Gene Silencing by RNA (Homo sapiens)

From WikiPathways

Revision as of 09:19, 11 July 2016 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
32, 39, 44, 73, 76...45, 48, 53, 84, 9010568, 72, 10016, 25, 45, 48, 63...1, 4, 22, 24, 34...1, 4, 8, 10, 24...35, 43, 51, 584, 17, 24, 56, 62...6, 19, 86, 88, 1019, 21, 792617, 41, 46, 56, 62...5, 12, 28, 54, 104...14, 23, 28, 29, 35...3, 20, 30, 31, 36...11, 13, 65, 851, 4, 10, 24, 27...14, 28, 35, 46, 52...1, 4, 24, 34, 38...1032, 15, 18, 80, 999, 21, 791, 4, 17, 23, 24, 46...nucleoplasmcytosolTDRD12 EIF2C2 TDRKH NUP98-4 MOV10L1 EIF2C4 RANBP2 POLR2L 6xMeR-PIWIL2 TDRD1 TDRD9 TNRC6A RAE1 4xMeR-PIWIL1:pre-piRNA:TDRD6:TDRKHHIST1H2AJ 6xMeR-PIWIL2:2'-O-methyl-piRNA:cleaved transposon RNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1duplex siRNA DICER1 RNA (inexact match) TDRD6 POLR2G MeR-PIWIL4:2'-O-methyl-piRNAPOLR2A EIF2C4 AdoMetEIF2C3 POLR2I TNRC6C ASZ1 siRNA EIF2C2 EIF2C1 PRKRA MeR-PIWIL4 miRNA EIF2C4 MeR-PIWIL4:cleavedtransposonRNA:TDRD9:MAEL:TDRKHAdoHcyHIST1H2BB 2'-O-methyl-piRNA IPO8pre-piRNAPOLR2L PLD6 dimerTDRD12 XPO5 DDX4 TNRC6B PRKRA POLR2E HIST1H2BD EIF2C4 POLR2C EIF2C3 TSNAX DDX4 POLR2E Nup45 miRNA ASZ1 TNRC6B POLR2G XPO5 HIST1H3A POLR2A MAEL MeR-PIWIL4 NUP160 HIST1H2BC HIST1H4 NUPL1-2 MYBL1TARBP2,PRKRA:DICER1:Pre-RISC (miRNA)HENMT1RAN POLR2B HIST1H2BC 6xMeR-PIWIL2:cleavedtransposonRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1NUP43 EIF2C2 Cleaved RNA with 5'Phosphate and 3'HydroxylEIF2C2 RAN EIF2C2 DICER1 H2AFX 6xMeR-PIWIL2 TDRD1 TDRKH 2'-O-methyl-piRNA TNRC6APi4xMeR-PIWIL1:piRNA:TDRD6:TDRKHEIF2C2 Cleaved transposon RNA RNA Polymerase IIholoenzyme complex(unphosphorylated)IPO8:AGO2:miRNAHIST1H2AB Transposon RNANUP50 miRNA HIST1H2AD POLR2F NUP210 MAELTDRD1 H2AFZ EIF2C1 duplex siRNA 4xMeR-PIWIL1:2'-O-methyl-piRNA:TDRD6:TDRKHsiRNA TDRD12 POLR2H TNRC6 (GW182)NUP85 POLR2J miRNA AdoHcyMOV10L1 EIF2C2 FKBP6:HSP90AA1HIST2H3A TDRD6 pre-microRNA with 3'overhangTNRC6B GTP 6xMeR-PIWIL2 Nonendonucleolytic RISC RNA (inexact match)HIST1H2BM NUPL2 MeR-PIWIL4 DICER1 EIF2C4 EIF2C4 POLR2F TNRC6A GDP HIST1H3A POLR2G EIF2C1 NUP62 Cleaved transposon RNA HIST1H2BK NUP54 H3F3A AGO2:duplex siRNAAGO2:siRNAHIST1H2BK TDRKH pre-microRNA with 3' overhang EIF2C2 MOV10L1 MOV10L1 TDRD6 POLR2B EIF2C3 DGCR8 POLR2I TARBP2 ASZ1 miRNA TNRC6A:AGO2:miRNAHSP90AA1 TDRKH TARBP2 miRNA POLR2L NUP93 NUP35 DDX4 HIST2H2BE NUP98-3 TARBP2 POLR2D TARBP2 RNA Polymerase IIholoenzyme complex(generic)TPR piRNA locus (DNA)ASZ1 DROSHA DNA HIST1H2BJ H2AFX AGO1,2:miRNAmiRNA gene4xMeR-PIWIL1:TDRD6:TDRKHHIST1H2BD TDRD12 EIF2C1 EIF2C2 HIST1H2AC RAN HIST1H2BO HIST1H2BL EIF2C2 AdoHcyRISCMeR-PIWIL4 XPO5 MAEL NonendonucleolyticRISCNonendonucleolytic RISC TDRD12 pre-microRNATARBP2,PRKRA:DICER1:Pre-RISC (siRNA)HIST1H4 HIST1H2BH HIST2H2BE C3PO2'-O-methyl-piRNA NUP205 POLR2B TNRC6A miRNA HIST1H2BB EIF2C2 POLR2G piRNA miRNA siRNA TNRC6A NonendonucleolyticRISC:Target RNA(exact match)HIST1H2BA pre-piRNA ASZ1 EIF2C2 EIF2C3 HIST1H2AJ EIF2C4 EIF2C2 6xMeR-PIWIL2 4xMeR-PIWIL1 HIST1H2BH TARBP2,PRKRA:DICER1:RISC (miRNA)EIF2C2 miRNA EIF2C1 HIST1H2BN PRKRA POLR2J NUP107 POLR2D MeR-PIWIL4:piRNA:TDRD9:MAEL:TDRKHTDRD9 RAN 6xMeR-PIWIL2:TDRD1:TDRD12:DDX4:ASZ:MOV10L1MAEL AAAS AGO1,2:miRNA:chromatin:RNA pol IIEIF2C1 EIF2C3 POLR2F DNA NUP155 POLR2E HIST2H2AC PLD6 EIF2C2 duplex miRNA POLR2C EIF2C3 DICER1 AGO2:miRNAEIF2C1 POLR2B miRNA EIF2C1 4xMeR-PIWIL1 H2AFB1 TNRC6A EIF2C2 HENMT1HIST3H2BB pre-miRNA:RAN:GTP:Exportin-5IPO8 DDX4 IPO8 TDRD12 POLR2K POLR2J DDX4 HIST2H3A Ran:GTP:Exportin-5HIST1H2BJ RNA Polymerase IIholoenzyme complex(generic)TDRD1 HIST1H2BL TDRKH TDRD9 POLR2A H3F3A primary piRNAtranscriptPOM121 Ran:GTPMOV10L1 HENMT1RNA (exact match)6xMeR-PIWIL2:pre-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1NUP37 HIST1H2BA NUP98-5 TARBP2,PRKRARLC:duplex siRNA2'-O-methyl-piRNA POLR2K POLR2I RAN:GDP:Exportin-5EIF2C3 AdoMetPOLR2I DDX4 H2BFS TDRD12 TARBP2,PRKRA RLCNuclear Pore Complex(NPC)miRNA TNRC6A:AGO2:miRNARAN RNA (exact match) TDRD6 POLR2K TARBP2 POLR2H MOV10L1 NUP133 H2AFB1 DICER1 siRNA TDRD9 6xMeR-PIWIL2 RISC:Target RNA(inexact match)2'-O-methyl-piRNA piRNA GTP 6xMeR-PIWIL2 HIST1H2AC TDRKH 6xMeR-PIWIL2:piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1NUP88 HIST1H2BN MOV10L1 TDRD1 EIF2C1 POLR2H MicroProcessorComplexHIST1H2AB DDX4 MeR-PIWIL4:TDRD9:MAEL:TDRKH6xMeR-PIWIL2:TDRD1:TDRD12:DDX4:ASZ:MOV10L1HIST1H2BM Cleaved transposon RNA 4xMeR-PIWIL1 piRNA EIF2C4 pre-piRNA MeR-PIWIL4:2'-O-methyl-piRNA:TDRD9:MAEL:TDRKHEIF2C3 HIST1H2AD POLR2K HIST3H2BB Double-stranded RNATARBP2 miRNA POLR2D FKBP6 TARBP2 EIF2C1 NUP214 DICER1 pri-microRNAEIF2C2 NUP153 duplex miRNA siRNA EIF2C3 PRKRA ChromatinEndonucleolytic RISC Endonucleolytic RISCPOLR2L Endonucleolytic RISC DICER1 TSN primary piRNAtranscriptTARBP2,PRKRARLC:duplex miRNAMAEL IPO8:RAN:GTPSEH1L-2 HIST1H2BO POLR2H POLR2A H2BFS TDRKH6xMeR-PIWIL2:2'-O-methyl-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1PRKRA POLR2F duplex siRNA POLR2E HIST2H2AA3 NUP188 POLR2J PRKRA 4xMeR-PIWIL1 ASZ1 miRNA 6xMeR-PIWIL2 TNRC6C MeR-PIWIL4 TARBP2,PRKRA:DICER1:RISC (siRNA)TDRD1 TDRD9AGO2:miRNATNRC6C ASZ1 EIF2C1 TDRKH H2AFZ POLR2D HIST2H2AA3 GTP TDRKH EIF2C4 AdoMetTDRD1 PRKRA HIST2H2AC GTP POLR2C POLR2C 5524241052410531, 772424247, 61, 7414, 104484124


Description

In this module, the biology of various types of regulatory non-coding RNAs are described. Currently, biogenesis and functions of small interfering RNAs (siRNAs) and microRNAs are annotated. View original pathway at:Reactome.

