA-182988 (Reactome)
CBLR-HSA-183052 (Reactome)
CBLR-HSA-183055 (Reactome)
CBLR-HSA-183094 (Reactome)
CDC37R-HSA-1218833 (Reactome)
CDC37R-HSA-1247999 (Reactome)
CIN85:endophilinArrowR-HSA-8951490 (Reactome)
CIN85:endophilinR-HSA-182994 (Reactome)
CIN85:endophilinR-HSA-183072 (Reactome)
CSKArrowR-HSA-177923 (Reactome)
CetuximabR-HSA-1248677 (Reactome)
Covalent EGFR

tyrosine kinase

inhibitors
R-HSA-1220611 (Reactome)
Covalent EGFR

tyrosine kinase

inhibitors
R-HSA-1225978 (Reactome)
EGF:EGFR

Dimer:Covalent EGFR

TKIs
ArrowR-HSA-1225978 (Reactome)
EGF:EGFR dimerArrowR-HSA-177922 (Reactome)
EGF:EGFR dimerR-HSA-1225978 (Reactome)
EGF:EGFR dimerR-HSA-177934 (Reactome)
EGF:EGFR dimerR-HSA-177937 (Reactome)
EGF:EGFR dimermim-catalysisR-HSA-177934 (Reactome)
EGF:EGFRArrowR-HSA-177942 (Reactome)
EGF:EGFRR-HSA-177922 (Reactome)
EGF:Ligand-responsive EGFR mutants dimerArrowR-HSA-1220613 (Reactome)
EGF:Ligand-responsive EGFR mutants:HSP90:CDC37R-HSA-1220613 (Reactome)
EGF:Ub-p-6Y-EGFR:p-Y371-CBL:GRB2ArrowR-HSA-183036 (Reactome)
EGF:Ub-p-6Y-EGFR:p-Y371-CBLArrowR-HSA-182993 (Reactome)
EGF:p-5Y-EGFR:GRB2:p-5Y-GAB1:SHP2ArrowR-HSA-177935 (Reactome)
EGF:p-6Y-EGFR dimerArrowR-HSA-177934 (Reactome)
EGF:p-6Y-EGFR dimerArrowR-HSA-177937 (Reactome)
EGF:p-6Y-EGFR dimerArrowR-HSA-212713 (Reactome)
EGF:p-6Y-EGFR dimerR-HSA-177925 (Reactome)
EGF:p-6Y-EGFR dimerR-HSA-177941 (Reactome)
EGF:p-6Y-EGFR dimerR-HSA-177943 (Reactome)
EGF:p-6Y-EGFR dimerR-HSA-183055 (Reactome)
EGF:p-6Y-EGFR dimerR-HSA-183067 (Reactome)
EGF:p-6Y-EGFR dimerR-HSA-212706 (Reactome)
EGF:p-6Y-EGFR dimerR-HSA-8864029 (Reactome)
EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTP:CIN85ArrowR-HSA-183002 (Reactome)
EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTP:CIN85R-HSA-8951490 (Reactome)
EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTPArrowR-HSA-8951490 (Reactome)
EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTPR-HSA-183084 (Reactome)
EGF:p-6Y-EGFR:CBL:Beta-Pix:CDC42:GTPmim-catalysisR-HSA-183084 (Reactome)
EGF:p-6Y-EGFR:CBL:GRB2ArrowR-HSA-183067 (Reactome)
EGF:p-6Y-EGFR:CBL:GRB2ArrowR-HSA-183084 (Reactome)
EGF:p-6Y-EGFR:CBL:GRB2R-HSA-183058 (Reactome)
EGF:p-6Y-EGFR:CBL:GRB2mim-catalysisR-HSA-183058 (Reactome)
EGF:p-6Y-EGFR:CBL:Ub-p-Y53/55-SPRY1/2ArrowR-HSA-183051 (Reactome)
EGF:p-6Y-EGFR:CBL:Ub-p-Y53/55-SPRY1/2ArrowR-HSA-183089 (Reactome)
EGF:p-6Y-EGFR:CBL:p-Y53/55-SPRY1/2R-HSA-183051 (Reactome)
EGF:p-6Y-EGFR:CBL:p-Y53/55-SPRY1/2mim-catalysisR-HSA-183051 (Reactome)
EGF:p-6Y-EGFR:CBLArrowR-HSA-183055 (Reactome)
EGF:p-6Y-EGFR:CBLR-HSA-182969 (Reactome)
EGF:p-6Y-EGFR:CBLmim-catalysisR-HSA-182969 (Reactome)
EGF:p-6Y-EGFR:GRB2:GAB1ArrowR-HSA-177941 (Reactome)
EGF:p-6Y-EGFR:GRB2:GAB1R-HSA-177930 (Reactome)
EGF:p-6Y-EGFR:GRB2:GAB1mim-catalysisR-HSA-177930 (Reactome)
EGF:p-6Y-EGFR:GRB2:SOS1ArrowR-HSA-177943 (Reactome)
EGF:p-6Y-EGFR:GRB2:SOS1mim-catalysisR-HSA-177938 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:PI3KArrowR-HSA-177927 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:PI3Kmim-catalysisR-HSA-177939 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2ArrowR-HSA-177944 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2R-HSA-177924 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2R-HSA-177935 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2mim-catalysisR-HSA-177923 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2mim-catalysisR-HSA-177924 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2mim-catalysisR-HSA-177926 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1:SHP2mim-catalysisR-HSA-177935 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1ArrowR-HSA-177930 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1R-HSA-177927 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-5Y-GAB1R-HSA-177944 (Reactome)
