Fanconi Anemia Pathway (Homo sapiens)
From WikiPathways
Description
FANCD2 and FANCI form a complex and are mutually dependent on one another for their respective monoubiquitination. After DNA damage and during S phase, FANCD2 localizes to discrete nuclear foci that colocalize with proteins involved in homologous recombination repair, such as BRCA1 and RAD51. The FA pathway is regulated by ubiquitination and phosphorylation of FANCD2 and FANCI. ATR-dependent phosphorylation of FANCI and FANCD2 promotes monoubiquitination of FANCD2, stimulating the FA pathway (Cohn and D'Andrea 2008, Wang 2007). The complex of USP1 and WDR48 (UAF1) is responsible for deubiquitination of FANCD2 and negatively regulates the FA pathway (Cohn et al. 2007). <p>Monoubiquitinated FANCD2 recruits DNA nucleases, including SLX4 (FANCP) and FAN1, which unhook the ICL from one of the two covalently linked DNA strands. The DNA polymerase nu (POLN) performs translesion DNA synthesis using the DNA strand with unhooked ICL as a template, thereby bypassing the unhooked ICL. The unhooked ICL is subsequently removed from the DNA via nucleotide excision repair (NER). Incision of the stalled replication fork during the unhooking step generates a double strand break (DSB). The DSB is repaired via homologous recombination repair (HRR) and involves the FA genes BRCA2 (FANCD1), PALB2 (FANCN) and BRIP1 (FANCJ) (reviewed by Deans and West 2011, Kottemann and Smogorzewska 2013). Homozygous mutations in BRCA2, PALB2 or BRIP1 result in Fanconi anemia, while heterozygous mutations in these genes predispose carriers to primarily breast and ovarian cancer. Well established functions of BRCA2, PALB2 and BRIP1 in DNA repair are BRCA1 dependent, but it is not yet clear whether there are additional roles for these proteins in the Fanconi anemia pathway that do not rely on BRCA1 (Evans and Longo 2014, Jiang and Greenberg 2015). Heterozygous BRCA1 mutations predispose carriers to breast and ovarian cancer with high penetrance. Complete loss of BRCA1 function is embryonic lethal. It has only recently been reported that a partial germline loss of BRCA1 function via mutations that diminish protein binding ability of the BRCT domain of BRCA1 result in a FA-like syndrome. BRCA1 has therefore been designated as the FANCS gene (Jiang and Greenberg 2015).<p>The FA pathway is involved in repairing DNA ICLs that arise by exposure to endogenous mutagens produced as by-products of normal cellular metabolism, such as aldehyde containing compounds. Disruption of the aldehyde dehydrogenase gene ALDH2 in FANCD2 deficient mice leads to severe developmental defects, early lethality and predisposition to leukemia. In addition to this, the double knockout mice are exceptionally sensitive to ethanol consumption, as ethanol metabolism results in accumulated levels of aldehydes (Langevin et al. 2011). View original pathway at:Reactome.</div>
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
DSBs are sensed (detected) by the MRN complex. Binding of the MRN complex to the DSBs usually triggers ATM kinase activation, thus initiating the DNA double strand break response. ATM phosphorylates a number of proteins involved in DNA damage checkpoint signaling, as well as proteins directly involved in the repair of DNA DSBs. DSBs are repaired via homology directed repair (HDR) or via nonhomologous end-joining (NHEJ).
HDR requires resection of DNA DSB ends. Resection creates 3'-ssDNA overhangs which then anneal with a homologous DNA sequence. This homologous sequence can then be used as a template for DNA repair synthesis that bridges the DSB. HDR preferably occurs through the error-free homologous recombination repair (HRR), but can also occur through the error-prone single strand annealing (SSA), or the least accurate microhomology-mediated end joining (MMEJ). MMEJ takes place when DSB response cannot be initiated.
While HRR is limited to actively dividing cells with replicated DNA, error-prone NHEJ pathway functions at all stages of the cell cycle, playing the predominant role in both the G1 phase and in S-phase regions of DNA that have not yet replicated. During NHEJ, the Ku70:Ku80 heterodimer (also known as the Ku complex or XRCC5:XRCC6) binds DNA DSB ends, competing away the MRN complex and preventing MRN-mediated resection of DNA DSB ends. The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs, PRKDC) is then recruited to DNA-bound Ku to form the DNA-PK holoenzyme. Two DNA-PK complexes, one at each side of the break, bring DNA DSB ends together, joining them in a synaptic complex. DNA-PK complex recruits DCLRE1C (ARTEMIS) to DNA DSB ends, leading to trimming of 3'- and 5'-overhangs at the break site, followed by ligation.