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Robb GB, Rana TM.; ''RNA helicase A interacts with RISC in human cells and functions in RISC loading.''; PubMed Europe PMC Scholia
  2. Kim VN, Han J, Siomi MC.; ''Biogenesis of small RNAs in animals.''; PubMed Europe PMC Scholia
  3. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN.; ''MicroRNA genes are transcribed by RNA polymerase II.''; PubMed Europe PMC Scholia
  4. Taylor DW, Ma E, Shigematsu H, Cianfrocco MA, Noland CL, Nagayama K, Nogales E, Doudna JA, Wang HW.; ''Substrate-specific structural rearrangements of human Dicer.''; PubMed Europe PMC Scholia
  5. Koh HR, Kidwell MA, Ragunathan K, Doudna JA, Myong S.; ''ATP-independent diffusion of double-stranded RNA binding proteins.''; PubMed Europe PMC Scholia
  6. Bohnsack MT, Czaplinski K, Gorlich D.; ''Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs.''; PubMed Europe PMC Scholia
  7. Verdel A, Vavasseur A, Le Gorrec M, Touat-Todeschini L.; ''Common themes in siRNA-mediated epigenetic silencing pathways.''; PubMed Europe PMC Scholia
  8. Haase AD, Jaskiewicz L, Zhang H, Lainé S, Sack R, Gatignol A, Filipowicz W.; ''TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing.''; PubMed Europe PMC Scholia
  9. Kok KH, Ng MH, Ching YP, Jin DY.; ''Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA.''; PubMed Europe PMC Scholia
  10. Borchert GM, Lanier W, Davidson BL.; ''RNA polymerase III transcribes human microRNAs.''; PubMed Europe PMC Scholia
  11. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R.; ''Small dsRNAs induce transcriptional activation in human cells.''; PubMed Europe PMC Scholia
  12. Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, Chen ZX, Riggs AD, Rossi JJ, Morris KV.; ''The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells.''; PubMed Europe PMC Scholia
  13. La Rocca G, Olejniczak SH, González AJ, Briskin D, Vidigal JA, Spraggon L, DeMatteo RG, Radler MR, Lindsten T, Ventura A, Tuschl T, Leslie CS, Thompson CB.; ''In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA.''; PubMed Europe PMC Scholia
  14. Kabachinski G, Schwartz TU.; ''The nuclear pore complex--structure and function at a glance.''; PubMed Europe PMC Scholia
  15. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD.; ''Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.''; PubMed Europe PMC Scholia
  16. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R.; ''MicroRNA-373 induces expression of genes with complementary promoter sequences.''; PubMed Europe PMC Scholia
  17. Younger ST, Corey DR.; ''Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters.''; PubMed Europe PMC Scholia
  18. Lin SL, Miller JD, Ying SY.; ''Intronic microRNA (miRNA).''; PubMed Europe PMC Scholia
  19. Tomari Y, Zamore PD.; ''Perspective: machines for RNAi.''; PubMed Europe PMC Scholia
  20. Peters L, Meister G.; ''Argonaute proteins: mediators of RNA silencing.''; PubMed Europe PMC Scholia
  21. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U.; ''Nuclear export of microRNA precursors.''; PubMed Europe PMC Scholia
  22. Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ.; ''A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice.''; PubMed Europe PMC Scholia
  23. Fontoura BM, Blobel G, Matunis MJ.; ''A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96.''; PubMed Europe PMC Scholia
  24. Wei JX, Yang J, Sun JF, Jia LT, Zhang Y, Zhang HZ, Li X, Meng YL, Yao LB, Yang AG.; ''Both strands of siRNA have potential to guide posttranscriptional gene silencing in mammalian cells.''; PubMed Europe PMC Scholia
  25. Nishi K, Nishi A, Nagasawa T, Ui-Tei K.; ''Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus.''; PubMed Europe PMC Scholia
  26. Ahlenstiel CL, Lim HG, Cooper DA, Ishida T, Kelleher AD, Suzuki K.; ''Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells.''; PubMed Europe PMC Scholia
  27. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R.; ''Control of translation and mRNA degradation by miRNAs and siRNAs.''; PubMed Europe PMC Scholia
  28. Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T.; ''Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs.''; PubMed Europe PMC Scholia
  29. Gould DW, Lukic S, Chen KC.; ''Selective constraint on copy number variation in human piwi-interacting RNA Loci.''; PubMed Europe PMC Scholia
  30. Baillat D, Shiekhattar R.; ''Functional dissection of the human TNRC6 (GW182-related) family of proteins.''; PubMed Europe PMC Scholia
  31. Younger ST, Corey DR.; ''Transcriptional regulation by miRNA mimics that target sequences downstream of gene termini.''; PubMed Europe PMC Scholia
  32. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R.; ''TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.''; PubMed Europe PMC Scholia
  33. Xhemalce B, Robson SC, Kouzarides T.; ''Human RNA methyltransferase BCDIN3D regulates microRNA processing.''; PubMed Europe PMC Scholia
  34. Ye X, Huang N, Liu Y, Paroo Z, Huerta C, Li P, Chen S, Liu Q, Zhang H.; ''Structure of C3PO and mechanism of human RISC activation.''; PubMed Europe PMC Scholia
  35. Handler D, Meixner K, Pizka M, Lauss K, Schmied C, Gruber FS, Brennecke J.; ''The genetic makeup of the Drosophila piRNA pathway.''; PubMed Europe PMC Scholia
  36. Maniataki E, Mourelatos Z.; ''A human, ATP-independent, RISC assembly machine fueled by pre-miRNA.''; PubMed Europe PMC Scholia
  37. Rosenkranz D, Zischler H.; ''proTRAC--a software for probabilistic piRNA cluster detection, visualization and analysis.''; PubMed Europe PMC Scholia
  38. Gredell JA, Dittmer MJ, Wu M, Chan C, Walton SP.; ''Recognition of siRNA asymmetry by TAR RNA binding protein.''; PubMed Europe PMC Scholia
  39. Alló M, Agirre E, Bessonov S, Bertucci P, Gómez Acuña L, Buggiano V, Bellora N, Singh B, Petrillo E, Blaustein M, Miñana B, Dujardin G, Pozzi B, Pelisch F, Bechara E, Agafonov DE, Srebrow A, Lührmann R, Valcárcel J, Eyras E, Kornblihtt AR.; ''Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells.''; PubMed Europe PMC Scholia
  40. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN.; ''The role of PACT in the RNA silencing pathway.''; PubMed Europe PMC Scholia
  41. Ketting RF.; ''microRNA Biogenesis and Function : An overview.''; PubMed Europe PMC Scholia
  42. Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W.; ''Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP.''; PubMed Europe PMC Scholia
  43. Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR.; ''RNAi factors are present and active in human cell nuclei.''; PubMed Europe PMC Scholia
  44. Yang Q, Hua J, Wang L, Xu B, Zhang H, Ye N, Zhang Z, Yu D, Cooke HJ, Zhang Y, Shi Q.; ''MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing.''; PubMed Europe PMC Scholia
  45. Ipsaro JJ, Joshua-Tor L.; ''From guide to target: molecular insights into eukaryotic RNA-interference machinery.''; PubMed Europe PMC Scholia
  46. Lazzaretti D, Tournier I, Izaurralde E.; ''The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins.''; PubMed Europe PMC Scholia
  47. Weinmann L, Höck J, Ivacevic T, Ohrt T, Mütze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G.; ''Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs.''; PubMed Europe PMC Scholia
  48. Yi R, Qin Y, Macara IG, Cullen BR.; ''Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs.''; PubMed Europe PMC Scholia
  49. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN.; ''The nuclear RNase III Drosha initiates microRNA processing.''; PubMed Europe PMC Scholia
  50. Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L, Young R, Morozova N, Fenouil R, Descostes N, Andrau JC, Mathieu J, Hamiche A, Ait-Si-Ali S, Muchardt C, Batsché E, Harel-Bellan A.; ''Argonaute proteins couple chromatin silencing to alternative splicing.''; PubMed Europe PMC Scholia
  51. Höck J, Weinmann L, Ender C, Rüdel S, Kremmer E, Raabe M, Urlaub H, Meister G.; ''Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells.''; PubMed Europe PMC Scholia
  52. Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S.; ''Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection.''; PubMed Europe PMC Scholia
  53. Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, Vreven T, Meignin C, Davis I, Zamore PD, Weng Z, Theurkauf WE.; ''UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery.''; PubMed Europe PMC Scholia
  54. Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y.; ''ATP-dependent human RISC assembly pathways.''; PubMed Europe PMC Scholia
  55. Kim DH, Saetrom P, Snøve O, Rossi JJ.; ''MicroRNA-directed transcriptional gene silencing in mammalian cells.''; PubMed Europe PMC Scholia
  56. Seong Y, Lim DH, Kim A, Seo JH, Lee YS, Song H, Kwon YS.; ''Global identification of target recognition and cleavage by the Microprocessor in human ES cells.''; PubMed Europe PMC Scholia
  57. Shin C.; ''Cleavage of the star strand facilitates assembly of some microRNAs into Ago2-containing silencing complexes in mammals.''; PubMed Europe PMC Scholia
  58. Eystathioy T, Jakymiw A, Chan EK, Séraphin B, Cougot N, Fritzler MJ.; ''The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies.''; PubMed Europe PMC Scholia
  59. Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, Mione M, Carninci P, d'Adda di Fagagna F.; ''Site-specific DICER and DROSHA RNA products control the DNA-damage response.''; PubMed Europe PMC Scholia
  60. Huang V, Zheng J, Qi Z, Wang J, Place RF, Yu J, Li H, Li LC.; ''Ago1 Interacts with RNA polymerase II and binds to the promoters of actively transcribed genes in human cancer cells.''; PubMed Europe PMC Scholia
  61. Lee HY, Zhou K, Smith AM, Noland CL, Doudna JA.; ''Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing.''; PubMed Europe PMC Scholia
  62. Cai X, Hagedorn CH, Cullen BR.; ''Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.''; PubMed Europe PMC Scholia
  63. Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E.; ''A C-terminal silencing domain in GW182 is essential for miRNA function.''; PubMed Europe PMC Scholia
  64. Elkayam E, Faehnle CR, Morales M, Sun J, Li H, Joshua-Tor L.; ''Multivalent Recruitment of Human Argonaute by GW182.''; PubMed Europe PMC Scholia
  65. Bortvin A.; ''PIWI-interacting RNAs (piRNAs) - a mouse testis perspective.''; PubMed Europe PMC Scholia
  66. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ.; ''Proteomic analysis of the mammalian nuclear pore complex.''; PubMed Europe PMC Scholia
  67. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ.; ''Argonaute2 is the catalytic engine of mammalian RNAi.''; PubMed Europe PMC Scholia
  68. Muerdter F, Guzzardo PM, Gillis J, Luo Y, Yu Y, Chen C, Fekete R, Hannon GJ.; ''A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila.''; PubMed Europe PMC Scholia
  69. Zeng L, Zhang Q, Yan K, Zhou MM.; ''Structural insights into piRNA recognition by the human PIWI-like 1 PAZ domain.''; PubMed Europe PMC Scholia
  70. Rabut G, Doye V, Ellenberg J.; ''Mapping the dynamic organization of the nuclear pore complex inside single living cells.''; PubMed Europe PMC Scholia
  71. Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Rådmark O.; ''Ribonuclease activity and RNA binding of recombinant human Dicer.''; PubMed Europe PMC Scholia
  72. Kim DH, Villeneuve LM, Morris KV, Rossi JJ.; ''Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells.''; PubMed Europe PMC Scholia
  73. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN.; ''The Drosha-DGCR8 complex in primary microRNA processing.''; PubMed Europe PMC Scholia
  74. Betancur JG, Tomari Y.; ''Dicer is dispensable for asymmetric RISC loading in mammals.''; PubMed Europe PMC Scholia
  75. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R.; ''The Microprocessor complex mediates the genesis of microRNAs.''; PubMed Europe PMC Scholia
  76. Carthew RW, Sontheimer EJ.; ''Origins and Mechanisms of miRNAs and siRNAs.''; PubMed Europe PMC Scholia
  77. Bernstein E, Caudy AA, Hammond SM, Hannon GJ.; ''Role for a bidentate ribonuclease in the initiation step of RNA interference.''; PubMed Europe PMC Scholia
  78. Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi Y.; ''A role for small RNAs in DNA double-strand break repair.''; PubMed Europe PMC Scholia
  79. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD.; ''A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.''; PubMed Europe PMC Scholia
  80. Takimoto K, Wakiyama M, Yokoyama S.; ''Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression.''; PubMed Europe PMC Scholia
  81. Noland CL, Doudna JA.; ''Multiple sensors ensure guide strand selection in human RNAi pathways.''; PubMed Europe PMC Scholia
  82. Ori A, Banterle N, Iskar M, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M.; ''Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines.''; PubMed Europe PMC Scholia
  83. Stalder L, Heusermann W, Sokol L, Trojer D, Wirz J, Hean J, Fritzsche A, Aeschimann F, Pfanzagl V, Basselet P, Weiler J, Hintersteiner M, Morrissey DV, Meisner-Kober NC.; ''The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing.''; PubMed Europe PMC Scholia
  84. Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD.; ''Dicer partner proteins tune the length of mature miRNAs in flies and mammals.''; PubMed Europe PMC Scholia
  85. Ohrt T, Mütze J, Staroske W, Weinmann L, Höck J, Crell K, Meister G, Schwille P.; ''Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells.''; PubMed Europe PMC Scholia
  86. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A.; ''Identification of mammalian microRNA host genes and transcription units.''; PubMed Europe PMC Scholia
  87. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA.; ''In vitro reconstitution of the human RISC-loading complex.''; PubMed Europe PMC Scholia
  88. Suntharalingam M, Wente SR.; ''Peering through the pore: nuclear pore complex structure, assembly, and function.''; PubMed Europe PMC Scholia
  89. Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T, Mobbs G, Fan Y, Thierbach K, Huber FM, Collins LN, Davenport AM, Jeon YE, Hoelz A.; ''Architecture of the symmetric core of the nuclear pore.''; PubMed Europe PMC Scholia
  90. Koscianska E, Starega-Roslan J, Krzyzosiak WJ.; ''The role of Dicer protein partners in the processing of microRNA precursors.''; PubMed Europe PMC Scholia
  91. Jung I, Park JC, Kim S.; ''piClust: a density based piRNA clustering algorithm.''; PubMed Europe PMC Scholia
  92. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJ, Briggs JA, Glavy JS, Hurt E, Beck M.; ''Molecular architecture of the inner ring scaffold of the human nuclear pore complex.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114981view16:51, 25 January 2021ReactomeTeamReactome version 75
113425view11:50, 2 November 2020ReactomeTeamReactome version 74
112627view16:00, 9 October 2020ReactomeTeamReactome version 73
101543view11:40, 1 November 2018ReactomeTeamreactome version 66
101078view21:23, 31 October 2018ReactomeTeamreactome version 65
100608view19:58, 31 October 2018ReactomeTeamreactome version 64
100159view16:42, 31 October 2018ReactomeTeamreactome version 63
99709view15:11, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93841view13:40, 16 August 2017ReactomeTeamreactome version 61
93397view11:22, 9 August 2017ReactomeTeamreactome version 61
87454view14:01, 22 July 2016MkutmonOntology Term : 'pathway pertinent to DNA replication and repair, cell cycle, maintenance of genomic integrity, RNA and protein biosynthesis' added !
86482view09:19, 11 July 2016ReactomeTeamreactome version 56
83461view12:29, 18 November 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
2'-O-methyl-piRNA R-HSA-5601896 (Reactome) Short single-stranded RNA of 24-32 nucleotides derived from a long single-stranded precursor by a process independent of DICER. The 2' hydroxyl at the 3' end of mature piRNAs is methylated.
2'-O-methyl-piRNA R-HSA-5601909 (Reactome) Short single-stranded RNA of 24-32 nucleotides derived from a long single-stranded precursor by a process independent of DICER. The 2' hydroxyl at the 3' end of mature piRNAs is methylated.
4xMeR-PIWIL1 ProteinQ96J94 (Uniprot-TrEMBL)
4xMeR-PIWIL1:2'-O-methyl-piRNA:TDRD6:TDRKHComplexR-HSA-5603059 (Reactome)
4xMeR-PIWIL1:TDRD6:TDRKHComplexR-HSA-5603053 (Reactome)
4xMeR-PIWIL1:piRNA:TDRD6:TDRKHComplexR-HSA-5629240 (Reactome)
4xMeR-PIWIL1:pre-piRNA:TDRD6:TDRKHComplexR-HSA-5603054 (Reactome)
6xMeR-PIWIL2 ProteinQ8TC59 (Uniprot-TrEMBL)
6xMeR-PIWIL2:2'-O-methyl-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ComplexR-HSA-5603070 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:cleaved transposon RNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ComplexR-HSA-5601928 (Reactome)
6xMeR-PIWIL2:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ComplexR-HSA-5603050 (Reactome)
6xMeR-PIWIL2:cleaved