EGF:p-6Y-EGFR:GRB2:p-Y627,659-GAB1:SHP2ArrowR-HSA-177924 (Reactome)
EGF:p-6Y-EGFR:PLCG1ArrowR-HSA-212706 (Reactome)
EGF:p-6Y-EGFR:PLCG1R-HSA-212710 (Reactome)
EGF:p-6Y-EGFR:PLCG1mim-catalysisR-HSA-212710 (Reactome)
EGF:p-6Y-EGFR:SHC1ArrowR-HSA-177925 (Reactome)
EGF:p-6Y-EGFR:SHC1R-HSA-177933 (Reactome)
EGF:p-6Y-EGFR:SHC1mim-catalysisR-HSA-177933 (Reactome)
EGF:p-6Y-EGFR:p-Y349,350-SHC1:GRB2:SOS1ArrowR-HSA-177936 (Reactome)
EGF:p-6Y-EGFR:p-Y349,350-SHC1:GRB2:SOS1mim-catalysisR-HSA-177945 (Reactome)
EGF:p-6Y-EGFR:p-Y349,350-SHC1ArrowR-HSA-177933 (Reactome)
EGF:p-6Y-EGFR:p-Y349,350-SHC1R-HSA-177936 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:Endophilin:Epsin:Eps15L1:Eps15ArrowR-HSA-183072 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:Endophilin:Epsin:Eps15L1:Eps15R-HSA-182986 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:Endophilin:Epsin:Eps15L1:Eps15R-HSA-182990 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:Endophilin:Epsin:Eps15L1:Eps15mim-catalysisR-HSA-182986 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:CIN85:SPRY1/2:Endophilin:Epsin:Eps15L1:EPS15ArrowR-HSA-182990 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:EPS15:HGS:STAMArrowR-HSA-8867044 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:EPS15:HGS:STAMArrowR-HSA-8867047 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:EPS15:HGS:STAMR-HSA-8867041 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:EPS15:HGS:STAMmim-catalysisR-HSA-8867041 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:p-EPS15:HGS:STAMArrowR-HSA-8867041 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:Endophilin:EPN1:EPS15L1:p-EPS15:HGS:STAMR-HSA-8867047 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:EndophilinArrowR-HSA-182994 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:EndophilinR-HSA-183002 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2:CIN85:EndophilinR-HSA-8867044 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2ArrowR-HSA-183058 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2R-HSA-182994 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2R-HSA-183036 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:GRB2mim-catalysisR-HSA-183036 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBL:Ub-CIN85:Endophilin:Epsin:Eps15L1:Eps15ArrowR-HSA-182986 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBLArrowR-HSA-182969 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBLR-HSA-182993 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBLR-HSA-183072 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBLR-HSA-183089 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBLmim-catalysisR-HSA-182993 (Reactome)
EGF:p-6Y-EGFR:p-Y371-CBLmim-catalysisR-HSA-183089 (Reactome)
EGF:p-6Y-EGFR:p-Y472,771,783,1254-PLCG1ArrowR-HSA-212710 (Reactome)
EGF:p-6Y-EGFR:p-Y472,771,783,1254-PLCG1R-HSA-212713 (Reactome)
EGF:p-EGFR dimer

