trans-Golgi Network Vesicle Budding (Homo sapiens)

From WikiPathways

Revision as of 15:57, 9 October 2020 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
201, 10, 16, 21, 282, 4, 17, 196, 7, 99, 229, 26, 295, 186, 7, 9319, 26, 296, 9, 12, 13, 259, 2296103, 15, 23, 27, 3011, 246, 9, 12, 13, 25146, 8Golgi lumenendosome lumencytosolsecretory granule membranecytoplasmic vesicle membranelysosomal lumenSNX9 ARF1 GAK TBC1D8B AP1M1 AP1G2TPD52 STX4AP4S1 GTP HSC70:AuxillinComplexYIPF6 CLTC-1 AP3B1 AP1B1 GTPAP1B1 BLOC1S1 Vamp8:SNAP23:Syn4Secretory granuledocking and fusioncomplexSNAPIN TGOLN2 AP1M2 AP1S3 AP4Arf1-GTPSNAP23 AP1M1 AP1M2 TFRC(1-760) NECAP1 SNX5 CLTA NECAP1 ARRB1BLOC1S3 GTP AP1B1 GOLGB1 TFRC(1-760) TGOLN2 AP1G1 VAMP8OCRL Clathrin light chain OCRL GDPGDP AP4B1 DNASE2 PIK3C2A SNAP23SNAPIN CPD HIP1R AP1G1 APP(18-770) GDPM6PR RAB5C AP1S2 Arf1-GDPM6PR AP1S3 AP4M1 RAB5C CLTC-1 BLOC1S1 AP1S3 Clathrin TriskelionAP1S2 AP1S2 TGOLN2 RAB5C Clathrin light chain OCRL TPD52L1 VAMP8 AP1S1 CLTC-1 SNX9 AP4E1 AP1G1 TBC1D8B AP1S2 CLTC-1 AP1B1 CLVS1 Golgi-associatedvesicle interactingproteinsClathrin TriskelionAP3B1 Clathrin TriskelionAP3B1 SNX2 CLTC HGSARRB1BLOC1S4 SH3D19PUM1 VAMP2 GAK AP4B1 CTSZ SNX2 PICALM GOLGB1 homodimerClathrin light chain AP3S1 VAMP2 SH3GL2IGF2R AP1S3 HSPA8 VAMP2 PiAP1S3 PiAP1S2 CLVS2 AP1S1 AP4M1 TGOLN2 IGF2R GAK BLOC1S6LysosomeDestinedCargo:AP-1:Arf1-GTP:beta-Arrestin-1:Vamp ComplexGTP STX4 AP3S1 AP1S1 FTH1 ADPARF1 AP4S1 PI(3,5)P2 CLTA VAMP7CPD VAMP8TXNDC5 VampGNS YIPF6 M6PR ATPGolgi-associatedVesicle DestinedCargoVAMP2AP4B1 GBF1ARF1 Ferritin ComplexAP1S3 TXNDC5Clathrin light chain SORT1 GNS AP1G1 TXNDC5 PiNECAP1 Clathrin light chain AP1M1 VAMP7SORT1 SNX2 HIP1R HIP1R TXNDC5 AP4E1 ARRB1 AP1M2 VampARF1 AP1M2 AP4M1 ARF1 ARRB1 VAMP8 AP1S2 AP1S3 AP1M1 ACBD3 CLVS2 SORT1 Lysosome DestinedCargoTPD52L1 AP1G1 Golgi-associatedVesicle DestinedCargoVAMP2 BLOC1S1 SNX9 IGF2R HIP1R Clathrin light chain CTSZ DNM2TPD52L1 VAMP7 DNAJC6 SORT1 ACBD3AP1S1 CLTB DNASE2 VAMP2 CPD AP4B1 AP1S2 TBC1D8B PiCargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin ComplexAP1G1 AP1S2 AP-1 ComplexVAMP8 Clathrin light chain HGS TPD52L1 DTNBP1SNX5 AP1S1 CLINT1STX4AP4B1 GTP AP3S1 TFRC(1-760) YIPF6 SNX2 VAMP2VAMP7 AP1M1 TPD52 AP4E1 GOLGB1 TGOLN2 FTL ADPDNAJC6 APP(18-770)AP1M2 SNX5 Arf1-GDPBLOC1S3VAMP8 CPD CLTC-1 VAMP8 SH3GL2 VampRAB5C DNM2 SNAP23 AP1B1 NAPA AP4B1 AP1B1 VAMP7 AP1S1 RAB5C AP1M1 VAMP8 SNAPIN AP1G1 AP1M1 AP1B1 VAMP2 AP1S2 TBC1D8B DNASE2 NECAP1 AP1G2 VAMP7 PIK3C2A CLTC AP1G1 SNX9 AP4:APPM6PR AP3B1 AP3B1 AP1M1 AP1G1 Cargo:AP-1:Arf1-GTP:beta-Arrestin-1:Vamp ComplexAP4E1 YIPF6 ARRB1CLINT1 AP1B1 PIK3C2A BLOC1S4OCRL CHMP2APiGDP ARRB1 CLTC-1 AP1M2 LysosomeDestinedCargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin ComplexAP1M1 APP(18-770) PICALM VAMP2 CLTC-1 PICALM HIP1R TPD52 CTSZ Lysosome CargoAP1S1 IGF2R SH3D19 AP1S1 BLOC1S1 ACBD3:GOLGB1 dimerVAMP8 Lysosome CargoSNX2 CHMP2A LysosomeCargo:AP-1:Beta-arrestin:Clathrin Triskelion:Vamp ComplexAP1M2 TFRC(1-760) AP1B1 SNAP23 AP1G1 AP4E1 AP1M2 Lysosome DestinedCargoM6PR SNAP23AP-1 ComplexARRB1 CLAT:AP1:CLVS:PI(3,5)P2AP1M1 AP4:APPNAPAVamp7:SNAP23:Syn4Plasma membranevesicle docking andfusion complexDNASE2 CLVS1 GNS AP1M2 AP-1 ComplexAP1S3 AP1M1 AP1M2 VAMP8 Arf1-GDPVAMP2 VAMP7 OCRL GTPTFRC(1-760) AP1B1 AP1G1 BLOC1S6 SNX5 NECAP1 DTNBP1 AP1S3 AP1S2 GAK SH3GL2TPD52L1 AP4B1 PICALM TXNDC5 AP4E1 Golgi-associatedVesicle CargoAP1S3 AP4B1 AP1B1 STX4 AP1S1 YIPF6 Cargo:AP-1:Beta-arrestin:Clathrin Triskelion:Vamp ComplexCLTB AP1S1 IGF2R AP1G2:HGS:CHMP2ASNAPIN BLOC1S1 BLOC1S1 ARRB1 VAMP7 GNS GDPDNASE2 HSC70:AuxillinComplexVAMP2 PICALM VAMP7 SORT1 CLAT:AP1:CLVSVAMP7 BLOC1S1AP3S1 VAMP7 AP1S2 GNS GAK Arf1-GTPTXNDC5 AP1S1 FTL AP1S3 BLOC-1 ComplexPUM1SNX5 HSPA8 ARF1 VAMP7 TXNDC5 ARRB1 AP3S1 AP4S1 VAMP2 PIK3C2A SH3GL2 TBC1D8B SNAPIN AP4E1 PIK3C2A TPD52 ATPVAMP8 CTSZ Golgi-associatedVesicle CargoVAMP8 TPD52 DNM2 GDP ARF1 Vamp2:SNAP23:Syn4Secretory granuledocking and fusioncomplexDNM2GTPCPD SNX9 CTSZ AP1M2 PI(3,5)P2FTH1 STX4 SNAP23AP4E1


