Affected pathways in Duchenne muscular dystrophy (Homo sapiens)

From WikiPathways

Revision as of 15:02, 20 April 2023 by Pauladewenter (Talk | contribs)
Jump to: navigation, search
13, 37, 443613, 33, 44, 461445244433821, 30, 4540942262235MacrophageLoss of Membrane IntegrityFibro-Adipogenic Progenitors91, 4419, 44mPTPModificationMitochondriaInhibitionLegendSRMAMsConversionNucleusMembrane TearSustained Muscle ContractionInefficient Myofiber RepairCatalysisFibroblast ActivationMyocyte cytosolMuscle Stiffness StimulationLoss of mitochondria2134FibrosisTroponinInflammatory pathwayVDAC1Sig-1RIP3R3ADT2Phospholipase A2SOCEApoptosisRYR1MCUATPMCUbProteasome degradationVDAC1Ca2+LactateCyP-DROSGL1Dystrophin deficiencyNecrosisDMD(+mutation)MMP2DMDIP3R1Muscle contraction IP3R2[Ca2+]mitoDigestion of cell membraneCa2+GlycoproteinsFibroblastDifferentiationMMP9Ca2+ROSSERCA1Inflammatory responseProteoglycansUnfolded protein responseTGF-B1Oxidative stressMitophagyTOMCaspase 9ParkinPathwayNOX2Calpain-3GRP751011391239163192992317, 212744Protein orGeneProductMetabolitePathwayTGFBR2TGFBR1SMAD4SMAD2SMAD3SERPINE120, 45SCXPLAU3245FibronectinCollagenAng 245RAS-MAPK pathwayIL-625, 4547IL-1B47SMAD2SMAD345NOX445CTGF8, 28, 35TNF-a4147AGTR145Dystrobrevin alphaSyntrophin beta-1alpha sarcoglycanSarcospanDystrophinDystroglycan 1Disassembled Dystrophin-associated glycoprotein complex (DAPC)STIM1Orai12, 5, 19, 33, 44...Ca2+mTOR38Muscular regenerationRYR138, 4716CAC1FCAC1SCACB2CACB1CA2D1CCG1LTCCDMD (+mutations)6, 33Calstabin-1Sarcolipin19, 4643DAMPs222, 44, 462M1 Macrophage47M2 Macrophage47IL-1αIL-64747IL-1047NFkB2IκBα2SOCECalpain-315, 44Platelet-activating factor2, 44, 46LeukotrienesPhospholipid MembraneDigestionProstaglandins44TGF-β47TNF-α47Phospholipase A2ROS44Ca2+Inflammatory pathways2, 44Inflammatory pathwaysAutophagy2, 33Muscular regenerationNFkB474TRPC3TRPC1TRPC6Ca2+Ca2+Sodium regulators44Na+Ca2+4444Na+44Ca2+Ca2+44Fibrosis34NecrosisROSCASQ 1Triadin7CaMK233, 38AMPK1AMPK2Neutrophil47Oxidative stressNecrosis4747Cl-NOH2O247NEHOCl47L-Arginie47iNOS47MPO47HOCl47


Description

DMD (Duchenne muscular dystrophy) is a genetic disorder that primarily affects muscles in the body, causing progressive muscle weakness and wasting. It is caused by mutations in the DMD gene, which results in a deficiency or absence of the protein dystrophin, leading to muscle degeneration.

DMD is characterized by abnormal calcium levels resulting from dysfunction in the muscle cell membrane. This leads to the uncontrolled opening of the mitochondrial permeability transition pore (mPTP) which inhibits ATP synthesis and thus, drives the cell into apoptosis. This influx activates a cascade of harmful events, including increased production of reactive oxygen species (ROS) and activation of proteases that can damage the cell structure of muscle fibers. The lack of the dystrophin protein affects essential components for muscle contraction namely the Disassembled Dystrophin-associated glycoprotein complex (DAPC) which disturbs the normal contraction-relaxation process of the muscle in DMD. Sustained contractions occur due to the high calcium influx causing muscle stiffness and fibrosis, which are known characteristics of DMD.

