NAD metabolism in oncogene-induced senescence and mitochondrial dysfunction-associated senescence (Homo sapiens)
From WikiPathways
Description
The OIS pathway, induced by Ras singalling in this case, results in the upregulation of HMGA1, and stimulation of the NAMPT enzyme (Nacarelli et al., 2019). Resulting increased levels of NMN (the direct metabolite of NAMPT) translate to increased NAD levels, and a high NAD-NADH ratio. This leads to decreased ADP-ATP levels, which causes a decreased phosphorylated AMPK expression (Nacarelli et al., 2019). This interaction causes increased p38 and p65 activation, and increased NF-κB activity. The NF-κB signalling pathway has been known to play a key role in the promotion of the proinflammatory SASP (Freund et al., 2011). Furthermore, this is correlated with increased expression of interleukins IL1B, IL6 and IL8, all key factors in the proinflammatory wave of the SASP. In addition, Nacarelli et al. (2019) found that the proinflammatory environment created as a result of the increased NAD-NADH ratio leads to acceleration of cancer progression. NAMPT upregulation through HMGA1 also resulted in the expression of senescence markers SA-ß-gal, p16 and p21. The resulting phenotype from this high NAD-NADH ratio is a high proinflammatory SASP.
Quality Tags
Ontology Terms
Bibliography
View all... |
- Lee SM, Dho SH, Ju SK, Maeng JS, Kim JY, Kwon KS; ''Cytosolic malate dehydrogenase regulates senescence in human fibroblasts.''; Biogerontology, 2012 PubMed Europe PMC Scholia
- Han X, Tai H, Wang X, Wang Z, Zhou J, Wei X, Ding Y, Gong H, Mo C, Zhang J, Qin J, Ma Y, Huang N, Xiang R, Xiao H; ''''; , PubMed Europe PMC Scholia
- Ohanna M, Giuliano S, Bonet C, Imbert V, Hofman V, Zangari J, Bille K, Robert C, Bressac-de Paillerets B, Hofman P, Rocchi S, Peyron JF, Lacour JP, Ballotti R, Bertolotto C; ''Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS).''; Genes Dev, 2011 PubMed Europe PMC Scholia
- Wiley CD, Campisi J; ''From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence.''; Cell Metab, 2016 PubMed Europe PMC Scholia
- Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J; ''Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype.''; Cell Metab, 2016 PubMed Europe PMC Scholia
- Nacarelli T, Lau L, Fukumoto T, Zundell J, Fatkhutdinov N, Wu S, Aird KM, Iwasaki O, Kossenkov AV, Schultz D, Noma KI, Baur JA, Schug Z, Tang HY, Speicher DW, David G, Zhang R; ''NAD+metabolism governs the proinflammatory senescence-associated secretome.''; Nat Cell Biol, 2019 PubMed Europe PMC Scholia
- Takebayashi S, Tanaka H, Hino S, Nakatsu Y, Igata T, Sakamoto A, Narita M, Nakao M; ''Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.''; Aging Cell, 2015 PubMed Europe PMC Scholia
- Horenstein AL, Sizzano F, Lusso R, Besso FG, Ferrero E, Deaglio S, Corno F, Malavasi F; ''CD38 and CD157 ectoenzymes mark cell subsets in the human corneal limbus.''; Mol Med, 2009 PubMed Europe PMC Scholia
- Surjana D, Halliday GM, Damian DL; ''Role of nicotinamide in DNA damage, mutagenesis, and DNA repair.''; J Nucleic Acids, 2010 PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Annotated Interactions
No annotated interactions