Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 16:22, 25 January 2021 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
1-3, 5, 6, 12...11, 22, 245, 7, 13, 17, 2951, 24187, 14, 17-19, 33...49mitochondrial matrixtRNA(Pro) MRPS2 MRPS11 tRNA(Trp) MRPS33 MRPS26 MRPS18B MRPL23 MRPL14 MRPS17 MRPS26 MRPS18B MRPL33 tRNA(Arg) MRPS28 MRPS6 MRPS21 MRPS10 MT-TV MRPL10 MRPL48 MRPS11 Thr-tRNA(Thr) MRPS24 MRPL14 mRNA MRPS24 DAP3 MRPS17 MRPS36 MRPS35 MRPL45 Arg-tRNA(Arg) MRPS14 Trp-tRNA(Trp) MRPL55 MRPL51 MRPS5 MRPS18B MRPS5 MRPS30 DAP3 Phe-tRNA(Phe) MRPL54 Lys-tRNA(Lys) Phe-tRNA(Phe) DAP3 MRPL19 MRPL13 MRPS5 MRPL43 Ile-tRNA(Ile) MRPL48 MRPL34 MRPL23 MRPL28 tRNA(Glu) tRNA(Tyr) MRPL52 Cys-tRNA(Cys) MRPL42 MRPL49 MRPS18C TUFM MRPS15 Leu-tRNA(Leu) ICT1 MRPL49 MRPL48 MRPS33 mRNA MRPL42 MRPS6 ERAL1 MRPS18A MRPS17 MRPS21 MRPS12 MRPS2 ICT1 tRNA(Asn) MTIF3Cys-tRNA(Cys) MRPS2 MRPL11 MRPL16 MRPS28 MRPS18A MRPL23 MRPL50 MRPL1 MRPS25 PitRNA(Met)MRPS15 MRPL32 MT-TV MRPL48 MRPL2 MRPL39 MRPS12 MRPL20 GDP GTP MRPS9 peptidyl-tRNA with elongated peptide mRNA tRNA(His) MRPL10 tRNA(Asn) Met-tRNA(Met)MRPL49 DAP3 MRPL34 GTP MRPS26 MRPS6 MRPL11 MRPS18C MRPS18B PTCD3 MRPS36 MTIF2MRPL17 MRPL28 MRPS22 TUFM:GTP:aminoacyl-tRNAMRPL34 MRPL43 AURKAIP1 tRNA(Gln) MRPL15 MRPS6 MRPL40 MRPL42 MRPL46 MRPL30 Ser-tRNA(Ser) tRNA(Asp) MRPL52 MRPL52 MRPS2 MRPS34 MRPL24 MRPL27 MRPS16 MRPL49 Mitochondrial 12S rRNA MRPL43 MRPS22 MRPL38 Arg-tRNA(Arg) Gly-tRNA(Gly) MRPL17 tRNA(Gly) OXA1L MRPL19 GFM2 MRPL46 MRPS24 MRPS28 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPS14 MRPL53 MRPL37 Tyr-tRNA(Tyr) tRNA(Gly) MRPL51 MRPS14 MRPS17 MRPL33 MRPS23 MRPL54 MRPS21 MRPS18A MRPS16 MRPL51 DAP3 tRNA(Ser) MRPL20 TSFMMRPL41 MRPS34 MRPL21 MRPS10 MTIF2:GTPMRPL3 MRPL49 MRPL43 MRPS6 MRPL47 MRPL22 MTIF3 Ala-tRNA(Ala) Gly-tRNA(Gly) MRPL42 MRPL22 Mitochondrial 12S rRNA CHCHD1 THFERAL1 MRPL12 Pro-tRNA(Pro) MRPL23 tRNA(Trp) MRPS23 MRPS18A MRPL30 Asn-tRNA(Asn) ERAL1 Val-tRNA(Val) Mitochondrial 12S rRNA MRPS18C tRNA(Lys) MRPL16 MRPS18B MRPS34 CHCHD1 MRPL1 MRPL43 MRPL17 MRPS17 MRPL9 MRPS6 MRPL53 MRPS21 MRPS7 MRPL30 MRPL35 TSFM MRPL48 MRPL22 MRPL21 MRPL17 MRPL28 MRPS5 MRPL18 MRPL39 MRPS5 MRPS26 MRPL40 ERAL1 MRPL35 MRPL52 MRPL11 MRPL54 MRPS34 