transposon

RNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1
ComplexR-HSA-5603064 (Reactome)
6xMeR-PIWIL2:piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ComplexR-HSA-5629238 (Reactome)
6xMeR-PIWIL2:pre-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ComplexR-HSA-5603051 (Reactome)
AAAS ProteinQ9NRG9 (Uniprot-TrEMBL)
AGO1,2:miRNA:chromatin:RNA pol IIComplexR-HSA-5578688 (Reactome)
AGO1,2:miRNAComplexR-HSA-5578731 (Reactome)
AGO2:duplex siRNAComplexR-HSA-2106605 (Reactome)
AGO2:miRNAComplexR-HSA-2106621 (Reactome)
AGO2:miRNAComplexR-HSA-5578695 (Reactome)
AGO2:siRNAComplexR-HSA-2106601 (Reactome)
ASZ1 ProteinQ8WWH4 (Uniprot-TrEMBL)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
C3POComplexR-HSA-5600681 (Reactome)
ChromatinComplexR-HSA-3211736 (Reactome)
Cleaved RNA with 5'

Phosphate and 3'

Hydroxyl
R-NUL-426511 (Reactome)
Cleaved transposon RNA R-HSA-5601925 (Reactome) Cleavage by PIWI proteins yields RNAs with a 5' phosphate and a 3' hydroxyl.
DDX4 ProteinQ9NQI0 (Uniprot-TrEMBL)
DGCR8 ProteinQ8WYQ5 (Uniprot-TrEMBL)
DICER1 ProteinQ9UPY3 (Uniprot-TrEMBL)
DNA R-NUL-29428 (Reactome)
DROSHA ProteinQ9NRR4 (Uniprot-TrEMBL)
Double-stranded RNAR-NUL-426463 (Reactome)
EIF2C1 ProteinQ9UL18 (Uniprot-TrEMBL)
EIF2C2 ProteinQ9UKV8 (Uniprot-TrEMBL)
EIF2C3 ProteinQ9H9G7 (Uniprot-TrEMBL)
EIF2C4 ProteinQ9HCK5 (Uniprot-TrEMBL)
Endonucleolytic RISC R-HSA-203852 (Reactome) The RNA-induced silencing complex contains an Argonaute (AGO) protein, whose PAZ domain binds the 3' end of the miRNA. The PIWI domain of AGO is responsible for cleavage of target RNAs, that is, RNAs complementary to the miRNA. Only AGO2 (EIF2C2) is capable of cleavage, however. AGO1 (EIF2C1), AGO3 (EIF2C3), and AGO4 (EIF2C4) repress translation of target RNAs by binding without cleavage.
Endonucleolytic RISCComplexR-HSA-203852 (Reactome) The RNA-induced silencing complex contains an Argonaute (AGO) protein, whose PAZ domain binds the 3' end of the miRNA. The PIWI domain of AGO is responsible for cleavage of target RNAs, that is, RNAs complementary to the miRNA. Only AGO2 (EIF2C2) is capable of cleavage, however. AGO1 (EIF2C1), AGO3 (EIF2C3), and AGO4 (EIF2C4) repress translation of target RNAs by binding without cleavage.
FKBP6 ProteinO75344 (Uniprot-TrEMBL)
FKBP6:HSP90AA1ComplexR-HSA-5601908 (Reactome)
GDP MetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
H2AFB1 ProteinP0C5Y9 (Uniprot-TrEMBL)
H2AFX ProteinP16104 (Uniprot-TrEMBL)
H2AFZ ProteinP0C0S5 (Uniprot-TrEMBL)
H2BFS ProteinP57053 (Uniprot-TrEMBL)
H3F3A ProteinP84243 (Uniprot-TrEMBL)
HENMT1ProteinQ5T8I9 (Uniprot-TrEMBL)
HIST1H2AB ProteinP04908 (Uniprot-TrEMBL)
HIST1H2AC ProteinQ93077 (Uniprot-TrEMBL)
HIST1H2AD ProteinP20671 (Uniprot-TrEMBL)
HIST1H2AJ ProteinQ99878 (Uniprot-TrEMBL)
HIST1H2BA ProteinQ96A08 (Uniprot-TrEMBL)
HIST1H2BB ProteinP33778 (Uniprot-TrEMBL)
HIST1H2BC ProteinP62807 (Uniprot-TrEMBL)
HIST1H2BD ProteinP58876 (Uniprot-TrEMBL)
HIST1H2BH ProteinQ93079 (Uniprot-TrEMBL)
HIST1H2BJ ProteinP06899 (Uniprot-TrEMBL)
HIST1H2BK ProteinO60814 (Uniprot-TrEMBL)
HIST1H2BL ProteinQ99880 (Uniprot-TrEMBL)
HIST1H2BM ProteinQ99879 (Uniprot-TrEMBL)
HIST1H2BN ProteinQ99877 (Uniprot-TrEMBL)
HIST1H2BO ProteinP23527 (Uniprot-TrEMBL)
HIST1H3A ProteinP68431 (Uniprot-TrEMBL)
HIST1H4 ProteinP62805 (Uniprot-TrEMBL)
HIST2H2AA3 ProteinQ6FI13 (Uniprot-TrEMBL)
HIST2H2AC ProteinQ16777 (Uniprot-TrEMBL)
HIST2H2BE ProteinQ16778 (Uniprot-TrEMBL)
HIST2H3A ProteinQ71DI3 (Uniprot-TrEMBL)
HIST3H2BB ProteinQ8N257 (Uniprot-TrEMBL)
HSP90AA1 ProteinP07900 (Uniprot-TrEMBL)
IPO8 ProteinO15397 (Uniprot-TrEMBL)
IPO8:AGO2:miRNAComplexR-HSA-5578743 (Reactome)
IPO8:RAN:GTPComplexR-HSA-5578721 (Reactome)
IPO8ProteinO15397 (Uniprot-TrEMBL)
MAEL ProteinQ96JY0 (Uniprot-TrEMBL)
MAELProteinQ96JY0 (Uniprot-TrEMBL)
MOV10L1 ProteinQ9BXT6 (Uniprot-TrEMBL)
MYBL1ProteinP10243 (Uniprot-TrEMBL)
MeR-PIWIL4 ProteinQ7Z3Z4 (Uniprot-TrEMBL)
MeR-PIWIL4:2'-O-methyl-piRNA:TDRD9:MAEL:TDRKHComplexR-HSA-5603060 (Reactome)
MeR-PIWIL4:2'-O-methyl-piRNAComplexR-HSA-5601885 (Reactome)
MeR-PIWIL4:TDRD9:MAEL:TDRKHComplexR-HSA-5603063 (Reactome)
MeR-PIWIL4:cleaved

transposon

RNA:TDRD9:MAEL:TDRKH
ComplexR-HSA-5603061 (Reactome)
MeR-PIWIL4:piRNA:TDRD9:MAEL:TDRKHComplexR-HSA-5629214 (Reactome)
MicroProcessor ComplexComplexR-HSA-203817 (Reactome) The Drosha:DGCR8 complex is also known as the MicroProcessor Complex. Drosha:DGCR8 contains DGCR8, an RNA-binding protein, and Drosha, an RNaseIII-class endonuclease that cleaves double-stranded RNA, leaving a 2-nucleotide protrusion at the 3' end.
NUP107 ProteinP57740 (Uniprot-TrEMBL)
NUP133 ProteinQ8WUM0 (Uniprot-TrEMBL)
NUP153 ProteinP49790 (Uniprot-TrEMBL)
NUP155 ProteinO75694 (Uniprot-TrEMBL)
NUP160 ProteinQ12769 (Uniprot-TrEMBL)
NUP188 ProteinQ5SRE5 (Uniprot-TrEMBL)
NUP205 ProteinQ92621 (Uniprot-TrEMBL)
NUP210 ProteinQ8TEM1 (Uniprot-TrEMBL)
NUP214 ProteinP35658 (Uniprot-TrEMBL)
NUP35 ProteinQ8NFH5 (Uniprot-TrEMBL)
NUP37 ProteinQ8NFH4 (Uniprot-TrEMBL)
NUP43 ProteinQ8NFH3 (Uniprot-TrEMBL)
NUP50 ProteinQ9UKX7 (Uniprot-TrEMBL)
NUP54 ProteinQ7Z3B4 (Uniprot-TrEMBL)
NUP62 ProteinP37198 (Uniprot-TrEMBL)
NUP85 ProteinQ9BW27 (Uniprot-TrEMBL)
NUP88 ProteinQ99567 (Uniprot-TrEMBL)
NUP93 ProteinQ8N1F7 (Uniprot-TrEMBL)
NUP98-3 ProteinP52948-3 (Uniprot-TrEMBL)
NUP98-4 ProteinP52948-4 (Uniprot-TrEMBL)
NUP98-5 ProteinP52948-5 (Uniprot-TrEMBL)
NUPL1-2 ProteinQ9BVL2-1 (Uniprot-TrEMBL)
NUPL2 ProteinO15504 (Uniprot-TrEMBL)
Nonendonucleolytic