Indeed, fibrosis is commonly stimulated in dystrophic muscle cells as a result of the upregulation of several pro-fibrotic transcription factors such as SERPINE1, SCX and GL1. Hence, excessive amounts of collagen and fibronectin are produced, enhancing fibrosis.

All these events cause chronic inflammation in the muscle cell, attracting pro-inflammatory cytokines, chemokines and other inflammatory mediators. The chronic inflammation in DMD can further perpetuate muscle degeneration, fibrosis, and impaired muscle function.

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Chen X, Li Y; ''Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis.''; Cell Adh Migr, 2009 PubMed Europe PMC Scholia
  2. Tulangekar A, Sztal TE; ''Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration.''; Biomedicines, 2021 PubMed Europe PMC Scholia
  3. Zabłocka B, Górecki DC, Zabłocki K; ''Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences.''; Int J Mol Sci, 2021 PubMed Europe PMC Scholia
  4. Burr AR, Molkentin JD; ''Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy.''; Cell Death Differ, 2015 PubMed Europe PMC Scholia
  5. Tauffenberger A, Fiumelli H, Almustafa S, Magistretti PJ; ''Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling.''; Cell Death Dis, 2019 PubMed Europe PMC Scholia
  6. Burr AR, Molkentin JD; ''Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy.''; Cell Death Differ, 2015 PubMed Europe PMC Scholia
  7. Song Y, Yao S, Liu Y, Long L, Yang H, Li Q, Liang J, Li X, Lu Y, Zhu H, Zhang N; ''Expression levels of TGF-β1 and CTGF are associated with the severity of Duchenne muscular dystrophy.''; Exp Ther Med, 2017 PubMed Europe PMC Scholia
  8. Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R; ''The role of fibrosis in Duchenne muscular dystrophy.''; Acta Myol, 2012 PubMed Europe PMC Scholia
  9. Mareedu S, Million ED, Duan D, Babu GJ; ''Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies.''; Front Physiol, 2021 PubMed Europe PMC Scholia
  10. Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P; ''Understanding the process of fibrosis in Duchenne muscular dystrophy.''; Biomed Res Int, 2014 PubMed Europe PMC Scholia
  11. Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y; ''Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.''; Drug Des Devel Ther, 2016 PubMed Europe PMC Scholia
  12. Ismaeel A, Kim JS, Kirk JS, Smith RS, Bohannon WT, Koutakis P; ''Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review.''; Int J Mol Sci, 2019 PubMed Europe PMC Scholia
  13. Shkrob MA, Pyatnitskiy MA, Golovatenko-Abramov PK, Kotelnikova EA; ''Pathways Disturbed in Duchenne Muscular Dystrophy''; 10.2174/978160805437411201010104, 2012 PubMed Europe PMC Scholia
  14. Hammers DW; ''NOX4 inhibition promotes the remodeling of dystrophic muscle.''; JCI Insight, 2022 PubMed Europe PMC Scholia
  15. Blake DJ, Weir A, Newey SE, Davies KE; ''Function and genetics of dystrophin and dystrophin-related proteins in muscle.''; Physiol Rev, 2002 PubMed Europe PMC Scholia
  16. Dalkilic I, Kunkel LM; ''Muscular dystrophies: genes to pathogenesis.''; Curr Opin Genet Dev, 2003 PubMed Europe PMC Scholia
  17. Reid AL, Alexander MS; ''The Interplay of Mitophagy and Inflammation in Duchenne Muscular Dystrophy.''; Life (Basel), 2021 PubMed Europe PMC Scholia