Description

After passing through the Golgi complex, secretory cargo is packaged into post-Golgi transport intermediates (post-Golgi), which translocate plus-end directed along microtubules to the plasma membrane. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 199992
Reactome-version 
Reactome version: 66
Reactome Author 
Reactome Author: Gillespie, Marc E

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Sohda M, Misumi Y, Yamamoto A, Yano A, Nakamura N, Ikehara Y.; ''Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein giantin.''; PubMed Europe PMC Scholia
  2. Suzuki K, Verma IM.; ''Phosphorylation of SNAP-23 by IkappaB kinase 2 regulates mast cell degranulation.''; PubMed Europe PMC Scholia
  3. Puri N, Roche PA.; ''Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis.''; PubMed Europe PMC Scholia
  4. Hirst J, Bright NA, Rous B, Robinson MS.; ''Characterization of a fourth adaptor-related protein complex.''; PubMed Europe PMC Scholia
  5. Zhu Y, Traub LM, Kornfeld S.; ''ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding sites on Golgi membranes.''; PubMed Europe PMC Scholia
  6. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE, Eisenberg E.; ''Role of auxilin in uncoating clathrin-coated vesicles.''; PubMed Europe PMC Scholia
  7. Musacchio A, Smith CJ, Roseman AM, Harrison SC, Kirchhausen T, Pearse BM.; ''Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography.''; PubMed Europe PMC Scholia
  8. Takatsu H, Sakurai M, Shin HW, Murakami K, Nakayama K.; ''Identification and characterization of novel clathrin adaptor-related proteins.''; PubMed Europe PMC Scholia
  9. Bryant NJ, Govers R, James DE.; ''Regulated transport of the glucose transporter GLUT4.''; PubMed Europe PMC Scholia
  10. Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF, Jahn R.; ''A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function.''; PubMed Europe PMC Scholia
  11. Starcevic M, Dell'Angelica EC.; ''Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1).''; PubMed Europe PMC Scholia
  12. Wesolowski J, Paumet F.; ''Escherichia coli exposure inhibits exocytic SNARE-mediated membrane fusion in mast cells.''; PubMed Europe PMC Scholia
  13. Lee DW, Zhao X, Zhang F, Eisenberg E, Greene LE.; ''Depletion of GAK/auxilin 2 inhibits receptor-mediated endocytosis and recruitment of both clathrin and clathrin adaptors.''; PubMed Europe PMC Scholia
  14. Hartmann-Stühler C, Prange R.; ''Hepatitis B virus large envelope protein interacts with gamma2-adaptin, a clathrin adaptor-related protein.''; PubMed Europe PMC Scholia
  15. Acton SL, Wong DH, Parham P, Brodsky FM, Jackson AP.; ''Alteration of clathrin light chain expression by transfection and gene disruption.''; PubMed Europe PMC Scholia
  16. Salinas E, Quintanar-Stephano A, Córdova LE, Ouintanar JL.; ''Allergen-sensitization increases mast-cell expression of the exocytotic proteins SNAP-23 and syntaxin 4, which are involved in histamine secretion.''; PubMed Europe PMC Scholia
  17. Rost M, Mann S, Lambert C, Döring T, Thomé N, Prange R.; ''Gamma-adaptin, a novel ubiquitin-interacting adaptor, and Nedd4 ubiquitin ligase control hepatitis B virus maturation.''; PubMed Europe PMC Scholia
  18. Katoh Y, Ritter B, Gaffry T, Blondeau F, Höning S, McPherson PS.; ''The clavesin family, neuron-specific lipid- and clathrin-binding Sec14 proteins regulating lysosomal morphology.''; PubMed Europe PMC Scholia
  19. Döring T, Gotthardt K, Stieler J, Prange R.; ''γ2-Adaptin is functioning in the late endosomal sorting pathway and interacts with ESCRT-I and -III subunits.''; PubMed Europe PMC Scholia
  20. Borner GH, Harbour M, Hester S, Lilley KS, Robinson MS.; ''Comparative proteomics of clathrin-coated vesicles.''; PubMed Europe PMC Scholia