RISC:Target RNA

(exact match)
ComplexR-HSA-426510 (Reactome)
Nonendonucleolytic RISCComplexR-HSA-210807 (Reactome) The RNA-induced silencing complex contains an Argonaute (AGO) protein, whose PAZ domain binds the 3' end of the miRNA. The PIWI domain of AGO is responsible for cleavage of target RNAs, that is, RNAs complementary to the miRNA. Only AGO2 (EIF2C2) is capable of cleavage, however. AGO1 (EIF2C1), AGO3 (EIF2C3), and AGO4 (EIF2C4) repress translation of target RNAs by binding without cleavage.
Nonendonucleolytic RISC R-HSA-210807 (Reactome) The RNA-induced silencing complex contains an Argonaute (AGO) protein, whose PAZ domain binds the 3' end of the miRNA. The PIWI domain of AGO is responsible for cleavage of target RNAs, that is, RNAs complementary to the miRNA. Only AGO2 (EIF2C2) is capable of cleavage, however. AGO1 (EIF2C1), AGO3 (EIF2C3), and AGO4 (EIF2C4) repress translation of target RNAs by binding without cleavage.
Nuclear Pore Complex (NPC)ComplexR-HSA-157689 (Reactome)
Nup45 ProteinQ9BVL2-2 (Uniprot-TrEMBL)
PLD6 ProteinQ8N2A8 (Uniprot-TrEMBL)
PLD6 dimerComplexR-HSA-5601921 (Reactome)
POLR2A ProteinP24928 (Uniprot-TrEMBL)
POLR2B ProteinP30876 (Uniprot-TrEMBL)
POLR2C ProteinP19387 (Uniprot-TrEMBL)
POLR2D ProteinO15514 (Uniprot-TrEMBL)
POLR2E ProteinP19388 (Uniprot-TrEMBL)
POLR2F ProteinP61218 (Uniprot-TrEMBL)
POLR2G ProteinP62487 (Uniprot-TrEMBL)
POLR2H ProteinP52434 (Uniprot-TrEMBL)
POLR2I ProteinP36954 (Uniprot-TrEMBL)
POLR2J ProteinP52435 (Uniprot-TrEMBL)
POLR2K ProteinP53803 (Uniprot-TrEMBL)
POLR2L ProteinP62875 (Uniprot-TrEMBL)
POM121 ProteinQ96HA1 (Uniprot-TrEMBL)
PRKRA ProteinO75569 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
RAE1 ProteinP78406 (Uniprot-TrEMBL)
RAN ProteinP62826 (Uniprot-TrEMBL)
RAN:GDP:Exportin-5ComplexR-HSA-209672 (Reactome)
RANBP2 ProteinP49792 (Uniprot-TrEMBL)
RISC:Target RNA (inexact match)ComplexR-HSA-426501 (Reactome)
RISCComplexR-HSA-427783 (Reactome)
RNA (exact match) R-NUL-426523 (Reactome)
RNA (exact match)R-NUL-426523 (Reactome)
RNA (inexact match) R-NUL-426515 (Reactome)
RNA (inexact match)R-NUL-426515 (Reactome)
RNA Polymerase II

holoenzyme complex

(generic)
ComplexR-HSA-209680 (Reactome)
RNA Polymerase II

holoenzyme complex

(unphosphorylated)
ComplexR-HSA-113401 (Reactome)
Ran:GTP:Exportin-5ComplexR-HSA-203870 (Reactome)
Ran:GTPComplexR-HSA-180686 (Reactome)
SEH1L-2 ProteinQ96EE3-2 (Uniprot-TrEMBL)
TARBP2 ProteinQ15633 (Uniprot-TrEMBL)
TARBP2,PRKRA RLC:duplex miRNAComplexR-HSA-6789248 (Reactome)
TARBP2,PRKRA RLC:duplex siRNAComplexR-HSA-6789236 (Reactome)
TARBP2,PRKRA RLCComplexR-HSA-6789262 (Reactome)
TARBP2,PRKRA:DICER1:Pre-RISC (miRNA)ComplexR-HSA-6789253 (Reactome)
TARBP2,PRKRA:DICER1:Pre-RISC (siRNA)ComplexR-HSA-6789260 (Reactome)
TARBP2,PRKRA:DICER1:RISC (miRNA)ComplexR-HSA-6789243 (Reactome)
TARBP2,PRKRA:DICER1:RISC (siRNA)ComplexR-HSA-6789257 (Reactome)
TDRD1 ProteinQ9BXT4 (Uniprot-TrEMBL)
TDRD12 ProteinQ587J7 (Uniprot-TrEMBL)
TDRD6 ProteinO60522 (Uniprot-TrEMBL)
TDRD9 ProteinQ8NDG6 (Uniprot-TrEMBL)
TDRD9ProteinQ8NDG6 (Uniprot-TrEMBL)
TDRKH ProteinQ9Y2W6 (Uniprot-TrEMBL)
TDRKHProteinQ9Y2W6 (Uniprot-TrEMBL)
TNRC6 (GW182)ComplexR-HSA-427775 (Reactome)
TNRC6A ProteinQ8NDV7 (Uniprot-TrEMBL)
TNRC6A:AGO2:miRNAComplexR-HSA-5578971 (Reactome)
TNRC6A:AGO2:miRNAComplexR-HSA-5578977 (Reactome)
TNRC6AProteinQ8NDV7 (Uniprot-TrEMBL)
TNRC6B ProteinQ9UPQ9 (Uniprot-TrEMBL)
TNRC6C ProteinQ9HCJ0 (Uniprot-TrEMBL)
TPR ProteinP12270 (Uniprot-TrEMBL)
TSN ProteinQ15631 (Uniprot-TrEMBL)
TSNAX ProteinQ99598 (Uniprot-TrEMBL)
Transposon RNAR-HSA-5601927 (Reactome)
XPO5 ProteinQ9HAV4 (Uniprot-TrEMBL)
duplex miRNA R-NUL-203896 (Reactome)
duplex siRNA R-NUL-426472 (Reactome)
miRNA R-NUL-426443 (Reactome)
miRNA R-NUL-5578684 (Reactome)
miRNA R-NUL-5578735 (Reactome)
miRNA geneR-HSA-203851 (Reactome)
piRNA R-HSA-5629246 (Reactome) Short single-stranded RNA of 24-32 nucleotides derived from a long single-stranded precursor by a process independent of DICER. The 2' hydroxyl at the 3' end of mature piRNAs is methylated.
piRNA locus (DNA)R-HSA-5601906 (Reactome)
pre-miRNA:RAN:GTP:Exportin-5ComplexR-HSA-209660 (Reactome)
pre-microRNA with 3' overhangR-NUL-203866 (Reactome)
pre-microRNA with 3' overhang R-NUL-203866 (Reactome)
pre-microRNAR-NUL-203932 (Reactome)
pre-piRNA R-HSA-5601899 (Reactome)
pre-piRNAR-HSA-5601899 (Reactome)
pri-microRNAR-NUL-203828 (Reactome)
primary piRNA transcriptR-HSA-5601892 (Reactome)
primary piRNA transcriptR-HSA-5601905 (Reactome)
siRNA R-NUL-426446 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
4xMeR-PIWIL1:2'-O-methyl-piRNA:TDRD6:TDRKHArrowR-HSA-5629203 (Reactome)
4xMeR-PIWIL1:TDRD6:TDRKHR-HSA-5615682 (Reactome)
4xMeR-PIWIL1:piRNA:TDRD6:TDRKHArrowR-HSA-5601888 (Reactome)
4xMeR-PIWIL1:piRNA:TDRD6:TDRKHR-HSA-5629203 (Reactome)
4xMeR-PIWIL1:pre-piRNA:TDRD6:TDRKHArrowR-HSA-5615682 (Reactome)
4xMeR-PIWIL1:pre-piRNA:TDRD6:TDRKHR-HSA-5601888 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ArrowR-HSA-5601883 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ArrowR-HSA-5601922 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ArrowR-HSA-5629218 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1R-HSA-5601910 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1mim-catalysisR-HSA-5601910 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:cleaved transposon RNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ArrowR-HSA-5601910 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:cleaved transposon RNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1R-HSA-5601883 (Reactome)
6xMeR-PIWIL2:2'-O-methyl-piRNA:cleaved transposon RNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1R-HSA-5601922 (Reactome)
6xMeR-PIWIL2:TDRD1:TDRD12:DDX4:ASZ:MOV10L1R-HSA-5601922 (Reactome)
6xMeR-PIWIL2:TDRD1:TDRD12:DDX4:ASZ:MOV10L1R-HSA-5603062 (Reactome)
6xMeR-PIWIL2:cleaved

transposon

RNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1
ArrowR-HSA-5601922 (Reactome)
6xMeR-PIWIL2:cleaved

transposon

RNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1
R-HSA-5601929 (Reactome)
6xMeR-PIWIL2:piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ArrowR-HSA-5601929 (Reactome)
6xMeR-PIWIL2:piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ArrowR-HSA-5603067 (Reactome)
6xMeR-PIWIL2:piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1R-HSA-5629218 (Reactome)
6xMeR-PIWIL2:pre-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1ArrowR-HSA-5603062 (Reactome)
6xMeR-PIWIL2:pre-piRNA:TDRD1:TDRD12:DDX4:ASZ:MOV10L1R-HSA-5603067 (Reactome)
AGO1,2:miRNA:chromatin:RNA pol IIArrowR-HSA-5578742 (Reactome)
AGO1,2:miRNAR-HSA-5578742 (Reactome)
AGO2:duplex siRNAR-HSA-203934 (Reactome)
AGO2:duplex siRNAmim-catalysisR-HSA-203934 (Reactome)
AGO2:miRNAArrowR-HSA-5578744 (Reactome)
AGO2:miRNAR-HSA-5578712 (Reactome)
AGO2:miRNAR-HSA-5578965 (Reactome)
AGO2:siRNAArrowR-HSA-203934 (Reactome)
AdoHcyArrowR-HSA-5629203 (Reactome)
AdoHcyArrowR-HSA-5629218 (Reactome)
AdoHcyArrowR-HSA-5629237 (Reactome)
AdoMetR-HSA-5629203 (Reactome)
AdoMetR-HSA-5629218 (Reactome)
AdoMetR-HSA-5629237 (Reactome)
C3POmim-catalysisR-HSA-203934 (Reactome)
ChromatinR-HSA-5578742 (Reactome)
Cleaved RNA with 5'