dephosphorylated at

Y1148 (Y1172)
ArrowR-HSA-8864029 (Reactome)
EGFArrowR-HSA-177946 (Reactome)
EGFR-HSA-177942 (Reactome)
EGFR:CetuximabArrowR-HSA-1248677 (Reactome)
EGFRR-HSA-1248677 (Reactome)
EGFRR-HSA-177942 (Reactome)
EGFRvIII mutant:HSP90:CDC37ArrowR-HSA-1247999 (Reactome)
EGFRvIII mutant:HSP90:CDC37R-HSA-1248002 (Reactome)
EGFRvIII mutant dimerArrowR-HSA-1248002 (Reactome)
EGFRvIIIR-HSA-1247999 (Reactome)
EPN1R-HSA-183072 (Reactome)
EPN1R-HSA-8867044 (Reactome)
EPS15:HGS:STAMR-HSA-183072 (Reactome)
EPS15:HGS:STAMR-HSA-8867044 (Reactome)
EPS15L1R-HSA-183072 (Reactome)
EPS15L1R-HSA-8867044 (Reactome)
GAB1R-HSA-177920 (Reactome)
GDPArrowR-HSA-177938 (Reactome)
GDPArrowR-HSA-177945 (Reactome)
GRB2-1:SOS1ArrowR-HSA-109813 (Reactome)
GRB2-1:SOS1R-HSA-177936 (Reactome)
GRB2-1:SOS1R-HSA-177943 (Reactome)
GRB2-1R-HSA-109813 (Reactome)
GRB2-1R-HSA-177920 (Reactome)
GRB2-1R-HSA-183052 (Reactome)
GRB2:GAB1,GRB2:GAB1:PIP3R-HSA-177941 (Reactome)
GRB2:GAB1:PIP3ArrowR-HSA-179467 (Reactome)
GRB2:GAB1ArrowR-HSA-177920 (Reactome)
GRB2:GAB1R-HSA-179467 (Reactome)
GTPR-HSA-177938 (Reactome)
GTPR-HSA-177945 (Reactome)
H2OR-HSA-177923 (Reactome)
H2OR-HSA-177924 (Reactome)
H2OR-HSA-177926 (Reactome)
H2OR-HSA-177935 (Reactome)
H2OR-HSA-8864029 (Reactome)
H2OR-HSA-8867047 (Reactome)
HSP90:Benzoquinoid ansamycinsArrowR-HSA-1218824 (Reactome)
HSP90R-HSA-1218824 (Reactome)
HSP90R-HSA-1218833 (Reactome)
HSP90R-HSA-1247999 (Reactome)
LRIG1TBarR-HSA-177942 (Reactome)
Ligand-responsive

EGFR

mutants:HSP90:CDC37
ArrowR-HSA-1218833 (Reactome)
Ligand-responsive

EGFR

mutants:HSP90:CDC37
R-HSA-1220614 (Reactome)
Ligand-responsive EGFR mutants dimerArrowR-HSA-1220614 (Reactome)
Ligand-responsive EGFR mutantsR-HSA-1218833 (Reactome)
Non-covalent EGFR