  18. Knollmann BC; ''New roles of calsequestrin andtriadin in cardiac muscle.''; J Physiol, 2009 PubMed Europe PMC Scholia
  19. Hammers DW; ''NOX4 inhibition promotes the remodeling of dystrophic muscle.''; JCI Insight, 2022 PubMed Europe PMC Scholia
  20. Shkrob MA, Pyatnitskiy MA, Golovatenko-Abramov PK, Kotelnikova EA; ''Pathways Disturbed in Duchenne Muscular Dystrophy''; Doi: 10.2174/978160805437411201010104, 2012 PubMed Europe PMC Scholia
  21. Kasza KE, Zallen JA; ''Dynamics and regulation of contractile actin-myosin networks in morphogenesis.''; Curr Opin Cell Biol, 2011 PubMed Europe PMC Scholia
  22. Björn C Knollmann; ''New roles of calsequestrin and triadin in cardiac muscle''; , 2009 PubMed Europe PMC Scholia
  23. Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Mikheeva IB, Belosludtsev KN; ''Transport of Ca(2+) and Ca(2+)-dependent permeability transition in heart mitochondria in the early stages of Duchenne muscular dystrophy.''; Biochim Biophys Acta Bioenerg, 2020 PubMed Europe PMC Scholia
  24. Choi MH, Ow JR, Yang ND, Taneja R; ''Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies.''; Oxid Med Cell Longev, 2016 PubMed Europe PMC Scholia
  25. Lacourpaille L, Hug F, Guével A, Péréon Y, Magot A, Hogrel JY, Nordez A; ''New insights on contraction efficiency in patients with Duchenne muscular dystrophy.''; J Appl Physiol (1985), 2014 PubMed Europe PMC Scholia
  26. Budzinska M, Zimna A, Kurpisz M; ''The role of mitochondria in Duchenne muscular dystrophy.''; J Physiol Pharmacol, 2021 PubMed Europe PMC Scholia
  27. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L; ''The role of oxidative stress during inflammatory processes.''; Biol Chem, 2014 PubMed Europe PMC Scholia
  28. Harr MW, Distelhorst CW; ''Apoptosis and autophagy: decoding calcium signals that mediate life or death.''; Cold Spring Harb Perspect Biol, 2010 PubMed Europe PMC Scholia
  29. Moratal C, Arrighi N, Dechesne CA, Dani C; ''Control of Muscle Fibro-Adipogenic Progenitors by Myogenic Lineage is Altered in Aging and Duchenne Muscular Dystrophy.''; Cell Physiol Biochem, 2019 PubMed Europe PMC Scholia
  30. Ismaeel A, Kim JS, Kirk JS, Smith RS, Bohannon WT, Koutakis P; ''Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review.''; Int J Mol Sci, 2019 PubMed Europe PMC Scholia
  31. Nogami K, Maruyama Y, Sakai-Takemura F, Motohashi N, Elhussieny A, Imamura M, Miyashita S, Ogawa M, Noguchi S, Tamura Y, Kira JI, Aoki Y, Takeda S, Miyagoe-Suzuki Y; ''Pharmacological activation of SERCA ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice.''; Hum Mol Genet, 2021 PubMed Europe PMC Scholia
  32. Rodriguez-Gonzalez M, Lubian-Gutierrez M, Cascales-Poyatos HM, Perez-Reviriego AA, Castellano-Martinez A; ''Role of the Renin-Angiotensin-Aldosterone System in Dystrophin-Deficient Cardiomyopathy.''; Int J Mol Sci, 2020 PubMed Europe PMC Scholia
  33. Lindahl M, Bäckman E, Henriksson KG, Gorospe JR, Hoffman EP; ''Phospholipase A2 activity in dystrophinopathies.''; Neuromuscul Disord, 1995 PubMed Europe PMC Scholia
  34. Mareedu S, Million ED, Duan D, Babu GJ; ''Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies.''; Front Physiol, 2021 PubMed Europe PMC Scholia