MRPL53 MRPS24 MRPL9 MRPL13 MRPL22 MRPS16 OXA1L MRPL20 MRPL39 MRPL19 MRPS33 MRPS2 tRNA(Ser) 55Sribosome:mRNA:tRNAAsp-tRNA(Asp) MRPL18 MRPL22 MRPS15 MRPL11 tRNA(Ala) MRPL14 MRPS26 MRPL45 mRNA MRPL45 MRPS33 AURKAIP1 tRNA(Val) MRPL37 MRPL21 ICT1 MRPL45 tRNA(Ser) MRPS9 ICT1 MRPL2 MRPL24 Mitochondrial 12S rRNA MRPL17 MRPL47 MRPL32 Arg-tRNA(Arg) tRNA(Tyr) MRPL57 MRPS7 Phe-tRNA(Phe) MRPL17 tRNA(Arg) MRPL11 mRNA MRPL57 MRPS23 MRPL17 MRPL13 Mitochondrial 16S rRNA MRPS35 GTP AURKAIP1 MRPL44 MRPS25 MRPS26 MRPS18B 55Sribosome:mRNA:tRNA:MRRFMRPS15 MRPL28 CHCHD1 TUFM MRPS36 MRPL32 MRPL28 Mitochondrial 16S rRNA MRPS18B MRPL27 MTRF1L, ICT1MRPS31 MRPL57 MRPS10 MRPL27 CHCHD1 10-formyl-THFMRPS31 Ile-tRNA(Ile) MRPL16 MRPS22 MRPL18 GTPMRPL51 MRPL10 MRPL37 MRPL36 MRPL34 His-tRNA(His) MRPS34 MRPS5 MRPL14 PTCD3 MRPL40 MRPL22 MRPL12 MRPL22 MRPL52 MRPS30 MRPS7 Ser-tRNA(Ser) MRPL14 MRPS34 MRPL50 MRPS25 DAP3 MRPL9 MRPL55 39S ribosomalsubunitMRPL21 MRPS16 polypeptidePTCD3 mRNA MRPS10 MRPS30 tRNA(Ile) MRPS2 MRPS18C GDPGlu-tRNA(Glu) MRPS23 MRPL43 MRPS11 Mitochondrial 16S rRNA MRPL9 Cys-tRNA(Cys) MRPS14 MRPL19 MRPS14 MRPS33 MRPS28 MRPS11 MRPS24 MRPL2 MRPS6 OXA1L PiMRPL15 MRPS22 MRPS7 PTCD3 Gln-tRNA(Gln) MRPS35 Phe-tRNA(Phe) MRPL34 MRPS11 MRPL45 fMet-tRNA(fMet) tRNA(Pro) DAP3 MRPL50 AURKAIP1 peptidyl-tRNA with elongated peptide MRPS7 MRPL39 MRPL41 MRPL33 MRPL54 MRPL2 MRPS9 MRPS26 MRPL39 MRPL20 AURKAIP1 tRNAtRNA(Gln) MRPL11 MRPL18 MRPS36 MRPL38 MRPL10 AURKAIP1 MRPL14 MRPL32 MRPL40 Gln-tRNA(Gln) MRPL35 MRPL15 MRPL38 MRPS15 MRPL44 MRPL49 GTP MRPS21 MRPL16 MRPS7 MRPS36 tRNA(Leu) ICT1 GTP MRPL27 Ser-tRNA(Ser) Met-tRNA(Met) MRPL28 MRPL50 MRPS6 GFM1 MRPS15 MRPS27 MRPL39 Thr-tRNA(Thr) MRPL13 MRPL35 Ala-tRNA(Ala) ERAL1 MRPL16 MRPL52 MRPS31 GDPaminoacyl-tRNAMRPL35 MRPL41 MRPS10 MRPL32 MRPS11 GADD45GIP1 ERAL1 tRNA(Glu) MRPL32 MRPL36 mRNAMRPS24 MTIF2 MRPS35 MRPS25 MRPL3 MRPS36 MRPL36 MRPS16 Glu-tRNA(Glu) GTP CHCHD1 MRPL32 MRPS24 MRPL2 MRPL54 TUFM MRPL21 MRPL36 MRPS5 MRPS22 MRPS35 Mitochondrial 16S rRNA MRPS10 MRPL45 MTRF1L MRPL51 MRPL57 MRPL44 GTP MRPL33 MRPL3 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPL11 MRPL41 GADD45GIP1 MRPL53 MRPS14 OXA1L Tyr-tRNA(Tyr) CHCHD1 55Sribosome:mRNA:fMet-tRNAAsn-tRNA(Asn) MRPS33 