Phosphate and 3'

Hydroxyl
ArrowR-HSA-426520 (Reactome)
Double-stranded RNAR-HSA-426464 (Reactome)
Endonucleolytic RISCmim-catalysisR-HSA-426520 (Reactome)
FKBP6:HSP90AA1ArrowR-HSA-5601883 (Reactome)
HENMT1mim-catalysisR-HSA-5629203 (Reactome)
HENMT1mim-catalysisR-HSA-5629218 (Reactome)
HENMT1mim-catalysisR-HSA-5629237 (Reactome)
IPO8:AGO2:miRNAArrowR-HSA-5578712 (Reactome)
IPO8:AGO2:miRNAR-HSA-5578744 (Reactome)
IPO8:RAN:GTPArrowR-HSA-5578744 (Reactome)
IPO8R-HSA-5578712 (Reactome)
MAELArrowR-HSA-5601897 (Reactome)
MYBL1mim-catalysisR-HSA-5601926 (Reactome)
MeR-PIWIL4:2'-O-methyl-piRNA:TDRD9:MAEL:TDRKHArrowR-HSA-5629237 (Reactome)
MeR-PIWIL4:2'-O-methyl-piRNA:TDRD9:MAEL:TDRKHR-HSA-5601897 (Reactome)
MeR-PIWIL4:2'-O-methyl-piRNAArrowR-HSA-5601897 (Reactome)
MeR-PIWIL4:TDRD9:MAEL:TDRKHR-HSA-5601883 (Reactome)
MeR-PIWIL4:cleaved

transposon

RNA:TDRD9:MAEL:TDRKH
ArrowR-HSA-5601883 (Reactome)
MeR-PIWIL4:cleaved

transposon

RNA:TDRD9:MAEL:TDRKH
R-HSA-5601919 (Reactome)
MeR-PIWIL4:piRNA:TDRD9:MAEL:TDRKHArrowR-HSA-5601919 (Reactome)
MeR-PIWIL4:piRNA:TDRD9:MAEL:TDRKHR-HSA-5629237 (Reactome)
MicroProcessor Complexmim-catalysisR-HSA-203893 (Reactome)
Nonendonucleolytic