  21. Seaman MN, Sowerby PJ, Robinson MS.; ''Cytosolic and membrane-associated proteins involved in the recruitment of AP-1 adaptors onto the trans-Golgi network.''; PubMed Europe PMC Scholia
  22. Burgos PV, Mardones GA, Rojas AL, daSilva LL, Prabhu Y, Hurley JH, Bonifacino JS.; ''Sorting of the Alzheimer's disease amyloid precursor protein mediated by the AP-4 complex.''; PubMed Europe PMC Scholia
  23. Maier O, Knoblich M, Westermann P.; ''Dynamin II binds to the trans-Golgi network.''; PubMed Europe PMC Scholia
  24. Verkerk AJ, Schot R, Dumee B, Schellekens K, Swagemakers S, Bertoli-Avella AM, Lequin MH, Dudink J, Govaert P, van Zwol AL, Hirst J, Wessels MW, Catsman-Berrevoets C, Verheijen FW, de Graaff E, de Coo IF, Kros JM, Willemsen R, Willems PJ, van der Spek PJ, Mancini GM.; ''Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy.''; PubMed Europe PMC Scholia
  25. Kirchhausen T.; ''Three ways to make a vesicle.''; PubMed Europe PMC Scholia
  26. Aguilar RC, Boehm M, Gorshkova I, Crouch RJ, Tomita K, Saito T, Ohno H, Bonifacino JS.; ''Signal-binding specificity of the mu4 subunit of the adaptor protein complex AP-4.''; PubMed Europe PMC Scholia
  27. Hirst J, Lindsay MR, Robinson MS.; ''GGAs: roles of the different domains and comparison with AP-1 and clathrin.''; PubMed Europe PMC Scholia
  28. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P.; ''Generation of high curvature membranes mediated by direct endophilin bilayer interactions.''; PubMed Europe PMC Scholia
  29. Abou Jamra R, Philippe O, Raas-Rothschild A, Eck SH, Graf E, Buchert R, Borck G, Ekici A, Brockschmidt FF, Nöthen MM, Munnich A, Strom TM, Reis A, Colleaux L.; ''Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature.''; PubMed Europe PMC Scholia
  30. Rao SK, Huynh C, Proux-Gillardeaux V, Galli T, Andrews NW.; ''Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis.''; PubMed Europe PMC Scholia
  31. Guo Z, Turner C, Castle D.; ''Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114946view16:46, 25 January 2021ReactomeTeamReactome version 75
113390view11:46, 2 November 2020ReactomeTeamReactome version 74
112595view15:57, 9 October 2020ReactomeTeamReactome version 73
101511view11:37, 1 November 2018ReactomeTeamreactome version 66
101047view21:19, 31 October 2018ReactomeTeamreactome version 65
100578view19:52, 31 October 2018ReactomeTeamreactome version 64
100127view16:37, 31 October 2018ReactomeTeamreactome version 63
99677view15:07, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99270view12:45, 31 October 2018ReactomeTeamreactome version 62
93989view13:49, 16 August 2017ReactomeTeamreactome version 61
93594view11:28, 9 August 2017ReactomeTeamreactome version 61
88363view16:41, 1 August 2016FehrhartOntology Term : 'pathway pertinent to protein folding, sorting, modification, translocation and degradation' added !
86701view09:24, 11 July 2016ReactomeTeamreactome version 56
83468view12:32, 18 November 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ACBD3 ProteinQ9H3P7 (Uniprot-TrEMBL)
ACBD3:GOLGB1 dimerComplexR-HSA-8874975 (Reactome)
ACBD3ProteinQ9H3P7 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
AP-1 ComplexComplexR-HSA-167717 (Reactome)
AP1B1 ProteinQ10567 (Uniprot-TrEMBL)
AP1G1 ProteinO43747 (Uniprot-TrEMBL)
AP1G2 ProteinO75843 (Uniprot-TrEMBL)
AP1G2:HGS:CHMP2AComplexR-HSA-5671700 (Reactome)
AP1G2ProteinO75843 (Uniprot-TrEMBL)
AP1M1 ProteinQ9BXS5 (Uniprot-TrEMBL)
AP1M2 ProteinQ9Y6Q5 (Uniprot-TrEMBL)
AP1S1 ProteinP61966 (Uniprot-TrEMBL)
AP1S2 ProteinP56377 (Uniprot-TrEMBL)
AP1S3 ProteinQ96PC3 (Uniprot-TrEMBL)
AP3B1 ProteinO00203 (Uniprot-TrEMBL)
AP3S1 ProteinQ92572 (Uniprot-TrEMBL)
AP4:APPComplexR-HSA-5229081 (Reactome)