tRNA(Phe) MRPS33 MRPS6 MRPL36 MRPL28 MRPL12 MRPS31 ICT1 tRNA(Met) MRPL43 MRPS17 tRNA(Phe) 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPS18C MRPS15 GTP MRPS22 MRPS18A MRPL42 MRPL3 TUFM MRPL40 MRPL23 MRPS22 MRPS36 MRPL9 MRPL51 MRPL19 MRPS18C MRPS25 MRPL54 MRPL30 MRPL48 tRNA(Pro) MRPL21 AURKAIP1 Ala-tRNA(Ala) MRPL38 MRPS30 MRPS30 Gly-tRNA(Gly) MRPS28 MRPL40 MRPS11 MRPS9 MRPS9 MRPL44 His-tRNA(His) MRPL34 MRPL9 MRPL57 MRPL16 MRPS2 MRPL30 MRPL28 fMet-tRNA(fMet) MRPS27 MRPL1 MRPL12 MRPL48 MRPL4 MRPL24 Mitochondrial 12S rRNA MRPL13 MRPL1 tRNA(Val) MRPS25 MRPS31 MRPL24 MRPL18 Thr-tRNA(Thr) tRNA(Arg) MRPL32 MRPS34 MRPL41 MRPS22 Asn-tRNA(Asn) MRPL24 MRPL37 MRPL55 MRPS23 MRPL9 MRPS15 MRPL46 CHCHD1 MRPS21 MRPS35 Trp-tRNA(Trp) MRPL27 GADD45GIP1 GADD45GIP1 MRPL2 MRPL38 ICT1 tRNA(Trp) MRPL22 MRPL57 ERAL1 MRPL51 Leu-tRNA(Leu) MRPL4 MRPS18A MRPL38 MRPL50 MRPL50 MRPS18A CHCHD1 tRNA(Val) OXA1L Lys-tRNA(Lys) MRPS30 Mitochondrial 16S rRNA MRPL49 MRPL43 MRPS33 MRPS26 MRPL12 MRPL53 MRPL46 MRPL21 tRNA(Ile) MRPL10 Mitochondrial 12S rRNA MRPS31 GFM2 MRPS23 CHCHD1 MRPL3 MRPL53 MRPL19 MRPL49 MRPS16 tRNA(Gln) tRNA(Ile) MRPL48 MRPL1 GADD45GIP1 MRPL14 MRPS27 MRPL12 ERAL1 MRPL24 ERAL1 Leu-tRNA(Leu) MRPS9 MRPS5 MRPS31 tRNA(Thr) Mitochondrial 12S rRNA MRPL46 MRPL41 Tyr-tRNA(Tyr) GFM1 Arg-tRNA(Arg) Mitochondrial 16S rRNA MRPL27 MRPS2 MRPL54 MRPL13 MRPS25 MRPS27 MRPL44 GADD45GIP1 MRPS16 MRPL45 MRPL3 MRPL19 Mitochondrial 16S rRNA GFM1 Mitochondrial 12S rRNA MRPS7 MRPL21 MRRF MRPL44 MRPL35 Glu-tRNA(Glu) MRPL15 MRPS25 GFM1:GTPtRNA(Ala) ERAL1 GADD45GIP1 MRPL47 MRPS36 MRPS28 MRPL53 MRPL38 MRPL3 MRPS14 MRPS27 MRPL4 MRPL9 MRPS12 MRPL33 MRPL48 MRPS18B ERAL1 MRPL35 MRPS17 AURKAIP1 MRPL34 tRNA(Asp) MRPS12 Mitochondrial 12S rRNA TUFM:TSFMMRPL24 MRPL33 MRPS9 MRPL16 MRPL4 MT-TV MRPL19 His-tRNA(His) MRPS15 MRPL20 mRNA MRPL40 MRPS30 MRPL37 MRPS25 GADD45GIP1 MRPL27 MRPL20 MRPS18A MRPS2 AURKAIP1 GFM2:GDP55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPS34 MRPL35 MRPL35 MRPL14 MRPS26 MRPL37 MRPL34 MRPS27 MRPL15 Pro-tRNA(Pro) Ala-tRNA(Ala) MRPL32 MRPL13 MRPS28 MRPS17 MRPS18B MRPS33 MRPL3 ICT1 MRPS2 MRPS27 TUFM:GDPMRPS35 MRPS11 MRPS12 MRPL48 Mitochondrial 16S rRNA MRPS31 MRPL14 MRPL20 Mitochondrial 