tyrosine kinase

inhibitors
R-HSA-1220610 (Reactome)
PAG1ArrowR-HSA-177926 (Reactome)
PI(3,4,5)P3ArrowR-HSA-177939 (Reactome)
PI(3,4,5)P3R-HSA-179467 (Reactome)
PI(4,5)P2R-HSA-177939 (Reactome)
PI(4,5)P2R-HSA-8867044 (Reactome)
PIK3CA:PIK3R1R-HSA-177927 (Reactome)
PLCG1R-HSA-212706 (Reactome)
PTPN11R-HSA-177944 (Reactome)
PTPN12mim-catalysisR-HSA-8864029 (Reactome)
PTPN3mim-catalysisR-HSA-8867047 (Reactome)
PTPRKTBarR-HSA-183036 (Reactome)
PXN:MyrG-SRCArrowR-HSA-177923 (Reactome)
PiArrowR-HSA-177923 (Reactome)
PiArrowR-HSA-177924 (Reactome)
PiArrowR-HSA-177926 (Reactome)
PiArrowR-HSA-177935 (Reactome)
PiArrowR-HSA-8864029 (Reactome)
PiArrowR-HSA-8867047 (Reactome)
Pro-EGFR-HSA-177946 (Reactome)
R-HSA-109813 (Reactome) In the cytoplasm of unstimulated cells, SOS1 is found in a complex with GRB2. The interaction occurs between the carboxy terminal domain of SOS1 and the Src homology 3 (SH3) domains of GRB2.
R-HSA-1218824 (Reactome) Benzoquinoid ansamycins (geldanamycin, herbimycin, and geldanamycin derivatives 17-AAG, 17-DMAG and IPI-504) are antitumor antibiotics that inactivate HSP90 by binding to its substrate-binding pocket.
R-HSA-1218833 (Reactome) EGFR kinase domain mutants need continuous association with HSP90 chaperone protein for proper functioning. CDC37 is a co-chaperone of HSP90 that acts as a scaffold and regulator of interaction between HSP90 and its protein kinase clients. CDC37 binds a protein kinase through its N-terminal domain and HSP90 through its C-terminal domain, arresting ATP-ase activity of HSP90 and enabling the loading of a client kinase. CDC37 is frequently over-expressed in cancers involving mutant kinases and acts as an oncogene (reviewed by Gray Jr. et al. 2008). Association of EGFR extracellular domain point mutants with HSP90 chaperone has not been tested.
R-HSA-1220610 (Reactome) Non-covalent (reversible) tyrosine kinase inhibitors (TKIs), erlotinib, gefitinib, lapatinib and vandetanib, selectively inhibit EGFR-stimulated tumor cell growth by blocking EGFR mutant autophosphorylation through competitive inhibition of ATP binding to the kinase domain. A number of EGFR kinase domain mutants and extracellular domain point mutants show increased senistivity to non-covalent TKIs compared with the wild-type EGFR. EGFR kinase domain mutants may be resistant to non-covalent TKIs due to primary or secondary mutations in the kinase domain that increase the affinity of the kinase domain for ATP, such as small insertions within exon 20, and substituion of threonine 790 with methionine (T790M).
R-HSA-1220611 (Reactome) Covalent (irreversible) tyrosine kinase inhibitors (TKIs), pelitinib, WZ4002, HKI-272, canertinib and afatinib, form a covalent bond with the EGFR cysteine residue C397 and inhibit trans-autophosphorylation of mutants resistant to non-covalent TKIs. However, effective concentrations of covalent TKIs also inhibit wild type EGFR, resulting in severe side effects. Hence, covalent TKIs have not shown much promise as therapeutics.
R-HSA-1220613 (Reactome) Although ligand-responsive EGFR mutants dimerize spontaneously, dimerization is increased in the presence of EGF.
R-HSA-1220614 (Reactome) EGFR ligand-responsive mutants dimerize spontaneously, without ligand binding, although ligand binding ability is preserved. This was experimentally demonstrated for EFGR L858R mutant and is presumed to happen in other constitutively active EGFR kinase domain mutants and EGFR extracellular domain point mutants.
R-HSA-1225978 (Reactome) Covalent (irreversible) TKIs, pelitinib, WZ4002, HKI-272, canertinib and afatinib, inhibit the wild-type EGFR through formation of the covalent bond with the cysteine residue C397.
R-HSA-1247999 (Reactome) Association of EGFRvIII mutant with HSP90 chaperone protein and its co-chaperone CDC37 is necessary for the proper functioning of mutant EGFR.
R-HSA-1248002 (Reactome) EGFRvIII mutant lacks the ligand binding domain and is therefore unable to bind EGFR ligands, but is able to dimerize spontaneously. Self-dimerization may be dependent on N-linked glycosylation.
R-HSA-1248677 (Reactome) Cetuximab binds to the extracellular domain of EGFR and blocks ligand binding, leading to receptor inactivation, internalization and degradation. Cetuximab is approved for combination therapy and monotherapy of metastatic colorectal cancer and advanced squamous cell carcinoma of head and neck in patients whose tumors over-express wild-type EGFR protein, usually due to amplification of EGFR gene.
R-HSA-177920 (Reactome) GRB2 (Growth factor receptor-bound protein 2) binds to GAB1 (GRB2-associated binding protein 1).
R-HSA-177922 (Reactome) EGF and other growth factors induce oligomerization of their specific receptors. Inactive EGFR monomers are in equilibrium with active EGFR dimers and binding of the EGF ligand stabilizes the active dimeric form.