RISC:Target RNA

(exact match)
ArrowR-HSA-426522 (Reactome)
Nonendonucleolytic RISCR-HSA-426522 (Reactome)
Nuclear Pore Complex (NPC)mim-catalysisR-HSA-5578744 (Reactome)
PLD6 dimermim-catalysisR-HSA-5601887 (Reactome)
PiArrowR-HSA-203906 (Reactome)
R-HSA-203862 (Reactome) Pre-miRNA binds the RISC loading complex (RLC), a complex containing DICER1, AGO2, and TARBP2 (TRBP). Alternative loading complexes contain AGO1, AGO3, or AGO4 rather than AGO2 and PRKRA (PACT) rather than TARBP2. The pre-miRNA substrate has an internal loop and a protruding 3' end created by cleavage by DROSHA:DGCR8. The DICER1:TARBP2 subcomplex or DICER1:PRKRA subcomplex recognizes this structure and the DICER1 component cleaves the pre-miRNA near the loop. The product is a double-stranded RNA of 21-25 nucleotides having 2-nucleotide protrusions at each 3' end. The products have 5' phosphates and 3' hydroxyl groups. Diffusion activity of TARBP2 and PRKRA along duplex RNA may enhance processing by DICER1.
R-HSA-203893 (Reactome) Nuclear processing by Drosha Microprocessor complex. The primary-microRNA (pri-miRNA) is recognized by the Microprocessor complex (Drosha:DGCR8) and both strands of the pri-miRNA are cleaved by Drosha near the free 5' and 3' ends of the pri-miRNA, that is, at the ends distal from the internal loop. The product is a double-stranded RNA having 2 nucleotides protruding at the 3' end and having an internal loop.
R-HSA-203901 (Reactome) Transcription of miRNA genes. Most miRNAs are transcribed by RNA polymerase II. The miRNAs may be autonomous transcription units or they may be located in other transcripts, including locations within introns and other untranslated regions. Of the polymerase II transcribed miRNAs, about 60% are located in introns of protein coding genes, 12 % are in introns of non-coding RNAs, 18% are in exons of non-coding RNAs, and 10% uncertain.
A second class of miRNA genes are associated with Alu and other repetitive elements and are cotranscribed with these elements by RNA polymerase III. There are currently only a few proven examples of polymerase III transcribed miRNAs.
R-HSA-203906 (Reactome) Nuclear Export by Exportin-5. The pre-microRNA is bound by the Exportin-5:RanGTP complex in the nucleus and the complex is translocated through the nuclear pore into the cytoplasm. In the process GTP is hydrolyzed to GDP.
R-HSA-203922 (Reactome) Exportin-5 binds pre-microRNAs having 2-nucleotide overhangs at the 3' end. Binding is independent of sequence and depends on GTP.
R-HSA-203934 (Reactome) In the case of AGO2 (EIF2C2), cleavage of one strand (the "passenger" strand) of the 21-25 nucleotide double-stranded RNA facilitates the loss of the passenger strand and the retention of the guide strand (Matranga et al. 2005). RNA helicase A and the C3PO complex have also been shown to enhance this reaction. C3PO could be part of a DICER1-independent pathway for loading AGO2. AGO2 of humans may contain either miRNAs or siRNAs.
The mechanism that selects which strand is retained as the guide RNA is not well understood in humans. Overhanging nucleotides and strength of base-pairing at each end of the input duplex are observed to influence strand selection.
R-HSA-2106614 (Reactome) The duplex miRNA (designated miRNA-miRNA*) is reoriented on DICER1 after cleavage and then transferred from DICER1 to an Argonaute protein (AGO2 or, by inference, AGO1, AGO3, or AGO4) within the RISC loading complex. Particular Argonaute proteins do not appear to have significantly different populations of miRNAs, however Argonaute identity can affect the resulting length of the miRNA.
R-HSA-2106615 (Reactome) The short double-stranded RNA passed from DICER1 to an Argonaute protein is rendered single-stranded by removal and loss of the passenger strand through a mechanism that is not well characterized. All Argonautes (AGO1 (EIF2C1), AGO2 (EIF2C2), AGO3 (EIF2C3), AGO4 (EIF2C4)) can remove the passenger strand without cleaving it. AGO2 (EIF2C2) possesses endonucleolytic activity and cleaves the passenger strand of siRNAs, which facilitates removal of the passenger strand but is not required (Matranga et al. 2005). RNA helicase A associated with the RISC loading complex can also facilitate removal of the passenger strand.
The mechanism that selects which strand is retained as the guide RNA is not well understood in humans. Overhanging nucleotides and strength of base-pairing at each end of the input duplex are observed to influence strand selection.
Argonaute proteins loaded with miRNAs or siRNAs are predominantly located in association with TARBP2 or PRKRA at the cytosolic face of the rough endoplasmic reticulum in cultured cells.
R-HSA-2106625 (Reactome) Following cleavage the duplex siRNA reoriented on DICER1 and then transferred from DICER1 to an Argonaute protein (AGO1, AGO2, AGO3, or AGO4) within the RISC loading complex (RLC).
R-HSA-210805 (Reactome) A short double-stranded RNA is passed from DICER1 to an Argonaute protein and rendered single-stranded by removal and loss of the passenger strand. All Argonautes (AGO1 (EIF2C1), AGO2 (EIF2C2), AGO3 (EIF2C3), AGO4 (EIF2C4)) can remove the passenger strand without cleaving it and most miRNAs are processed in this way. AGO2 (EIF2C2) can cleave the passenger strand of a subset of miRNAs that have no mismatches in the central region (Shin et al. 2008).
RNA helicase A associated with the RISC loading complex can facilitate removal of the passenger strand.
The mechanism that selects which strand is retained as the guide RNA is not well understood in humans. Overhanging nucleotides and strength of base-pairing at each end of the input duplex are observed to influence strand selection.
In cultured cells Argonaute proteins loaded with miRNAs or siRNAs are predominantly located in association with TARBP2 or PRKRA at the cytosolic face of the rough endoplasmic reticulum. In adult non-dividing cells most Argonaute-bound miRNAs are located in low molecular weight complexes but shift to larger complexes containing GW182 in response to phosphoinositide-3-kinase/mTOR signaling.
R-HSA-426464 (Reactome) Double stranded RNA binds the RISC loading complex and DICER1, an RNase III component of the complex, cleaves double-stranded RNAs to yield short double-stranded RNAs of 21-25 nucleotides, duplex siRNAs (small interfering RNAs). SiRNAs are similar to microRNAs (miRNAs) in their final structure but differ from miRNAs in their source: siRNAs are produced from long double stranded RNAs that originate from viruses, transposable elements, centromeric repeats and other repetitive structures.
The RLC as originally characterized contains DICER1, AGO2, and TARBP2 (TRBP). Alternative RLCs appear to contain other Argonaute proteins (AGO1, AGO3, AGO4) rather than AGO2 and PRKRA rather than TARBP2. Diffusion activity of TARBP2 and PRKRA along duplex RNA may enhance processing by DICER1.
R-HSA-426489 (Reactome) RISCs can bind target RNAs that do not exactly match the guide RNA carried by an Argonaute. Binding is especially dependent on base-pairing between the target RNA and the eight 5' nucleotides of the guide RNA (miRNA or siRNA). After binding, Argonaute-1 (AGO1, EIF2C1), AGO3 (EIF2C3), and AGO4 (EIF2C4) are incapable of cleavage in all cases. AGO2 is capable of cleaving the target RNA but not if mismatches exist in the middle of the guide (centered about 10 nucloetides from the 5' end of the guide RNA). In the absence of cleavage the target RNA remains bound by the RISC, which inhibits translation of the target RNA and causes the RNA to enter the decay pathway. In vivo, inhibition of translation requires interaction of AGO with a TNRC6 protein and MOV10. The phosphoinositide-3 kinase/mTOR pathway increases expression of GW182, a TNRC6 protein, which increases the portion of AGO:miRNA in high molecular weight complexes with mRNA.
R-HSA-426520 (Reactome) Human Argonaute-2 (AGO2, EIF2C2) possesses ribonucleolytic activity in its PIWI domain and cleaves target RNAs that are exactly complementary to the guide RNA at a location around 10 nucleotides from the 5' end of the match with the guide RNA. The products of cleavage have a 5' phosphate and a 3' hydroxyl group. Both complexes containing siRNAs and miRNAs are capable of cleavage. Although Argonaute proteins interact with many other proteins, the complex of AGO2 and the guide RNA are sufficient to direct cleavage of target RNAs in vitro. In vivo, cleavage requires interaction of AGO2 with a TNRC6 protein and MOV10.
R-HSA-426522 (Reactome) RISCs containing Argonaute-1 (AGO1, EIF2C1), AGO3 (EIF2C3), and AGO4 (EIF2C4) bind to target RNAs by base-pairing between the target RNA and the guide RNA of the RISC. AGO1,3,4 do not possess ribonuclease activity therefore exact matches between the guide and the target do not result in cleavage of the target. Rather, the effect of binding is inhibition of translation followed by decay of the target RNA. Argonaute proteins have been shown to interact with ribosomal proteins and with components of processing bodies (P-bodies) where RNA degradation occurs. Direct interaction between AGO and a TNRC6 protein is required for inhibition of translation and targeting to P-bodies in vivo.
R-HSA-5578712 (Reactome) Importin-8 (IPO8, IMP8, RANBP8) binds AGO2:miRNA complexes in the cytosol and participates in the importation of AGO2:miRNA complexes into the nucleus (Weinmann et al. 2009, Wei et al. 2014). IPO8 is also required for recruitment of AGO2:miRNA complexes to many target mRNAs in the cytosol and their efficient silencing (Weinmann et al. 2009). Moreover, other Argonautes (AGO1, AGO3, AGO4) are also observed in the nucleus (Kim et al. 2008, Weinmann et al. 2009, Ahlenstiel et al. 2012, Gagnon et al. 2014) and may be imported by the same mechanism.