AP4:APPComplexR-HSA-5229085 (Reactome)
AP4B1 ProteinQ9Y6B7 (Uniprot-TrEMBL)
AP4E1 ProteinQ9UPM8 (Uniprot-TrEMBL)
AP4M1 ProteinO00189 (Uniprot-TrEMBL)
AP4ComplexR-HSA-5229123 (Reactome)
AP4S1 ProteinQ9Y587 (Uniprot-TrEMBL)
APP(18-770) ProteinP05067 (Uniprot-TrEMBL)
APP(18-770)ProteinP05067 (Uniprot-TrEMBL)
ARF1 ProteinP84077 (Uniprot-TrEMBL)
ARRB1 ProteinP49407 (Uniprot-TrEMBL)
ARRB1ProteinP49407 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
Arf1-GDPComplexR-HSA-201340 (Reactome)
Arf1-GTPComplexR-HSA-199981 (Reactome)
BLOC-1 ComplexComplexR-HSA-429825 (Reactome)
BLOC1S1 ProteinP78537 (Uniprot-TrEMBL)
BLOC1S1ProteinP78537 (Uniprot-TrEMBL)
BLOC1S3 ProteinQ6QNY0 (Uniprot-TrEMBL)
BLOC1S3ProteinQ6QNY0 (Uniprot-TrEMBL)
BLOC1S4 ProteinQ9NUP1 (Uniprot-TrEMBL)
BLOC1S4ProteinQ9NUP1 (Uniprot-TrEMBL)
BLOC1S6 ProteinQ9UL45 (Uniprot-TrEMBL)
BLOC1S6ProteinQ9UL45 (Uniprot-TrEMBL)
CHMP2A ProteinO43633 (Uniprot-TrEMBL)
CHMP2AProteinO43633 (Uniprot-TrEMBL)
CLAT:AP1:CLVS:PI(3,5)P2ComplexR-HSA-5334658 (Reactome)
CLAT:AP1:CLVSComplexR-HSA-5333673 (Reactome)
CLINT1 ProteinQ14677 (Uniprot-TrEMBL)
CLINT1ProteinQ14677 (Uniprot-TrEMBL)
CLTA ProteinP09496 (Uniprot-TrEMBL)
CLTB ProteinP09497 (Uniprot-TrEMBL)
CLTC ProteinQ00610 (Uniprot-TrEMBL)
CLTC-1 ProteinQ00610-1 (Uniprot-TrEMBL)
CLVS1 ProteinQ8IUQ0 (Uniprot-TrEMBL)
CLVS2 ProteinQ5SYC1 (Uniprot-TrEMBL)
CPD ProteinO75976 (Uniprot-TrEMBL)
CTSZ ProteinQ9UBR2 (Uniprot-TrEMBL)
Cargo:AP-1:Arf1-GTP:beta-Arrestin-1:Vamp ComplexComplexR-HSA-432669 (Reactome)
Cargo:AP-1:Beta-arrestin:Clathrin Triskelion:Vamp ComplexComplexR-HSA-351198 (Reactome)
Cargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin ComplexComplexR-HSA-350825 (Reactome)
Clathrin TriskelionComplexR-HSA-350827 (Reactome)
Clathrin light chain ProteinP09496-1 (Uniprot-TrEMBL)
DNAJC6 ProteinO75061 (Uniprot-TrEMBL)
DNASE2 ProteinO00115 (Uniprot-TrEMBL)
DNM2 ProteinP50570 (Uniprot-TrEMBL)
DNM2ProteinP50570 (Uniprot-TrEMBL)
DTNBP1 ProteinQ96EV8 (Uniprot-TrEMBL)
DTNBP1ProteinQ96EV8 (Uniprot-TrEMBL)
FTH1 ProteinP02794 (Uniprot-TrEMBL)
FTL ProteinP02792 (Uniprot-TrEMBL)
Ferritin ComplexComplexR-HSA-434350 (Reactome) The ferritin complex is an oligomer of 24 subunits with light and heavy chains. The structural features of ferritin arise from the combination in various ratios of two subunits, H and L, which differ in size, amino acid composition, surface charge, and immunoreactivity. A corollary related differences in ferritin iron content to the functional efficiency of one of the two subunits for storing iron. In humans the H subunit is associated with a lower pI and lower iron content, and predominates in heart tissue, whereas the L subunit is associated with a higher pI and higher iron content, and predominates in the liver.
The functional molecule forms a roughly spherical shell with a diameter of 12 nm and contains a central cavity into which the insoluble mineral iron core is deposited. Iron metabolism provides a useful example of gene expression translational control. Increased iron levels stimulate the synthesis of the iron-binding protein, ferritin, without any corresponding increase in the amount of ferritin mRNA. The 5'-UTR of both ferritin heavy chain mRNA and light chain mRNA contain a single iron-response element (IRE), a specific cis-acting regulatory sequence which forms a hairpin structure.
GAK ProteinO14976 (Uniprot-TrEMBL)
GBF1ProteinQ92538 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GNS ProteinP15586 (Uniprot-TrEMBL)
GOLGB1 ProteinQ14789 (Uniprot-TrEMBL)
GOLGB1 homodimerComplexR-HSA-6810505 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Golgi-associated Vesicle CargoComplexR-HSA-432672 (Reactome)
Golgi-associated Vesicle CargoComplexR-HSA-435029 (Reactome)
Golgi-associated