R-HSA-177923 (Reactome) SHP2 can dephosphorylate paxillin, which leads to Csk dissociation from the paxillin-Src complex and Src activation. Src is an SHP2 effector in EGF-stimulated Erk activation and cell migration.
R-HSA-177924 (Reactome) Phosphorylated GAB1 can bind PI3 kinase by its regulatory alpha subunit. SHP2 dephosphorylation of the tyrosine residues 447, 472 and 589 on GAB1 means PI3 kinase can no longer bind to the complex in the plasma membrane and cannot be activated.
R-HSA-177925 (Reactome) SHC1 (Src homology 2 domain-containing) transforming protein can bind to either phosphorylated tyrosine 1148 (p-Y1148) and/or tyrosine 1173 (p-Y1173) sites on the EGF receptor. The N-terminal phosphotyrosine binding domain (PBD) of SHC1, also known as the phosphotyrosine interaction (PI) domain, binds to phosphorylated p-Y1148 of EGFR, which is part of the NPXpY motif. The SH2 domain of SHC1 binds to p-Y1173 of EGFR (Batzer et al. 1995, Songyang et al. 1995, Sakaguchi et al. 1998).
R-HSA-177926 (Reactome) Dephosphorylation of CBP/PAG negatively regulates the recruitment of the Src inhibiting kinase, Csk. Src is not negatively regulated by phosphorylation by Csk.
R-HSA-177927 (Reactome) The Src homology 2 (SH2) domain of the phosphatidylinositol 3-kinase (PIK3) regulatory subunit (PIK3R1, i.e. PI3Kp85) binds to GAB1 in a phosphorylation-independent manner. GAB1 serves as a docking protein which recruits a number of downstream signalling proteins. PIK3R1 can bind to either GAB1 or phosphorylated GAB1(Rodrigues et al. 2000, Onishi-Haraikawa et al. 2001). In unstimulated cells, PI3K class IA exists as an inactive heterodimer of a p85 regulatory subunit (encoded by PIK3R1, PIK3R2 or PIK3R3) and a p110 catalytic subunit (encoded by PIK3CA, PIK3CB or PIK3CD). Binding of the iSH2 domain of the p85 regulatory subunit to the ABD and C2 domains of the p110 catalytic subunit both stabilizes p110 and inhibits its catalytic activity. This inhibition is relieved when the SH2 domains of p85 bind phosphorylated tyrosines on activated RTKs or their adaptor proteins. Binding to membrane-associated receptors brings activated PI3K in proximity to its membrane-localized substrate, PIP2 (Mandelker et al. 2009, Burke et al. 2011).
R-HSA-177930 (Reactome) EGFR kinase phosphorylates the phosphorylation sites tyrosine 627 and 659 on GAB1
R-HSA-177933 (Reactome) Once bound to EGFR, SHC1 is phosphorylated on two tyrosines (Y349, Y350).
R-HSA-177934 (Reactome) The cytoplasmic domain of EGFR contains tyrosine, serine and threonine phosphorylation sites. Dimerization of EGFR activates its intrinsic protein kinase activity and results in autophosphorylation of 6 tyrosine residues in the cytoplasmic tail of EGFR. Tyrosine autophosphorylation is crucial for normal receptor signalling. Five of these tyrosine residues (Y992, Y1068, Y1086, Y1148 and Y1173) serve as specific binding sites for cytosolic target proteins involved in signal transmission, while the tyrosine residue Y1045 is involved in recruitment of CBL ubiquitin ligase and downregulation of EGFR signaling through degradation of activated EGFR.
R-HSA-177935 (Reactome) The tyrosine-protein phosphatase SHP2 is a positive effector of EGFR signalling. SHP2 inhibits the tyrosine-dependent translocation of RasGAP (catalyses Ras inactivation) to the plasma membrane, thereby keeping it away from Ras-GTP (its substrate). This inhibition is achieved by the dephosphorylation of a RasGAP binding site on the EGF receptor.
R-HSA-177936 (Reactome) The tyrosine sites on SHC1 become possible binding sites for the GRB2:SOS1 complex.
R-HSA-177937 (Reactome) Besides autophosphorylation, EGFR can become tyrosine-phosphorylated by the action of the proto-oncogene tyrosine-protein kinase, c-src. This Src homology 2 (SH2) domain-containing protein is one of many such proteins which bind to phosphorylated sites on EGFR to affect signal transmission into the cell.
R-HSA-177938 (Reactome) The guanine nucleotide exchange factor SOS1 interacts with EGFR through the adaptor protein, GRB2. Upon formation of this complex, SOS activates RAS by promoting GDP release and GTP binding.
R-HSA-177939 (Reactome) The kinase activity of PIK3 mediates the phosphorylation of PIP2 to form PIP3
R-HSA-177941 (Reactome) The regulatory subunit of PIK3 mediates the association of GAB1 and receptor protein-tyrosine kinases such as the EGF receptor, which can phosphorylate GAB1. It appears that the PIK3 regulatory subunit acts as an adaptor protein allowing GAB1 to serve as a substrate for several tyrosine kinases.
R-HSA-177942 (Reactome) The prototypic receptor tyrosine kinase (RTK) EGFR is composed of 3 major domains; an extracellular domain linked via a single membrane-spanning domain to a cytoplasmic domain. EGF binds to the extracellular domain from where the signal is transmitted to the cytoplasmic domain.