16S rRNA 28S ribosomalsubunitMRPL42 MRPS14 MRPS12 MRPL51 MRPL33 MRPL52 tRNA(Lys) OXA1L MRPL10 MRPL30 28S ribosomalsubunit:MTIF3MT-TV MRPS6 PiMRPS35 MRPL37 MRPL55 MRPS10 MRPS15 MRPS31 MRPL38 MRPS11 MT-TV MRPS16 MRPS22 Gln-tRNA(Gln) MRPL55 MRPL43 OXA1L MRPL13 MRPL44 MRPL46 MRPL47 MRPS9 GFM2:GTPTyr-tRNA(Tyr) MRPL52 MRPS6 MRPL30 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAMRPL20 MRPL10 PTCD3 MRPL49 MRPS10 MRPS18C MRPS10 MRPL30 Val-tRNA(Val) MRPL27 MRPS22 MRPL10 GADD45GIP1 ERAL1 MRPL47 Cys-tRNA(Cys) Trp-tRNA(Trp) MRPS10 GADD45GIP1 His-tRNA(His) MRPS18A MRPS31 MRPS36 MRPL24 MRPL46 Lys-tRNA(Lys) MRPL22 MRPL17 MRPL35 MRPL2 tRNA(Cys) MRPL20 MRPL49 MRPL38 MRPS12 MRPS17 MRPL15 MRPL55 MRPS18B MRPL44 MRPL23 DAP3 MRPL1 mRNA MRPL11 MRPL19 MRPS27 MRPL4 MRPS24 MRPS12 MRPS16 MRPS27 PTCD3 MRPL57 MRPL20 Thr-tRNA(Thr) MRPL47 MRPL48 DAP3 tRNA(Asp) MRPL15 GTPPTCD3 fMet-tRNA(fMet) MRPS30 Trp-tRNA(Trp) MRPL50 MRPS34 fMet-tRNA(fMet)Met-tRNA(Met) MRPS24 MT-TV MRPS9 Mitochondrial 16S rRNA MRPS27 MRPL15 MRPL4 MRPS5 MRPL21 MRPL47 Val-tRNA(Val) MRPS35 MRPS18B tRNA(Asn) ICT1 peptidyl-tRNA with elongated peptide MRPS14 MRPS9 MRPS23 ICT1 MRPS23 MRPL43 MRPS7 MRPS15 MRPS18C MRPS36 MRPL34 MRPL54 MRPL11 MRPL35 MRPL51 MRPL51 MRPL15 MRPL21 MRPS31 MRPS6 MTIF2 MRPS11 MRPL36 Mitochondrial 12S rRNA MRPL54 MRPL3 tRNA(His) MRPL40 MRPL41 Gln-tRNA(Gln) MRPL20 MRPS22 MRPL28 MRPL54 MRPL21 MRPS25 MRPS26 fMet-tRNA(fMet) MRPL36 Ser-tRNA(Ser) MRPL12 MRPL46 ICT1 Met-tRNA(Met) MRPS16 MRPL47 MRPL18 mRNA MRPS22 MRPS18B MRPL47 MRPL39 MRPS24 MRPL33 MRPS18C DAP3 MRPS12 MRPS30 DAP3 Ile-tRNA(Ile) Glu-tRNA(Glu) MRPL3 MRPS34 MRPL28 ICT1 MRPS23 GFM1:GDPMRPL18 MRPS36 MRPS14 MRPL55 MRPL30 MRPS7 MRPL2 MRPS30 PTCD3 MRPL50 MRPS27 MRPS21 MRPL42 MRPS33 AURKAIP1 MRPS10 MRPL24 MRPL10 MRPL41 MRPL16 MRPL1 MRPL27 MRPL51 MRPS21 MRPS2 tRNA(Phe) MRPL12 MRPL3 mRNA MRPL36 MRPL23 MRPL14 MRPL37 MRPL18 MTFMTMRPL36 Asp-tRNA(Asp) fMet-tRNA(fMet) MRPL38 ICT1 MRPS24 PifMet-tRNA(fMet) tRNA(Cys) MRPL17 MRPS21 MRPS15 MRPS14 MRPL45 OXA1L MRPS35 ERAL1 MRPL44 Asp-tRNA(Asp) Val-tRNA(Val) OXA1L MRPS16 DAP3 MRPS9 MRPS30 MRPS36 MRPL42 MT-TV MRPL18 MRPL42 tRNA(Thr) MRPL37 MRPL50 MRPL46 MRPL37 MRPS33 MRPL45 MRPL23 GFM2 MRPL4 MRPL4 MRPS28 MRPS6 Mitochondrial 