For review of this topic, please refer to Ciccia and Elledge 2010.
NER is involved in the repair of bulky adducts in DNA, such as UV-induced photo lesions (both 6-4 photoproducts (6-4 PPDs) and cyclobutane pyrimidine dimers (CPDs)), as well as chemical adducts formed from exposure to aflatoxin, benzopyrene and other genotoxic agents. Specific proteins have been identified that participate in base damage recognition, cleavage of the damaged strand on both sides of the lesion, and excision of the oligonucleotide bearing the lesion. Reparative DNA synthesis and ligation restore the strand to its original state.
NER consists of two related pathways called global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER). The pathways differ in the way in which DNA damage is initially recognized, but the majority of the participating molecules are shared between these two branches of NER. GG-NER is transcription-independent, removing lesions from non-coding DNA strands, as well as coding DNA strands that are not being actively transcribed. TC-NER repairs damage in transcribed strands of active genes.
Several of the proteins involved in NER are key components of the basal transcription complex TFIIH. An ubiquitin ligase complex composed of DDB1, CUL4A or CUL4B and RBX1 participates in both GG-NER and TC-NER, implying an important role of ubiquitination in NER regulation. The establishment of mutant mouse models for NER genes and other DNA repair-related genes has been useful in demonstrating the associations between NER defects and cancer.
For past and recent reviews of nucleotide excision repair, please refer to Lindahl and Wood 1998, Friedberg et al. 2002, Christmann et al. 2003, Hanawalt and Spivak 2008, Marteijn et al. 2014).
Annotated Interactions
UBE2T is also monoubiqutinated by FANCL on lysine residues K91 and K182 during the process of ID2 monoubiquitination. Monoubiquitination of UBE2T may serve as a self-inactivating mechanism that negatively regulates the Fanconi anemia pathway (Machida et al. 2006).
FANCD2 monoubiquitination promotes stability of the ID2 complex and its retention at ICL-DNA, and enables recruitment of additional proteins that participate in the repair of ICL-DNA (Garcia-Higuera et al. 2001, Smogorzewska et al. 2007, Alpi et al. 2008, Joo et al. 2011).
DNA exonucleases DCLRE1A (SNM1A) and DCLRE1B (SNM1B) likely function redundantly in ICL repair. Similar to FAN1, they are able to digest the DNA past the ICL, thereby unhooking one of the DNA strands (Wang et al. 2011, Sengerova et al. 2012). Monoubiquitination of the PCNA subunit of the stalled replicative polymerase complex by RAD18 may provide the docking site for DCLRE1A (or DCLRE1B) (Yang et al. 2010). In addition, PIAS1 may facilitate loading of DCLRE1A (or DCLRE1B) to ICL sites (Ishiai et al. 2004).
FAN1 exhibits 5'->3' endonuclease activity, as well as 5'->3' exonuclease activity, with a preference for 5' flaps and branched DNA structures (Smogorzewska et al. 2010, Kratz et al. 2010, MacKay et al. 2010, Liu et al. 2010). The FAN1 head-to-tail homodimer recognizes the lesion, orients and unwinds the 5' flap (Zhao et al. 2014). FAN1 requires a 5' terminal phosphate anchor and successively cleaves the DNA at every third nucleotide (Wang et al. 2014). This suggests that an incision 5' to the ICL precedes the action of FAN1.
ERCC4 (XPF) in complex with ERCC1 may perform the first endonucleolytic incision 5' to the ICL (Wang et al. 2011), while MUS81 in complex with EME1 or EME2 may act as a backup endonuclease. DCLRE1A (SNM1A) exhibits a 5'->3' exonuclease activity and can digest past the ICL, thereby unhooking it from one DNA strand after the ERCC1:ERCC4 complex does the initial incision 5' to the ICL (Wang et al. 2011). DCLRE1A functions redundantly with DCLRE1B (SNM1B) in ICL repair (Ishiai et al. 2004, Sangerova et al. 2012).