R-HSA-5578742 (Reactome) Complexes containing small RNAs and AGO1 or AGO2 are observed within the nucleus and at the inner nuclear envelope, respectively, associated with the actin cytoskeleton (Ahlenstiel et al. 2012, Huang et al. 2013). Argonaute:miRNA complexes associate with genomic regions possessing sequences that match the miRNA, possibly via RNA transcripts tethered to chromatin (Li et al. 2006, Weinber et al. 2006, Kim et al. 2008, Place et al. 2008, Younger and Corey 2011). AGO2:miRNA appears to be in complexes containing DICER and TNRC6A (Gagnon et al. 2014) and AGO1 has been shown to associate with RNA polymerase II, TARBP2, and EZH2 at transcriptionally silenced promoters (Kim et al. 2006, Huang et al. 2013). AGO1 also associates with RNA polymerase II at active promoters (Huang et al. 2013). Other AGO:miRNA complexes may form similar complexes.
Association of AGO:miRNA complexes with genes may cause transcriptional activation (Li et al. 2006, Place et al. 2008), transcriptional repression (Kim et al. 2008, Younger and Corey 2011), alternative splicing (Ameyar-Zazoua et al. 2012), or DNA repair (Francia et al. 2012, Wei et al. 2012). The determinants for transcriptional activation and repression are not known. Transcriptional effects are mediated through changes in histone methylation, especially methylation of histone H3 at lysine-4, lysine-9, and lysine-27 (Li et al. 2006, Kim et al. 2006, Kim et al. 2008, Younger and Corey 2011).
R-HSA-5578744 (Reactome) The AGO2:miRNA complex is formed in the cytosol (Ohrt et al 2008) and is imported into the nucleus in a complex with Importin-8 (IPO8, Imp8, RanBP8) (Weinmann et al. 2009, Wei et al. 2014). Once in the nucleus, Imp8 in complex with the cargo interacts with RAN:GTP, causing the dissociation of Imp8 from the complex with AGO2:miRNA (Gorlich et al. 1997). Other Argonautes are also observed in the nucleus (Robb et al. 2005, Weinmann et al. 2009, Doyle et al. 2013, Ahlenstiel et al. 2012, Gagnon et al. 2014) and may be imported by the same mechanism.
R-HSA-5578965 (Reactome) TNRC6A (GW182) is a major component of miRISC and processing bodies (P bodies or GW bodies) where transcripts are degraded (Eystathioy et al. 2003). GW182 posesses several glycine-tryptophan (GW) repeats that enable interactions with Argonaute proteins (Eulalio et al. 2009, Takimoto et al. 2009). Humans express three paralogs (TNRC6A, TNRC6B, and TNRC6C) which can each silence expression of mRNAs to which they are bound (Lazzaretti et al. 2009). In the cytosol TNRC6A binds AGO2:miRNA via three GW-repeat motifs (Landthaler et al. 2008, Takimoto et al. 2009, Nishi et al. 2013).
R-HSA-5578966 (Reactome) TNRC6A (GW182) possesses both a nuclear localization signal (NLS) and a nuclear export signal (NES) that enable it to shuttle between the cytoplasm and the nucleus (Nishi et al. 2013). Thus the TNRC6A:AGO2:miRNA complex is transported into the nucleus by an unknown importation mechanism (Nishi et al. 2013). (TNRC6A is exported by Exportin 1.) The interaction between AGO2 and TNRC6A affects gene silencing activity in the nucleus (Nishi et al. 2013).
R-HSA-5601883 (Reactome) RNA cleaved by PIWIL2:piRNA is transferred to PIWIL4 (HIWI2 in human, MIWI2 in mouse). The reaction requires MAEL and is enhanced by the chaperone activity of FKBP6:HSP90. PIWIL4, TDRD9, and MAEL are located in piP bodies, a type of nuage (electron-dense perinuclear material). PIWIL4 and PIWIL2 are in separate nuages.
R-HSA-5601887 (Reactome) As inferred from homologs in Drosophila and mouse, PLD6 (MitoPLD) located on the cytoplasmic face of the mitochondrial outer membrane makes the first endonucleolytic cleavage of primary piRNA transcripts. The cleavage yields a 5' phosphate and a 3' hydroxyl. Cleavage is believed to precede loading into PIWIL1 (HIWI, MIWI) or PIWIL2 (HILI, MILI). Most mature piRNAs have uracil at the 5' end. This appears to be due to selective binding by PIWI proteins rather than selective cleavage (reviewed in Bortvin 2013).
R-HSA-5601888 (Reactome) As inferred from mouse homologs, after binding PIWIL1 (HIWI in human, Miwi in mouse) the 3' end of the pre-piRNA is trimmed by an unknown nuclease. The final size of the piRNA appears to be determined by the particular PIWI protein with which it is associated. PIWIL1 and TDRD6 are located in the chromatoid body. Both TDRD6 and TDRKH are associated with PIWIL1 in adult testes but only TDRKH is present in embryonic prospermatogonia. TDRKH is required for spermatogenesis and appears to participate in trimming of the 3' end of pre-piRNAs.
R-HSA-5601897 (Reactome) As inferred from homologs in mouse, PIWIL4 is loaded with piRNA in the cytosol and then translocates to the nucleus where it directs transcriptional silencing of cognate loci by an unknown mechanism. Most cellular PIWIL4 is translocated to the nucleus at E16.5 of mouse development and proper localization depends on PIWIL2 and TDRD1. TDRD9 and MAEL interact with PIWIL4, are observed in the nucleus, and may play a role in the translocation of PIWIL4. Knockout of TDRD9, however, does not affect nuclear localization of PIWIL4. Knockout of MAEL delays but does not prevent localization of PIWI4L to the nucleus. TDRKH is required for translocation of PIWIL4, however TDRKH is only observed in the cytosol.
R-HSA-5601910 (Reactome) As inferred from homologs in mouse, PIWIL2 (HILI in human, homolog of MILI in mouse) bound to a piRNA cleaves target RNAs complementary to the piRNA. The cleaved RNA can either be transferred to another PIWIL2 as part of the "ping pong cycle" that generates secondary piRNAs or the cleaved RNA can be transferred to PIWIL4, which then transits to the nucleus to transcriptionally silence loci complementary to the piRNA.
R-HSA-5601919 (Reactome) After the cleaved RNA binds PIWIL4 the 3' end is trimmed by an unknown nuclease to generate a mature piRNA.
R-HSA-5601922 (Reactome) RNA cleaved by PIWIL2 (HILI in human, homolog of MILI in mouse) can be transferred to another molecule of PIWIL2. This is part of the "ping pong cycle" that generates further secondary piRNAs from a longer precursor.
R-HSA-5601924 (Reactome) Primary (unprocessed) transcripts of piRNAs are transported from the nucleus to the cytosol by an unknown mechanism. Studies with Drosophila indicate that Uap56, Nxt1, Nxf2, Nup154, and Nup43 may be involved in exporting piRNA precursors from the nucleus (Zhang et al. 2012, Muerdter et al. 2013, Handler et al. 2013).
R-HSA-5601926 (Reactome) As inferred from experiments with mouse homologs, primary piRNA transcripts originate from multiple copy transposable elements and unique copy non-coding RNAs and mRNAs. As male germ cells progress from fetus to adult, the composition of piRNAs shifts from transposons to unique copy sequences (reviewed in Bortvin 2013). Computational analyses have identified 161 to 242 piRNA clusters and many other smaller piRNA hotspots in the mouse genome (Aravin et al. 2008, Rosenkranz and Zischler 2012, Jung et al. 2014). About 18% of pre-pachytene piRNAs in mouse originate from mRNAs encoding proteins (Aravin et al. 2008). Likewise 235 to 368 piRNA clusters were identified in the human genome (Rosenkranz and Zischler 2012, Gould et al. 2012, Yang et al. 2013, Jung et al. 2014).
As inferred from the mouse homolog, the MYBL1 (A-MYB) transcription factor drives transcription of both piRNA precursors and mRNAs encoding PIWI family proteins.
R-HSA-5601929 (Reactome) After the cleaved RNA binds PIWIL2 (HILI in human, homolog of Mili in mouse) the 3' end is trimmed by an unknown nuclease to generate a mature piRNA. The resulting PIWIL2:piRNA complex can then participate in further amplification by the "ping-pong" cycle.
R-HSA-5603062 (Reactome) After cleavage by PLD6 at the 5' end, the pre-piRNA is bound by PIWIL2 (HILI, homolog of MILI in mouse), likely in a complex with TDRD1, TDRD12, DDX4 (MVH), ASZ (GASZ), and MOV10L, all of which are required for wild-type levels of piRNA biogenesis. Binding by PIWIL2 is believed to be selective for pre-piRNAs that have uracil residues at their 5' ends.
R-HSA-5603067 (Reactome) As inferred from mouse homologs, after binding PIWIL2 (HILI in human, MILI in mouse) the 3' end of the pre-piRNA is trimmed by an unknown nuclease. The final size of the piRNA appears to be determined by the particular PIWI protein with which it is associated. MOV10L1, which has a helicase domain, associates with PIWIL2 and is required for loading PIWIL2 with piRNA. PIWIL2, TDRD1, MVH, and ASZ are located in the intermitochondrial cement, the chromatoid body, and the pi-body, a type of nuage (reviewed in Pillai and Chuma 2012). (Nuage is electron-dense perinuclear material also known as germinal granules.)
R-HSA-5615682 (Reactome) After cleavage by PLD6 at the 5' end, the pre-piRNA is bound by PIWIL1 (HIWI, homolog of MIWI in mouse), likely in a complex with other proteins such as TDRD6 and TDRKH, which interact with methylated arginine residues on PIWIL1 and are required for piRNA biogenesis. Binding by PIWIL1 is believed to be selective for pre-piRNAs that have uracil residues at their 5' ends.
R-HSA-5629203 (Reactome) As inferred from mouse homologs, HENMT1 transfers a methyl group from S-adenosylmethionine to the 2' hydroxyl group of a trimmed piRNA bound by the PIWIL1 complex in the cytosol.
R-HSA-5629218 (Reactome) As inferred from mouse homologs, HENMT1 transfers a methyl group from S-adenosylmethionine to the 2' hydroxyl group at the 3' end of piRNA bound to the PIWIL2 complex in the cytosol.
R-HSA-5629237 (Reactome) As inferred from mouse homologs, HENMT1 transfers a methyl group from S-adenosylmethionine to the 2' hydroxyl group at the 3' end of a piRNA bound by PIWIL4.
RAN:GDP:Exportin-5ArrowR-HSA-203906 (Reactome)
RISC:Target RNA (inexact match)ArrowR-HSA-426489 (Reactome)
RISCR-HSA-426489 (Reactome)
RNA (exact match)R-HSA-426520 (Reactome)
RNA (exact match)R-HSA-426522 (Reactome)
RNA (inexact match)R-HSA-426489 (Reactome)
RNA Polymerase II