R-HSA-177943 (Reactome) Cytoplasmic target proteins containing the SH2 domain can bind to activated EGFR. One such protein, growth factor receptor-bound protein 2 (GRB2), can bind activated EGFR with its SH2 domain whilst in complex with SOS through its SH3 domain. GRB2 can bind at either Y1068 and/or Y1086 tyrosine autophosphorylation sites on the receptor.
R-HSA-177944 (Reactome) The SH2 domains repress phosphatase activity of SHP2. Binding of these domains to phosphotyrosine-containing proteins relieves this autoinhibition, possibly by inducing a conformational change in the enzyme.
R-HSA-177945 (Reactome) SOS1 is the guanine nucleotide exchange factor (GEF) for RAS. SOS1 activates RAS nucleotide exchange from the inactive form (bound to GDP) to an active form (bound to GTP).
R-HSA-177946 (Reactome) Ligands of the epidermal growth factor receptor (EGFR) are shed from the plasma membrane by metalloproteases. Identification of the sheddases for EGFR ligands using mouse embryonic cells lacking candidate sheddases (a disintegrin and metalloprotease; ADAM) has revealed that ADAM10, -12 and -17 are the sheddases of the EGFR ligands in response to various shedding stimulants such as GPCR agonists, growth factors, cytokines, osmotic stress, wounding and phorbol ester. Among the EGFR ligands, heparin-binding EGF-like growth factor (HB-EGF), EGF and TGF-alpha are the best characterized.
R-HSA-179467 (Reactome) The pleckstrin homology (PH) domain of GAB1 binds to PIP3 and can target GAB1 to the plasma membrane in response to EGF stimulation. This mechanism provides a positive feedback loop with respect to PI3K activation, to enhance EGFR signalling.
R-HSA-182969 (Reactome) EGF (and indeed FGF, PDGF and NGF) stimulation results in CBL phosphorylation on Tyr-371. Phosphorylation is necessary for CBL to exhibit ubiquitin ligase activity.
R-HSA-182986 (Reactome) The adaptor protein CIN85 is monoubiquitinated by CBL after EGF stimulation. Monoubiquitination is thought to regulate receptor internalization and endosomal sorting.
R-HSA-182988 (Reactome) The NEYTEG motif is very similar to the CBL binding motif around Tyr-1045 in EGFR. Tyrosine-phosphorylated Sprouty (hSpry) binds to CBL, which then cannot ubiquitinate EGFR. Sprouty acts as a decoy to lure CBL away from EGFR and targets it for degradation.
R-HSA-182990 (Reactome) Sprouty can constitutively interact with two SH3 domains of CIN85 whereas the third SH3 domain of CIN85 can still associate with CBL on cell activation with EGF. This allows Sprouty to block CIN85-mediated clustering of CBL molecules, stablization of CBL-EGFR interactions and efficient ubiquitination and down-regulation of EGFR.
R-HSA-182993 (Reactome) CBL down-regulates receptor tyrosine kinases by conjugating ubiquitin to them. This leads to receptor internalization and degradation. The ubiquitin protein ligase activity of CBL (abbreviated as E3 activity) is mediated by its RING finger domain.
R-HSA-182994 (Reactome) CBL-CIN85-Endophilin complex mediates ligand-induced down-regulation of the EGF receptor. The BAR domain of endophilin induces membrane curvature. The three SH3 domains of CIN85 bind to atypical proline-arginine motifs (PxxxPR) present in the carboxyl termini of CBL and CBL-b. In this way, CIN85 clusters CBL molecules, which is crucial for efficient EGFR endocytosis and degradation (Soubeyran et al. 2002).
R-HSA-183002 (Reactome) High concentrations of active CDC42 (bound to GTP) and Beta-Pix may promote the binding of Beta-Pix to CBL, pushing out the usually preferred binding partner CIN85 (SH3KBP1) from the CBL complex. This competitive mechanism could block the CIN85-imposed clustering phenomenon on CBL that is required for tighter binding (Schmidt et al. 2006).
R-HSA-183036 (Reactome) CBL down-regulates receptor tyrosine kinases by conjugating ubiquitin to them. This leads to receptor internalization and degradation. The ubiquitin protein ligase activity of CBL (abbreviated as E3 activity) is mediated by its RING finger domain.
R-HSA-183051 (Reactome) Sprouty is ubiquitinated by CBL in an EGF-dependent manner. EGF stimulation induces the tyrosine phosphorylation of Sprouty, which in turn enhances the interaction of Sprouty with CBL. The CBL-mediated ubiquitination of Sprouty targets the protein for degradation by the 26S proteasome.
R-HSA-183052 (Reactome) CBL binds multiple signalling proteins including GRB2. The CBL:GRB2 complex translocates to the plasma membrane where it can bind to GRB2-specific docking sites on the EGF receptor.
R-HSA-183055 (Reactome) Phosphorylation at tyrosine Y1045 of EGFR creates a major docking site for E3 ubiquitin-protein ligase, CBL (Casitas B-lineage lymphoma proto- oncogene) and is required to sort the EGFR to lysosomes for degradation. The E3 ligase CBL plays a crucial role in these events as it dually participates in early events of internalization via a CIN85-endophilin dependent mechanism and endocytic sorting by mediating multiple monoubiquitylation of the receptor.
R-HSA-183058 (Reactome) EGF (and indeed FGF, PDGF and NGF) stimulation results in CBL phosphorylation on Tyr-371. Phosphorylation is necessary for CBL to exhibit ubiquitin ligase activity.
R-HSA-183067 (Reactome) Upon EGF stimulation and consequent EGFR phosphorylation, GRB2 binds phosphorylated tyrosines
R-HSA-183072 (Reactome) At higher concentrations of ligand, a substantial fraction of the receptor (>50%) is endocytosed through a clathrin independent, lipid-raft-dependent route as the receptor becomes Y1045 phosphorylated and ubiquitnated. Eps15 and Epsin are found in caveolae. Eps15 and Epsin are immunoprecipated with the EGF receptor. Non-clathrin internalization of ubiquitinated EGFR depends on its interaction with proteins harbouring the UIM Ub-interacting motif, as shown through the ablation of three Ub-interacting motif-containing proteins, Eps15, Eps15R and Epsin.
R-HSA-183084 (Reactome) Beta-Pix (Cool-1) associates with CBL, which appears to be a critical step in CDC42-mediated inhibition of EGFR ubiquitylation and downregulation. The SH3 domain of Beta-Pix specifically interacts with a proline-arginine motif (PxxxPR) present within CBL, which mediates ubiquitylation and subsequent degradation of Beta-Pix.
R-HSA-183089 (Reactome) Sprouty is ubiquitinated by CBL in an EGF-dependent manner. EGF stimulation induces the tyrosine phosphorylation of Sprouty, which in turn enhances the interaction of Sprouty with CBL.The CBL-mediated ubiquitination of Sprouty targets the protein for degradation by the 26S proteosome.
R-HSA-183094 (Reactome) Activated CDC42 binds to Beta-Pix (p85Cool-1), a protein that directly associates with CBL. This inhibits the binding of CBL to the EGF receptor and thus prevents CBL from catalyzing receptor ubiquitination.
R-HSA-212706 (Reactome) Inactive phospholipase C-gamma1 (PLCG1) binds to activated epidermal growth factor receptor (EGFR).
R-HSA-212710 (Reactome) EGFR phosphorylates PLC-gamma1, thus activating it.
R-HSA-212713 (Reactome) Once activated PLC-gamma1 dissociates from EGFR, it can hydrolyze PIP2.
R-HSA-8864029 (Reactome) PTPN12 protein tyrosine phosphatase dephosphorylates activated EGFR at tyrosine residue Y1148 (Y1148 corresponds to Y1172 in the nascent EGFR sequence which includes the 24 amino acid long signal peptide at the N-terminus). PTPN12-mediated dephosphorylation of activated EGFR inhibits SHC1 recruitment to the p-Y1148 docking site, thus attenuating downstream RAS activation (Sun et al. 2011). The recruitment of SHC1 to p-Y1148 of EGFR is mediated by the N-terminal phosphotyrosine interaction domain (PID) of SHC1 (Batzer et al. 1995, Songyang et al. 1995).
R-HSA-8867041 (Reactome) EPS15 is phosphorylated at Y849 by activated EGFR (Confalonieri et al, 2000). While the roles of phosphorylation and ubiquitination in EGFR endocytosis are unclear, emerging evidence suggests that EPS15 phosphorylation may target the activated EGFR complex for endocytosis through a clathrin-mediated route, while dephosphorylation at Y849 may direct the receptor complex into a clathrin-independent route (Confalonieri et al, 2002; de Melker et al, 2004; Li et al, 2015; reviewed in van Bergen en Henegouwen, 2009).
R-HSA-8867044 (Reactome) EH-containing proteins such as EPS15, EPN1 and EPS15L1 are required for the endocytosis of ligand-activated EGFR (Confalonieri et al, 2000; Huang et al, 2004; reviewed in van Bergen en Henegouwen, 2009). EPS15 and EPN1 bind components of the clathrin coated pit through DPF motifs and likely bind to EGFR through the ubiquitin interacting motifs (UIMs). In this way EH proteins may help cluster activated EGFR into nascent clathrin-coated pits (Kazazic et al, 2009; Benmerah et al, 2000; reviewed in van Bergen en Henegouwen, 2009). Note, however, that EH-containing proteins are also involved in the clathrin-independent endocytosis of EGFR (Sigismund et al, 2005)
R-HSA-8867047 (Reactome) While the roles of EGFR and EPS15 phosphorylation and ubiquitination are not completely clear, recent evidence supports the idea that EGFR-mediated phosphorylation of EPS15 promotes the clustering of the activated receptor into clathrin-coated pits, while the dephosphorylated EPS15 targets EGFR for endocytosis through a caveolin-and lipid raft-dependent route (reviewed in van Bergen en Henegouwen, 2009). Consistent with this, overexpression of the phosphatase PTPN3, which dephosphorylates EPS15 in vitro and in vivo, promotes the internalization of EGFR into caveolin-enriched structures and targets it for lysosomal degradation (Li et al, 2015).
R-HSA-8951490 (Reactome) High concentrations of active CDC42 (bound to GTP) and Beta-Pix may promote the binding of Beta-Pix to CBL, pushing out the usually preferred binding partner CIN85 (SH3KBP1) from the CBL complex. This competitive mechanism could block the CIN85-imposed clustering phenomenon on CBL that is required for tighter binding (Schmidt et al. 2006).
Resistant