  35. Chambers PJ, Juracic ES, Fajardo VA, Tupling AR; ''Role of SERCA and sarcolipin in adaptive muscle remodeling.''; Am J Physiol Cell Physiol, 2022 PubMed Europe PMC Scholia
  36. Burr AR, Molkentin JD; ''Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy.''; Cell Death Differ, 2015 PubMed Europe PMC Scholia
  37. Driscoll KE; ''Macrophage inflammatory proteins: biology and role in pulmonary inflammation.''; Exp Lung Res, 1994 PubMed Europe PMC Scholia
  38. Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, Seremetiev A, Becker HD, Hunt TK; ''Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing.''; Wound Repair Regen, 2003 PubMed Europe PMC Scholia
  39. Angebault C, Panel M, Lacôte M, Rieusset J, Lacampagne A, Fauconnier J; ''Metformin Reverses the Enhanced Myocardial SR/ER-Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice.''; Front Cell Dev Biol, 2020 PubMed Europe PMC Scholia
  40. Harisseh R, Chatelier A, Magaud C, Déliot N, Constantin B; ''Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of α1-syntrophin and PLC/PKC in SOCE regulation.''; Am J Physiol Cell Physiol, 2013 PubMed Europe PMC Scholia
  41. Nagamine Y, Medcalf RL, Muñoz-Cánoves P; ''Transcriptional and posttranscriptional regulation of the plasminogen activator system.''; Thromb Haemost, 2005 PubMed Europe PMC Scholia
  42. Shkrob MA, Pyatnitskiy MA, Golovatenko-Abramov PK, Kotelnikova EA; ''Pathways Disturbed in Duchenne Muscular Dystrophy''; From Knowledge Networks to Biological Models, 2012 PubMed Europe PMC Scholia
  43. Meyer P, Notarnicola C, Meli AC, Matecki S, Hugon G, Salvador J, Khalil M, Féasson L, Cances C, Cottalorda J, Desguerre I, Cuisset JM, Sabouraud P, Lacampagne A, Chevassus H, Rivier F, Carnac G; ''Skeletal Ryanodine Receptors Are Involved in Impaired Myogenic Differentiation in Duchenne Muscular Dystrophy Patients.''; Int J Mol Sci, 2021 PubMed Europe PMC Scholia
  44. Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P; ''Understanding the process of fibrosis in Duchenne muscular dystrophy.''; Biomed Res Int, 2014 PubMed Europe PMC Scholia
  45. Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y; ''Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.''; Drug Des Devel Ther, 2016 PubMed Europe PMC Scholia
  46. Hammers DW; ''NOX4 inhibition promotes the remodeling of dystrophic muscle.''; JCI Insight, 2022 PubMed Europe PMC Scholia
  47. Tulangekar A, Sztal TE; ''Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration.''; Biomedicines, 2021 PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
134500view06:45, 22 July 2024EgonwRemoved template comments
134392view19:27, 21 July 2024EweitzUpdate template comments
127722view18:50, 28 November 2023KhanspersModified title
127686view12:21, 22 November 2023EweitzModified title
127684view08:26, 22 November 2023TabbassidaloiiModified description
127683view08:25, 22 November 2023Tabbassidaloii
127681view23:16, 21 November 2023EweitzModified title
127623view20:23, 8 November 2023LarsgwRemove punctuation from bp:ID
127456view18:41, 3 October 2023Khanspersconnected interactions to anchors
126672view13:30, 11 June 2023Pauladewenter
126671view13:28, 11 June 2023Pauladewenter
126670view13:26, 11 June 2023Pauladewenter
126489view15:01, 9 May 2023PauladewenterNaming different parts of the pathway for clarity.
126488view13:24, 9 May 2023PauladewenterModified description
126467view05:22, 2 May 2023EgonwNot a mim-conversion
126463view19:12, 1 May 2023AlexanderPicofixed citations
126422view09:02, 28 April 2023EgonwMade two pathways clickable
126302view15:02, 20 April 2023Pauladewenter
126298view12:31, 20 April 2023Pauladewenter
126296view10:12, 20 April 2023Pauladewenter
126295view10:04, 20 April 2023Pauladewenter
126256view12:16, 18 April 2023PauladewenterModified description
126255view12:13, 18 April 2023PauladewenterModified description
126254view11:40, 18 April 2023PauladewenterModified description
126253view11:35, 18 April 2023Pauladewenter
126250view08:47, 18 April 2023Pauladewenter
126231view09:15, 17 April 2023Pauladewenter
126230view09:13, 17 April 2023Pauladewenter
126193view13:28, 14 April 2023Pauladewenter
126192view13:18, 14 April 2023PauladewenterModified title
126190view12:43, 14 April 2023Ash iyerChanged datanode to graphical element
126188view10:55, 14 April 2023Pauladewenter
126187view08:34, 14 April 2023Pauladewenter
126184view14:56, 13 April 2023Pauladewenter
126183view14:44, 13 April 2023PauladewenterNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ADT2GeneProductSLC25A5 (HGNC)
AGTR1GeneProductAGTR1 (HGNC)
AMPK1GeneProductENSG00000132356 (Ensembl)
AMPK2ProteinENSG00000162409 (Ensembl)
ATPMetaboliteCHEBI:30616 (ChEBI)
Ang 2Metabolite172198 (PubChem-compound) "angiotensin 2 (Ang 2)" Peptide hormone; "Asp-Arg-Val-Tyr-Ile-His-Pro-Phe Angiotensin I is converted to angiotensin II (AII) through removal of two C-terminal residues by the enzyme angiotensin-converting enzyme (ACE), primarily through ACE within the lung (but also present in endothelial cells, kidney epithelial cells, and the brain). Angiotensin II acts on the central nervous system to increase vasopressin production, and also acts on venous and arterial smooth muscle to cause vasoconstriction. Angiotensin II also increases aldosterone secretion; it therefore acts as an endocrine, autocrine/paracrine, and intracrine hormone." Source: "https://en.wikipedia.org/wiki/Angiotensin#Angiotensin_II"
ApoptosisPathwayWP254 (WikiPathways)
AutophagyPathwayWP4923 (WikiPathways)
CA2D1GeneProductENSG00000153956 (Ensembl) Voltage-dependent calcium channel subunit alpha-2/delta-1. Only isoform 1 is found in the skeletal muscles
CAC1FGeneProductENSG00000102001 (Ensembl) Voltage-dependent L-type calcium channel subunit alpha-1F
CAC1SGeneProductENSG00000081248 (Ensembl) Voltage-dependent L-type calcium channel subunit alpha-1S
CACB1GeneProductENSG00000067191 (Ensembl) Voltage-dependent L-type calcium channel subunit beta-1. Only isoform 2 is present in skeletal muscles
CACB2GeneProductENSG00000165995 (Ensembl) Voltage-dependent L-type calcium channel subunit beta-2
CASQ 1GeneProductCASQ1 (HGNC)
CCG1GeneProductENSG00000108878 (Ensembl) Voltage-dependent calcium channel subunit gamma-1
CTGFGeneProductCCN2 (HGNC)
Ca2+ MetaboliteHMDB0000464 (HMDB)
Ca2+MetaboliteHMDB0000464 (HMDB)
CaMK2ProteinENSG00000145349 (Ensembl)
Calpain-3ProteinCAPN3 (HGNC)
Calpain-3GeneProductENSG00000092529 (Ensembl)
Calstabin-1GeneProductENSG00000088832 (Ensembl)
  • Often, there is Ca2+ leakage from the RyRs in the SR, but this process is limited by calstabin-1. Calstabin-1 is a protein which has a high affinity for RyR, stimulated by the dystrophin. However, due to DMD mutations and thus reduction of dystrophin, the Calstabin-1 no longer binds with such a high affinity to the RyR, thus not blocking the calcium leakage
  • Type your comment here
Caspase 9ProteinCASP9 (HGNC)
Cl-MetaboliteHMDB0000492 (HMDB)
CollagenMetaboliteCHEBI:3815 (ChEBI)
CyP-DProteinPPIF (HGNC)
DMD (+mutations)GeneProductENSG00000198947 (Ensembl)
DMD(+mutation)GeneProductDMD (HGNC)
DMDGeneProductDMD (HGNC)
Digestion of cell membranePathwayWP5122 (WikiPathways)
Dystrobrevin alphaGeneProductDTNA (HGNC)
Dystroglycan 1GeneProductDAG1 (HGNC)
Dystrophin deficiencyGeneProductDMD (HGNC)
DystrophinGeneProductDMD (HGNC)
Fibroblast DifferentiationPathwayWP5312 (WikiPathways)
FibronectinMetaboliteCHEBI:5058 (ChEBI)
FibrosisPathway
GL1ProteinGLI1 (HGNC)
GRP75ProteinP38646 (Uniprot-TrEMBL)
GlycoproteinsProteinGP2 (HGNC)
H2O2MetaboliteHMDB0003125 (HMDB)
HOClMetaboliteHMDB0001050 (HMDB)
IL-10GeneProductENSG00000136634 (Ensembl)
IL-1BGeneProductENSG00000115008 (Ensembl)
IL-1αGeneProductENSG00000115008 (Ensembl)
IL-6GeneProductENSG00000136244 (Ensembl) In DMD, IL-6 is upregulated due to recurrent activation of the M1 macrophages by DAMPs. When upregulated for prolonged periods of time, the IL-6 will cause chronic inflammation and also reduce the population of the satellite cells that are needed for muscle regeneration.
IP3R1ProteinQ14643 (Uniprot-TrEMBL)
IP3R2ProteinITPR2 (HGNC)
IP3R3ProteinITPR3 (HGNC)
Inflammatory pathwayPathway
Inflammatory pathways PathwayAlthough the immune response functions to heal cells and tissues after damage, often when there is chronic inflammation (as is the case in DMD), the immune cells and the cytokines they secrete end up having detrimental effects, such as promoting oxidative stress, autophagy and necrosis.
Inflammatory responsePathway
IκBαGeneProductENSG00000100906 (Ensembl)
L-ArginieMetaboliteHMDB0000517 (HMDB)
LactateMetaboliteCHEBI:24996 (ChEBI)
LeukotrienesMetaboliteWhen leukocytes degrade phospholipid cell membranes, they also break down a type of phospholipid present called arachidonic acid. Break down of this arachidonic acid leads to the release of leukotrines, of which there are a wide variety. It is not yet known which exact leukotrine(s) play a role in the DMD pathophysiology, hence the use of the term "leukotrine" as a whole. Reference: Cuzzo B, Lappin SL. Physiology, Leukotrienes. [Updated 2022 Aug 22]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526114/
MCUProteinMCU (HGNC)
MCUbProteinMCUB (HGNC)
MMP2ProteinMMP2 (HGNC)
MMP9ProteinMMP9 (HGNC)
MPOGeneProductENSG00000005381 (Ensembl) Myeloperoxidase (MPO) is a potent enzyme which catalyses the production of hypochlorous acid (HOCl) when hydrogen peroxide (H2O2) and chloride ions (Cl-) are present within the neutrophil.
MitophagyPathwayWP3549 (WikiPathways)
Muscle contraction PathwayWP383 (WikiPathways)
Muscular regenerationPathwayWP4172 (WikiPathways)
NEGeneProductENSG00000197561 (Ensembl) Neutrophil elastase (NE) is a type of serine protease which promotes the formation of neutrophil extracellular traps (NETs), which themselves function to trap invading microbes but also cuase tissue damage as collateral. Although possibly playing a role in the pathophysiology of DMD, it is not yet confirmed if NETs contribute to the muscle damage
NFkBGeneProductENSG00000109320 (Ensembl)
NOMetaboliteHMDB0003378 (HMDB)
NOX2GeneProductP04839 (Uniprot-TrEMBL)
NOX4GeneProductNOX4 (HGNC)
Na+MetaboliteHMDB0000588 (HMDB)
NecrosisPathwayWP2513 (WikiPathways)
NecrosisPathwayWP3380 (WikiPathways)
Orai1GeneProductENSG00000276045 (Ensembl)
Oxidative stressPathway
Oxidative stress PathwayWP408 (WikiPathways)
PLAUGeneProductPLAU (HGNC) Also known as Urokinase-type plasminogen inhibitor (uPA)
Parkin PathwayPathwayWP2359 (WikiPathways)
Phospholipase A2GeneProductENSG00000116711 (Ensembl)
Phospholipase A2ProteinPLA2G2A (HGNC)
Phospholipid Membrane DigestionPathwayWP5122 (WikiPathways)
Platelet-activating factorMetaboliteHMDB0062195 (HMDB)
ProstaglandinsMetaboliteProstaglandins are released when phospholipid membranes are broken down. Although hundreds of prostaglandins exist which can influence the inflammatory pathways, no specific ones were highlighted with regards to the DMD pathophysiology
Proteasome degradation PathwayWP183 (WikiPathways)
ProteoglycansProteinPRG3 (HGNC)
RAS-MAPK pathwayPathwayWP400 (WikiPathways)
ROSMetaboliteThere are three primary reactive oxygen species (ROS) which are prevalent within the mitochondria, including the superoxide anions (O2-), the hydroxyl radicals (OH-) and the hydrogen peroxide (H2O2). These three, and possibly more, likely play a role in the DMD pathophysiology, however the exact type of ROS was not mentioned in the papers searched, thus the term ROS is used broadly here
ROSMetaboliteQ424361 (Wikidata)
RYR1GeneProductRYR1 (HGNC)
SCXProteinSCX (HGNC)
SERCA1ProteinATP2A1 (HGNC)
SERPINE1GeneProductSERPINE1 (HGNC) Also known as plasminogen activator inhibitor-1 PAI-1
SMAD2 GeneProductSMAD2 (HGNC)
SMAD3 GeneProductSMAD3 (HGNC)
SMAD4ProteinSMAD4 (HGNC)
SOCEPathway
SOCEGeneProductSARAF (HGNC)
STIM1GeneProductENSG00000167323 (Ensembl)
SarcolipinProteinENSG00000170290 (Ensembl)
SarcospanGeneProductSSPN (HGNC)
Sig-1RProteinSIGMAR1 (HGNC)
Sodium regulatorsProtein
  • The increased permeability can also induce Na influx to the cells, allongside Ca influx. THe cells prioritize the efflux of Na, indusing further Ca influx
  • Type your comment here
Syntrophin beta-1GeneProductSNTB1 (HGNC)
TGF-B1GeneProductENSG00000105329 (Ensembl)
TGF-βGeneProductENSG00000105329 (Ensembl)
TGFBR1 GeneProductTGFBR1 (HGNC)
TGFBR2GeneProductTGFBR2 (HGNC)
TNF-aGeneProductENSG00000232810 (Ensembl)
TNF-αGeneProductENSG00000232810 (Ensembl)
TOMProteinTOMM20 (HGNC)
TRPC1GeneProductENSG00000144935 (Ensembl) Short transient receptor potential channel 1
TRPC3GeneProductENSG00000138741 (Ensembl) Short transient receptor potential channel 3
TRPC6GeneProductENSG00000137672 (Ensembl) Short transient receptor potential channel 6
TriadinGeneProductTRDN (HGNC)
TroponinProteinTNNI1 (HGNC)
Unfolded protein responsePathwayWP1939 (WikiPathways)
VDAC1 ProteinVDAC1 (HGNC)
VDAC1ProteinVDAC1 (HGNC)
[Ca2+]mitoMetaboliteHMDB0000464 (HMDB)
alpha sarcoglycanGeneProductSGCA (HGNC)
iNOSProteinENSG00000007171 (Ensembl)
mTORPathwayWP4923 (WikiPathways)

Annotated Interactions

No annotated interactions

Personal tools