Vesicle Destined

Cargo
ComplexR-HSA-432674 (Reactome)
Golgi-associated

Vesicle Destined

Cargo
ComplexR-HSA-435032 (Reactome)
Golgi-associated

vesicle interacting

proteins
ComplexR-HSA-434351 (Reactome)
HGS ProteinO14964 (Uniprot-TrEMBL)
HGSProteinO14964 (Uniprot-TrEMBL)
HIP1R ProteinO75146 (Uniprot-TrEMBL)
HSC70:Auxillin ComplexComplexR-HSA-351175 (Reactome)
HSPA8 ProteinP11142 (Uniprot-TrEMBL)
IGF2R ProteinP11717 (Uniprot-TrEMBL)
Lysosome Cargo:AP-1:Beta-arrestin:Clathrin Triskelion:Vamp ComplexComplexR-HSA-432691 (Reactome)
Lysosome

Destined

Cargo:AP-1:Arf1-GTP:beta-Arrestin-1:Vamp Complex
ComplexR-HSA-432700 (Reactome)
Lysosome

Destined

Cargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin Complex
ComplexR-HSA-432704 (Reactome)
Lysosome CargoComplexR-HSA-432697 (Reactome)
Lysosome CargoComplexR-HSA-435030 (Reactome)
Lysosome Destined CargoComplexR-HSA-432690 (Reactome)
Lysosome Destined CargoComplexR-HSA-435031 (Reactome)
M6PR ProteinP20645 (Uniprot-TrEMBL)
NAPA ProteinP54920 (Uniprot-TrEMBL)
NAPAProteinP54920 (Uniprot-TrEMBL)
NECAP1 ProteinQ8NC96 (Uniprot-TrEMBL)
OCRL ProteinQ01968 (Uniprot-TrEMBL)
PI(3,5)P2 MetaboliteCHEBI:16851 (ChEBI)
PI(3,5)P2MetaboliteCHEBI:16851 (ChEBI)
PICALM ProteinQ13492 (Uniprot-TrEMBL)
PIK3C2A ProteinO00443 (Uniprot-TrEMBL)
PUM1 ProteinQ14671 (Uniprot-TrEMBL)
PUM1ProteinQ14671 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
RAB5C ProteinP51148 (Uniprot-TrEMBL)
SH3D19 ProteinQ5HYK7 (Uniprot-TrEMBL)
SH3D19ProteinQ5HYK7 (Uniprot-TrEMBL)
SH3GL2 ProteinQ99962 (Uniprot-TrEMBL)
SH3GL2ProteinQ99962 (Uniprot-TrEMBL)
SNAP23 ProteinO00161 (Uniprot-TrEMBL)
SNAP23ProteinO00161 (Uniprot-TrEMBL)
SNAPIN ProteinO95295 (Uniprot-TrEMBL)
SNX2 ProteinO60749 (Uniprot-TrEMBL)
SNX5 ProteinQ9Y5X3 (Uniprot-TrEMBL)
SNX9 ProteinQ9Y5X1 (Uniprot-TrEMBL)
SORT1 ProteinQ99523 (Uniprot-TrEMBL)
STX4 ProteinQ12846 (Uniprot-TrEMBL)
STX4ProteinQ12846 (Uniprot-TrEMBL)
TBC1D8B ProteinQ0IIM8 (Uniprot-TrEMBL)
TFRC(1-760) ProteinP02786 (Uniprot-TrEMBL)
TGOLN2 ProteinO43493 (Uniprot-TrEMBL)
TPD52 ProteinP55327 (Uniprot-TrEMBL)
TPD52L1 ProteinQ16890 (Uniprot-TrEMBL)
TXNDC5 ProteinQ8NBS9 (Uniprot-TrEMBL)
TXNDC5ProteinQ8NBS9 (Uniprot-TrEMBL)
VAMP2 ProteinP63027 (Uniprot-TrEMBL)
VAMP2ProteinP63027 (Uniprot-TrEMBL)
VAMP7 ProteinP51809 (Uniprot-TrEMBL)
VAMP7ProteinP51809 (Uniprot-TrEMBL)
VAMP8 ProteinQ9BV40 (Uniprot-TrEMBL)
VAMP8ProteinQ9BV40 (Uniprot-TrEMBL)
Vamp2:SNAP23:Syn4

Secretory granule docking and fusion

complex
ComplexR-HSA-376372 (Reactome)
Vamp7:SNAP23:Syn4

Plasma membrane vesicle docking and

fusion complex
ComplexR-HSA-376340 (Reactome)
Vamp8:SNAP23:Syn4

Secretory granule docking and fusion

complex
ComplexR-HSA-376367 (Reactome)
VampComplexR-HSA-432668 (Reactome)
VampComplexR-HSA-432673 (Reactome)
VampComplexR-HSA-432694 (Reactome)
YIPF6 ProteinQ96EC8 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ACBD3:GOLGB1 dimerArrowR-HSA-8874979 (Reactome)
ACBD3R-HSA-8874979 (Reactome)
ADPArrowR-HSA-421836 (Reactome)
ADPArrowR-HSA-432688 (Reactome)
AP-1 ComplexArrowR-HSA-421836 (Reactome)
AP-1 ComplexArrowR-HSA-432688 (Reactome)
AP-1 ComplexR-HSA-421833 (Reactome)
AP-1 ComplexR-HSA-432712 (Reactome)
AP1G2:HGS:CHMP2AArrowR-HSA-5671702 (Reactome)
AP1G2R-HSA-5671702 (Reactome)
AP4:APPArrowR-HSA-5229111 (Reactome)
AP4:APPArrowR-HSA-5229132 (Reactome)
AP4:APPR-HSA-5229111 (Reactome)
AP4:APPmim-catalysisR-HSA-5229111 (Reactome)
AP4R-HSA-5229132 (Reactome)
APP(18-770)R-HSA-5229132 (Reactome)
ARRB1ArrowR-HSA-421836 (Reactome)
ARRB1ArrowR-HSA-432688 (Reactome)
ARRB1R-HSA-421833 (Reactome)
ARRB1R-HSA-432712 (Reactome)
ATPR-HSA-421836 (Reactome)
ATPR-HSA-432688 (Reactome)
Arf1-GDPArrowR-HSA-421831 (Reactome)
Arf1-GDPArrowR-HSA-432706 (Reactome)
Arf1-GDPR-HSA-350769 (Reactome)
Arf1-GTPArrowR-HSA-350769 (Reactome)
Arf1-GTPR-HSA-421833 (Reactome)
Arf1-GTPR-HSA-432712 (Reactome)
BLOC-1 ComplexArrowR-HSA-429815 (Reactome)
BLOC1S1R-HSA-429815 (Reactome)
BLOC1S3R-HSA-429815 (Reactome)
BLOC1S4R-HSA-429815 (Reactome)
BLOC1S6R-HSA-429815 (Reactome)
CHMP2AR-HSA-5671702 (Reactome)
CLAT:AP1:CLVS:PI(3,5)P2ArrowR-HSA-5333658 (Reactome)
CLAT:AP1:CLVSR-HSA-5333658 (Reactome)
CLINT1R-HSA-434362 (Reactome)
Cargo:AP-1:Arf1-GTP:beta-Arrestin-1:Vamp ComplexArrowR-HSA-421833 (Reactome)
Cargo:AP-1:Arf1-GTP:beta-Arrestin-1:Vamp ComplexR-HSA-421831 (Reactome)
Cargo:AP-1:Beta-arrestin:Clathrin Triskelion:Vamp ComplexArrowR-HSA-421835 (Reactome)
Cargo:AP-1:Beta-arrestin:Clathrin Triskelion:Vamp ComplexR-HSA-421836 (Reactome)
Cargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin ComplexArrowR-HSA-421831 (Reactome)
Cargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin ComplexR-HSA-421835 (Reactome)
Cargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin Complexmim-catalysisR-HSA-421835 (Reactome)
Clathrin TriskelionArrowR-HSA-421836 (Reactome)
Clathrin TriskelionArrowR-HSA-432688 (Reactome)
Clathrin TriskelionR-HSA-421831 (Reactome)
Clathrin TriskelionR-HSA-432706 (Reactome)
DNM2ArrowR-HSA-421835 (Reactome)
DNM2ArrowR-HSA-432707 (Reactome)
DNM2R-HSA-421831 (Reactome)
DNM2R-HSA-432706 (Reactome)
DTNBP1R-HSA-429815 (Reactome)
Ferritin ComplexR-HSA-434362 (Reactome)
GBF1mim-catalysisR-HSA-350769 (Reactome)
GDPArrowR-HSA-350769 (Reactome)
GDPArrowR-HSA-421835 (Reactome)
GDPArrowR-HSA-432707 (Reactome)
GOLGB1 homodimerR-HSA-8874979 (Reactome)
GTPR-HSA-350769 (Reactome)
GTPR-HSA-421835 (Reactome)
GTPR-HSA-432707 (Reactome)
Golgi-associated Vesicle CargoArrowR-HSA-421836 (Reactome)
Golgi-associated

Vesicle Destined

Cargo
R-HSA-421833 (Reactome)
Golgi-associated

vesicle interacting

proteins
ArrowR-HSA-434362 (Reactome)
HGSR-HSA-5671702 (Reactome)
HSC70:Auxillin ComplexArrowR-HSA-421836 (Reactome)
HSC70:Auxillin ComplexArrowR-HSA-432688 (Reactome)
HSC70:Auxillin ComplexR-HSA-421836 (Reactome)
HSC70:Auxillin ComplexR-HSA-432688 (Reactome)
Lysosome Cargo:AP-1:Beta-arrestin:Clathrin Triskelion:Vamp ComplexArrowR-HSA-432707 (Reactome)
Lysosome Cargo:AP-1:Beta-arrestin:Clathrin Triskelion:Vamp ComplexR-HSA-432688 (Reactome)
Lysosome

Destined

Cargo:AP-1:Arf1-GTP:beta-Arrestin-1:Vamp Complex
ArrowR-HSA-432712 (Reactome)
Lysosome

Destined

Cargo:AP-1:Arf1-GTP:beta-Arrestin-1:Vamp Complex
R-HSA-432706 (Reactome)
Lysosome

Destined

Cargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin Complex
ArrowR-HSA-432706 (Reactome)
Lysosome

Destined

Cargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin Complex
R-HSA-432707 (Reactome)
Lysosome

Destined

Cargo:AP-1:Beta-arrestin:Vamp:Clathrin Triskelion:Dynamin:Endophilin Complex
mim-catalysisR-HSA-432707 (Reactome)
Lysosome CargoArrowR-HSA-432688 (Reactome)
Lysosome Destined CargoR-HSA-432712 (Reactome)
NAPAR-HSA-429815 (Reactome)
PI(3,5)P2R-HSA-5333658 (Reactome)
PUM1R-HSA-434362 (Reactome)
PiArrowR-HSA-421831 (Reactome)
PiArrowR-HSA-421835 (Reactome)
PiArrowR-HSA-421836 (Reactome)
PiArrowR-HSA-432688 (Reactome)
PiArrowR-HSA-432706 (Reactome)
PiArrowR-HSA-432707 (Reactome)
R-HSA-350769 (Reactome) ARF1 helps to recruit AP-1 to Golgi membrane. AP-1 is not alone in this process of establishing a docking complex at the trans-Golgi Network. This section of the Golgi membrane will be where the new vesicle will be built and loaded.
R-HSA-376357 (Reactome) The lysosomal vesicle is targeted to and fused with the plasma membrane, releasing its contents into the extracellular space.
R-HSA-376364 (Reactome) The vamp8 associated vesicle docks and fuses with the plasma membrane.
R-HSA-376369 (Reactome) The vamp2 associated vesicle docks and fuses with the plasma membrane.
R-HSA-421831 (Reactome) Once the basic components of the docking complex are assembled with one end of AP-1 bound to cargo molecules, the other end binds to clathrin. Clathrin triskelions polymerize into hexagons and pentagons, forming a cage, which leads to membrane deformation. This polymerization step drives the sculpting of the vesicle. The number of clathrin triskelions required to sculpt a vesicle appears to be variable, but has been estimated to require 36 - 60 triskelions assocaited with 30 - 66 AP-1 complexes. Here a ~380 angstroms vesicle is represented with 48 clathrin triskelions and 52 AP-1 complexes.
R-HSA-421833 (Reactome) Once AP-1 is recruited to the trans-Golgi Network membrane the complex of functional vesicle building proteins is joined by the cargo that will be within that vesicle. As with other types of vesicles the cargo itself is part of the vesicle development. Here the cargo is destined for the Golgi-associated vesicle membrane. It is at this stage that a specific Synaptobrevin (Vamp) molecule also joins the complex. It should be noted that only certain Vamp molecules will be found with specific cargo molecules on the newly forming vesicles. However here we represent this reaction in bulk, without specific Vamp and cargo molecule pairings.
R-HSA-421835 (Reactome) Dynamin is recruited to the growing vesicle and, under conditions that interfere with its GTPase activity, dynamin forms a collar or ring around the neck of the budding vesicle. It is unclear whether dynamin acts as a mechanochemical transducer to generate fission or as a recruiter to attach other proteins that are directly responsible for the fission step. Lipid-modifying enzymes such as endophilin are also involved in vesicle formation. Endophilin is an acyltransferase that interacts with dynamin and that generates lysophosphatidic acid. The current view is that this reaction produces a negative curvature at the neck of the vesicle.
R-HSA-421836 (Reactome) The heat shock protein Hsc70 and auxilin, a J-domain containing protein, are responsible for clathrin disassembly through an ATP-dependent reaction. This uncoating step may be a point in the pathway subject to regulation. This final step releases the vesicle from the clathrin cage. The vesicle still contatins a specific Vamp molecule, part of the targeting and fusion mechanism that delivers the vesicle to its ultimate destination. This vesicle also contains its cargo, membrane proteins embeded in the Golgi-associated vesicle membrane.
R-HSA-429815 (Reactome) The ubiquitously expressed protein complexes, named biogenesis of lysosome-related organelles complex or BLOC are required for normal biogenesis of specialized organelles of the endosomal-lysosomal system, such as melanosomes and platelet dense granules.
R-HSA-432688 (Reactome) The heat shock protein Hsc70 and auxilin, a J-domain containing protein, are responsible for clathrin disassembly through an ATP-dependent reaction. This uncoating step may be a point in the pathway subject to regulation. This final step releases the vesicle from the clathrin cage. The vesicle still contatins a specific Vamp molecule, part of the targeting and fusion mechanism that delivers the vesicle to its ultimate destination. This vesicle also contains its cargo, membrane proteins embeded in the lysosome membrane.
R-HSA-432706 (Reactome) Once the basic components of the docking complex are assembled with one end of AP-1 bound to cargo molecules, the other end binds to clathrin. Clathrin triskelions polymerize into hexagons and pentagons, forming a cage, which leads to membrane deformation. This polymerization step drives the sculpting of the lysosome vesicle. Here only 5 clathrin triskelions are represented, though in reality many more would be involved in sculpting an entire vesicle.
R-HSA-432707 (Reactome) Dynamin is recruited to the growing lysosome destined vesicle and, under conditions that interfere with its GTPase activity, dynamin forms a collar or ring around the neck of the budding vesicle. It is unclear whether dynamin acts as a mechanochemical transducer to generate fission or as a recruiter to attach other proteins that are directly responsible for the fission step. Lipid-modifying enzymes such as endophilin are also involved in vesicle formation. Endophilin is an acyltransferase that interacts with dynamin and that generates lysophosphatidic acid. The current view is that this reaction produces a negative curvature at the neck of the vesicle.
R-HSA-432712 (Reactome) Once AP-1 is recruited to the trans-Golgi Network membrane the complex of functional vesicle building proteins is joined by the cargo that will be within that vesicle. As with other types of vesicles the cargo itself is part of the vesicle development. Here the cargo is destined for the lysosome membrane. It is at this stage that a specific Synaptobrevin (Vamp) molecule also joins the complex. It should be noted that only certain Vamp molecules will be found with specific cargo molecules on the newly forming vesicles. However here we represent this reaction in bulk, without specific Vamp and cargo molecule pairings.
R-HSA-434362 (Reactome) Cytosolic proteins are also recruited to the cytoplasmic face of newly formed vesicles.
R-HSA-5229111 (Reactome) AP-4 complex subunit mu-1 (AP4M1) can recognise and interact with tyrosine-based (YXXphi) sorting signals found within the cytoplasmic tails of integral membrane proteins such as the amyloid precursor protein (APP), implicated in Alzheimer's disease. Once bound to AP4M1, APP is transported from the trans-Golgi network (TGN) to endosomes, thereby reducing amyloidogenic processing of the protein. Disruption of this interaction decreases localisation of APP to endosomes and enhances gamma-secretase-catalysed cleavage of APP to the pathogenic amyloid-beta peptide (Burgos et al. 2010).