ligand-responsive EGFR mutants:Covalent

EGFR TKIs
ArrowR-HSA-1220611 (Reactome)
Resistant

ligand-responsive

EGFR mutants
ArrowR-HSA-1220610 (Reactome)
Resistant

ligand-responsive

EGFR mutants
R-HSA-1220611 (Reactome)
SHC1R-HSA-177925 (Reactome)
SOS1R-HSA-109813 (Reactome)
SPRY1/2R-HSA-182990 (Reactome)
SPRY1/2R-HSA-183089 (Reactome)
SRC-1mim-catalysisR-HSA-177937 (Reactome)
Sensitive

ligand-responsive EGFR

mutants:Non-covalent EGFR TKIs
ArrowR-HSA-1220610 (Reactome)
Ub-Beta-Pix:CDC42:GTPArrowR-HSA-183084 (Reactome)
UbR-HSA-182986 (Reactome)
UbR-HSA-182993 (Reactome)
UbR-HSA-183036 (Reactome)
UbR-HSA-183051 (Reactome)
UbR-HSA-183084 (Reactome)
UbR-HSA-183089 (Reactome)
p-4Y-PLCG1ArrowR-HSA-212713 (Reactome)
p-Y-PXN:CSK:MyrG,p-Y530-SRCR-HSA-177923 (Reactome)
p-Y317-PAG1R-HSA-177926 (Reactome)
p-Y55-SPRY2R-HSA-182988 (Reactome)
p21 RAS:GDPR-HSA-177938 (Reactome)
p21 RAS:GDPR-HSA-177945 (Reactome)
p21 RAS:GTPArrowR-HSA-177938 (Reactome)
p21 RAS:GTPArrowR-HSA-177945 (Reactome)
Personal tools