16S rRNA MRPS9 tRNA(Ala) PiMRPL53 MRPL45 MRPS7 GTP MRPS14 MRPL57 MRPS16 tRNA(Glu) MRPL15 MRPL49 Mitochondrial 12S rRNA OXA1L MRPL52 MT-TV MRPL17 tRNA(His) MRPL57 peptidyl-tRNA with elongated peptide MRPL11 MRPL32 MRPL1 MRPS30 MRPS17 CHCHD1 MRPS12 MRPS18A MRPL2 MRPL10 MRPL39 MRPL53 MRPL39 MRPS18B MRPS22 Mitochondrial 12S rRNA Lys-tRNA(Lys) MRPL30 tRNA(Met) MRPL39 MRPS28 MRPL17 MRPL23 MRPS35 MRPL55 MRPS5 MRPL12 MRPS18C MRPL36 MRPS7 MRPL28 MRPL4 MRPS27 AURKAIP1 MRPL33 Asn-tRNA(Asn) MRPL9 MRPS18A MRPS26 MRPS33 PTCD3 MRPL13 MRPL12 CHCHD1 MRPS5 MRPL53 MRPL14 tRNA(Cys) Pro-tRNA(Pro) MT-TV MRPS36 MRPS28 MRPL18 MRPL44 MRPL32 MRPS28 Ile-tRNA(Ile) tRNA(Thr) MRPS11 MRPL13 AURKAIP1 MRPL40 MRPL40 PTCD3 MRPL4 MRPS5 MTIF3 MRPS31 MRPL54 MRPL52 MRPS23 MRPS21 Mitochondrial 12S rRNA MRPL57 MRPS21 MRPL11 MRPL41 MRPS17 MRPS11 MRPL9 MRPL16 MRPS21 MRPL53 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL42 MRPL43 MRPS34 CHCHD1 GADD45GIP1 MRPS35 MRPS14 CHCHD1 MRPL13 Leu-tRNA(Leu) MRPL50 MRPL22 MRPS5 MRPS7 MRPL44 MRPL19 MRPL46 MRPS33 MRPS17 MRPS25 AURKAIP1 MRPL24 MRPS23 MRPL40 MRPL37 MRPS34 MRPS31 MRPL9 MRPS10 GDPGDP MRPL1 MRPL39 MRPS26 Asp-tRNA(Asp) tRNA(Gly) MT-TV PTCD3 MRPL55 Met-tRNA(Met) MRPS2 MRPS27 MRPL34 MRPS9 MT-TV Gly-tRNA(Gly) MRPS28 MRPS24 MRPS26 MRPL19 MRPS30 MRPL12 MRPS28 MRPS25 MRPS34 MRPL16 MRPL52 MRPS16 MRPL55 MRPL2 MRPL15 MRPL33 tRNA(Met) MRRFMRPS25 MRPL41 MRPL46 MRPL50 Pro-tRNA(Pro) tRNA(Lys) MRPL30 MRRF MTRF1L MRPS15 55Sribosome:MRRF:GFM2:GTPMRPS7 MRPS18A tRNA(Tyr) MRPL22 MRPS12 PTCD3 MRPS18A MRPL34 MRPL47 GTP MRPL38 MRPS21 MRPL27 MRPS24 MRPS12 MRPL41 MRPL55 GDP MRPL18 MRPS23 MRPL33 MRPL2 OXA1L MRPL45 MRPL27 MRPS18C TUFM MRPL57 MRPS18C MRPL42 DAP3 MRPL23 MRPL1 PTCD3 MRPL4 MRPS10 MRPL23 MRPS17 MRPL24 MRPL36 tRNA(Leu) MRPL1 MRPL47 MRPS12 MRPS18C MRPS2 tRNA(Leu) MRPS11 MRPS35 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPS23 MRPL16 MRPL10 TUFM:GTP11, 1518, 29, 3411, 1511, 153, 16, 30, 3111, 1510, 11, 15, 3111, 1511, 1511, 1511, 1511, 1511, 1511, 1511, 1511, 15


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
OXA1L ProteinQ15070 (Uniprot-TrEMBL)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:43474 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools