Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 13:13, 25 July 2016 by Ryanmiller (Talk | contribs)
Jump to: navigation, search
1, 2, 4, 6, 9...4, 8, 10, 13, 27118, 13, 17, 21, 26...43, 123, 12, 231212315mitochondrial matrixArg-tRNA(Arg) MRPS28 MRPS27 mRNA MRPS23 MRPL3 MRPL54 CHCHD1 MRPL53 GTP MRPL16 MRPL38 MRPS16 MRPL49 GADD45GIP1 MRPS24 MRPS7 MRPS25 MRPL21 Val-tRNA(Val) MRPL1 Val-tRNA(Val) tRNA(Ala) tRNA(Gly) MRPS18B MRPS18C MRPL20 MRPL41 MRPL43 MRPL4 MRPS25 MRPL22 MRPL16 MRPS12 MRPL16 MTIF2:GTPMRPL37 tRNA(Gly) MRPL34 GTPMRPL14 MRPL24 MRPL55 MRPL55 MRPL37 GFM2 MRPS18A MRPS12 MRPL21 MRPS30 MRPL44 MRPL53 MRPL44 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPS17 MRPS10 MRPL30 MT-TV MRPL13 MRPL17 MRPL21 MRPL20 MRPS9 MRPS36 MRPL30 DAP3 MRPL10 MRPS33 MRPL28 MRPS11 MRPS25 MRPL32 MRPS15 GTP MRPL28 MRPS23 AURKAIP1 AURKAIP1 MRPS11 tRNA(Gly) MRPL9 MRPS17 MRPS12 MRPL48 MRPL16 DAP3 MRPS23 GADD45GIP1 PTCD3 MRPL2 AURKAIP1 MRPL37 MRPL13 MRPL51 MRPL52 GADD45GIP1 MRPL3 tRNA(Met) MRPL16 MRPL23 PTCD3 MRPL33 MRPS16 MRPL4 MRPL45 MRPL19 GFM2:GTPmRNAICT1 Thr-tRNA(Thr) GTP MRPL48 MRPS16 MRPS34 Phe-tRNA(Phe) MRRFMRPL3 Mitochondrial 12S rRNA MRPL32 tRNA(Thr) Tyr-tRNA(Tyr) MRPL24 tRNA(Glu) MRPL42 MRPL46 MRPL14 MRPS6 MRPS7 MRPS17 TUFM:GTPMRPL1 MRPL41 MRPS6 MRPL28 MRPS35 MRPS26 MRPL22 MRPL28 MRPL49 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL42 MRPL15 MRPS23 MRPL10 MRPL12 MRPL1 MRPS24 MRPS18B Trp-tRNA(Trp) AURKAIP1 MRPL40 MRPS25 TSFM fMet-tRNA(fMet) MRPL3 MRPL20 MRPS35 MRPL9 MRPL45 MRPS6 MRPS7 DAP3 MRPL16 MRPL49 tRNA(Ile) MRPS15 MRPL40 MRPL43 AURKAIP1 MRPL1 MRPS35 MRPL35 MRPL32 MRPS15 MRPS7 MRPL53 MRPS31 MRPL22 MRPS14 tRNA(Met) MRPS26 MRPS35 MRPS33 ICT1 MRPL14 MRPL2 MRPS23 MRPS10 MRPS11 MRPS23 10-formyl-THFMRPL43 MRPL9 tRNA(Glu) MRPL19 MRPS31 MRPL39 MRPL21 MRPL12 MRPL2 MRPL40 MRPL2 MRPS28 MRPL17 Cys-tRNA(Cys) MTIF3 MRPL2 MRPL18 MRPS33 MRPS9 MRPL54 MRPS33 MRPL14 MRPS16 MRPS25 MRPS25 MRPL17 MRPS6 MRPL44 MRPL18 MRPS22 MT-TV tRNA(Lys) MRPS10 MRPL54 Mitochondrial 12S rRNA MRPL27 MRPS18B MRPL43 MRPS35 MRPL2 MRPS15 fMet-tRNA(fMet) Glu-tRNA(Glu) MRPL1 MRPS7 MRPL49 MRPL54 Asn-tRNA(Asn) MRPS5 MRPS12 MRPS18C mRNA MRPS34 GDPMRPS36 