holoenzyme complex

(generic)
mim-catalysisR-HSA-203901 (Reactome)
RNA Polymerase II

holoenzyme complex

(generic)
mim-catalysisR-HSA-5601926 (Reactome)
RNA Polymerase II

holoenzyme complex

(unphosphorylated)
R-HSA-5578742 (Reactome)
Ran:GTP:Exportin-5R-HSA-203922 (Reactome)
Ran:GTP:Exportin-5mim-catalysisR-HSA-203922 (Reactome)
Ran:GTPR-HSA-5578744 (Reactome)
TARBP2,PRKRA RLC:duplex miRNAArrowR-HSA-203862 (Reactome)
TARBP2,PRKRA RLC:duplex miRNAR-HSA-2106614 (Reactome)
TARBP2,PRKRA RLC:duplex siRNAArrowR-HSA-426464 (Reactome)
TARBP2,PRKRA RLC:duplex siRNAR-HSA-2106625 (Reactome)
TARBP2,PRKRA RLCR-HSA-203862 (Reactome)
TARBP2,PRKRA RLCR-HSA-426464 (Reactome)
TARBP2,PRKRA RLCmim-catalysisR-HSA-203862 (Reactome)
TARBP2,PRKRA RLCmim-catalysisR-HSA-426464 (Reactome)
TARBP2,PRKRA:DICER1:Pre-RISC (miRNA)ArrowR-HSA-2106614 (Reactome)
TARBP2,PRKRA:DICER1:Pre-RISC (miRNA)R-HSA-210805 (Reactome)
TARBP2,PRKRA:DICER1:Pre-RISC (siRNA)ArrowR-HSA-2106625 (Reactome)
TARBP2,PRKRA:DICER1:Pre-RISC (siRNA)R-HSA-2106615 (Reactome)
TARBP2,PRKRA:DICER1:RISC (miRNA)ArrowR-HSA-210805 (Reactome)
TARBP2,PRKRA:DICER1:RISC (siRNA)ArrowR-HSA-2106615 (Reactome)
TDRD9ArrowR-HSA-5601897 (Reactome)
TDRKHArrowR-HSA-5601897 (Reactome)
TNRC6 (GW182)R-HSA-426489 (Reactome)
TNRC6 (GW182)R-HSA-426522 (Reactome)
TNRC6A:AGO2:miRNAArrowR-HSA-5578965 (Reactome)
TNRC6A:AGO2:miRNAArrowR-HSA-5578966 (Reactome)
TNRC6A:AGO2:miRNAR-HSA-5578966 (Reactome)
TNRC6AR-HSA-5578965 (Reactome)
Transposon RNAR-HSA-5601910 (Reactome)
miRNA geneR-HSA-203901 (Reactome)
piRNA locus (DNA)R-HSA-5601926 (Reactome)
pre-miRNA:RAN:GTP:Exportin-5ArrowR-HSA-203922 (Reactome)
pre-miRNA:RAN:GTP:Exportin-5R-HSA-203906 (Reactome)
pre-miRNA:RAN:GTP:Exportin-5mim-catalysisR-HSA-203906 (Reactome)
pre-microRNA with 3' overhangArrowR-HSA-203893 (Reactome)
pre-microRNA with 3' overhangR-HSA-203922 (Reactome)
pre-microRNAArrowR-HSA-203906 (Reactome)
pre-microRNAR-HSA-203862 (Reactome)
pre-piRNAArrowR-HSA-5601887 (Reactome)
pre-piRNAR-HSA-5603062 (Reactome)
pre-piRNAR-HSA-5615682 (Reactome)
pri-microRNAArrowR-HSA-203901 (Reactome)
pri-microRNAR-HSA-203893 (Reactome)
primary piRNA transcriptArrowR-HSA-5601924 (Reactome)
primary piRNA transcriptArrowR-HSA-5601926 (Reactome)
primary piRNA transcriptR-HSA-5601887 (Reactome)
primary piRNA transcriptR-HSA-5601924 (Reactome)
Personal tools