R-HSA-5229132 (Reactome) The family of heterotetrameric adaptor protein (AP) complexes function as vesicle coat components, involved in targeting cargo proteins from post-Golgi compartments to the endosomal-lysosomal system. Adaptor protein 4 (AP4) is the most recently discovered and least characterised member of this family. AP4 consists of four subunits; two large adaptins (AP4E1 and AP4B1), a medium adaptin (AP4M1) and a small adaptin (AP4S1). The medium (mu) adaptins of all AP complexes can recognise and interact with tyrosine-based (YXXphi) sorting signals found within the cytoplasmic tails of integral membrane proteins (Aguilar et al. 2001, Hirst et al. 1999). The amyloid precursor protein (APP), implicated in Alzheimer's disease, contains such a signal in its cytoplasmic tail. It can therefore bind to AP4M1 of the AP4 complex and subsequently, be transported from the trans-Golgi network (TGN) to endosomes, thereby reducing amyloidogenic processing of the protein. Disruption of the this interaction decreases localisation of APP to endosomes and enhances gamma-secretase-catalysed cleavage of APP to the pathogenic amyloid-beta peptide (Burgos et al. 2010).

Defects in AP4M1 can cause cerebral palsy, spastic quadriplegic 3 (CPSQ3; MIM:612936), a non-progressive disorder of movement and/or posture resulting from defects in CNS development (Verkerk et al. 2009). Defects in AP4S1 can cause cerebral palsy, spastic quadriplegic 6 (CPSQ6; MIM:614067), a neurodevelopmental disorder characterised by hypertonia and spasticity, and severe mental retardation with poor or absent speech development (Abou Jamra et al. 2011).
R-HSA-5333658 (Reactome) Clathrin-coated vesicles (CCVs) originating from the trans-Golgi network (TGN) provide a major transport pathway from the secretory system to endosomes/lysosomes. Clavesin 1 and 2 (CLVS1 and 2) are enriched on CCVs and form a complex with clathrin heavy chain (CHC) and adaptor protein-1 (AP1) complex, major coat components of TGN-derived CCVs. The complex can bind phosphatidylinositol 3,5-bisphosphate (PIP2), a phospholipid localised to late endosomes and lysosomes. This interaction is thought to assist the transport of cytosolic cargo proteins to the endosomal network (Katoh et al. 2009).
R-HSA-5671702 (Reactome) AP-1 complex subunit gamma-like 2 (AP1G2) is an 87-kDa protein that is similar to gamma-adaptin (AP1G1), a large chain of the AP1 clathrin-associated adaptor complex, both in primary structure (60% amino acid identity) and domain organisation (Takatsu et al. 1998). AP1G2 can be viewed as a putative endosomal sorting and trafficking adaptor that is specifically required for degradative endocytic trafficking and may help in maintaining homeostasis of the multivesicular body (MVB) protein-sorting pathway. AP1G2 specifically interacts with the core ESCRT subunits hepatocyte growth factor-regulated tyrosine kinase substrate (HGS, aka HRS) and charged multivesicular body protein 2a (CHMP2A aka hVps2-1), involved in MVB processing (Doring et al. 2010).

AP1G2 is also able to bind the large envelope protein (surface protein S) of the hepatitis B virus (HBV), a protein that plays an important role in viral budding (Hartmann-Stuhler & Prange 2001). Disruption of this binding can inhibit virus production (Rost et al. 2006). Thus, AP1G2 may play a role in L-mediated processes of viral biogenesis or pathogenesis.
R-HSA-8874979 (Reactome) Golgi resident protein GCP60 (ACBD3) is a Golgi membrane-associated protein thought to be involved in the maintenance of the Golgi structure by interacting with Golgin subfamily B member 1 (GOLGB1, giantin), which may mediate protein transport between the endoplasmic reticulum and the Golgi (Sohda et al. 2001).
SH3D19R-HSA-434362 (Reactome)
SH3GL2ArrowR-HSA-421835 (Reactome)
SH3GL2ArrowR-HSA-432707 (Reactome)
SH3GL2R-HSA-421831 (Reactome)
SH3GL2R-HSA-432706 (Reactome)
SNAP23ArrowR-HSA-376357 (Reactome)
SNAP23ArrowR-HSA-376364 (Reactome)
SNAP23ArrowR-HSA-376369 (Reactome)
SNAP23R-HSA-376357 (Reactome)
SNAP23R-HSA-376364 (Reactome)
SNAP23R-HSA-376369 (Reactome)
STX4ArrowR-HSA-376357 (Reactome)
STX4ArrowR-HSA-376364 (Reactome)
STX4ArrowR-HSA-376369 (Reactome)
STX4R-HSA-376357 (Reactome)
STX4R-HSA-376364 (Reactome)
STX4R-HSA-376369 (Reactome)
TXNDC5R-HSA-429815 (Reactome)
VAMP2ArrowR-HSA-376369 (Reactome)
VAMP2R-HSA-376369 (Reactome)
VAMP7ArrowR-HSA-376357 (Reactome)
VAMP7R-HSA-376357 (Reactome)
VAMP8ArrowR-HSA-376364 (Reactome)
VAMP8R-HSA-376364 (Reactome)
Vamp2:SNAP23:Syn4

Secretory granule docking and fusion

complex
mim-catalysisR-HSA-376369 (Reactome)
Vamp7:SNAP23:Syn4

Plasma membrane vesicle docking and

fusion complex
mim-catalysisR-HSA-376357 (Reactome)
Vamp8:SNAP23:Syn4

Secretory granule docking and fusion

complex
mim-catalysisR-HSA-376364 (Reactome)
VampArrowR-HSA-421836 (Reactome)
VampArrowR-HSA-432688 (Reactome)
VampArrowR-HSA-434362 (Reactome)
VampR-HSA-421833 (Reactome)
VampR-HSA-432712 (Reactome)
VampR-HSA-434362 (Reactome)
Personal tools