MTFMTMRPL32 MRPL41 PTCD3 MRPS21 MRPS5 MTRF1L, ICT1tRNA(Asn) Pro-tRNA(Pro) MRPL38 MRPS25 tRNA(Leu) MRPS26 MRPS5 MRPS16 mRNA MRPS23 MRPS35 MRPL41 MRPS6 MRPL20 MRPL34 tRNA(Thr) tRNA(Phe) AURKAIP1 Thr-tRNA(Thr) tRNA(Leu) DAP3 MRPS6 GTP MRPL47 MRPS21 Ala-tRNA(Ala) MRPS14 MRPL12 MRPS17 MRPL14 AURKAIP1 MRPL49 MRPL14 MRPL19 tRNA(Thr) CHCHD1 Asn-tRNA(Asn) MRPS18A MRPS24 MRPL36 MRPS31 MRPL37 ICT1 MRPL35 MRPL12 ICT1 MRPL42 MRPL39 tRNA(Glu) MRPL32 fMet-tRNA(fMet) MRPL23 Trp-tRNA(Trp) PTCD3 MRPL55 55Sribosome:mRNA:tRNAMT-TV MRPS25 MRPL40 CHCHD1 GADD45GIP1 MRPL39 MRPS34 MRPL30 MRPS30 MRPS14 MRPL14 AURKAIP1 MRPS5 MRPL35 MRPS23 MRPL33 MRPL54 MRPL22 Mitochondrial 12S rRNA MRPL35 THFMRPL34 MRPS9 AURKAIP1 MRPS23 MRPS24 MRPL35 MRPL24 MTRF1L tRNA(Pro) 39S ribosomalsubunitMRPS28 MRPS24 MRPS16 MRPL33 MRPL30 MRPL49 MRPS36 MRPS7 MRPL52 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPLys-tRNA(Lys) CHCHD1 TUFM MRPS24 MRPS7 MRPS15 MRPL13 MRPL49 MRPL11 MRPS24 Met-tRNA(Met) MRPL46 MRPL40 MRPL50 MRPS17 MRPL11 Mitochondrial 16S rRNA tRNA(Leu) MRPS35 MRPL40 MRPL42 MRPS28 Met-tRNA(Met) MRPS22 MRRF MT-TV MRPL19 MRPS11 PTCD3 MRPS30 MRPS27 MRPL19 MRPL9 MRPS30 tRNA(Ser) MRPL13 MRPS18C MRPL50 MRPL47 GDPMRPL2 MRPL3 tRNA(Met) MRPL48 MRPS11 MRPS22 MRPS21 MRPS35 MRPL20 MRPL24 mRNA MRPS28 MRPL55 MRPL32 Glu-tRNA(Glu) MRPS16 MRPS17 MRPL39 MRPL40 MRPS28 DAP3 MT-TV Asn-tRNA(Asn) MRPL44 MRPL28 MRPL11 MRPS17 MRPL45 tRNA(Tyr) MRPS27 tRNA(Val) MRPL42 fMet-tRNA(fMet) MRPS18C MRPL55 MRPS15 Phe-tRNA(Phe) MRPL40 MRPL19 Arg-tRNA(Arg) Glu-tRNA(Glu) Glu-tRNA(Glu) MRPL36 MRPS9 MRPL53 fMet-tRNA(fMet)MRPL21 MRPS7 Mitochondrial 12S rRNA MRPL23 mRNA MRPL52 tRNA(Cys) MRPL51 MRPS22 MRPL43 MRPL14 MRPS11 MRPL18 His-tRNA(His) MRPS34 MRPS6 MRPL22 MRPL44 Phe-tRNA(Phe) MRPS36 MRPL48 MRPS27 MRPL49 MRPL47 Met-tRNA(Met) MRPL2 MRPL43 Mitochondrial 16S rRNA tRNA(Asn) MRPS9 tRNA(Pro) MRPL47 MTIF2 MRPL17 MRPL32 MRPL12 MRPL11 MRPL11 GTPMRPS31 MRPS14 MRPL44 MRPL52 tRNA(Asp) GFM2:GDPMRPL55 MRPS9 TUFM MRPS34 MRPS34 ICT1 MRPS7 MRPL36 MRPL18 ICT1 MRPL53 MRPS18A Pro-tRNA(Pro) MRPL30 MRPS21 MRPL35 tRNA(Asp) MRPS14 MRPL4 MRPL47 PTCD3 MRPL18 MRPS23 MRPS31 MRPS30 CHCHD1 Thr-tRNA(Thr) MRPL33 MRPS18B MRPL1 MRPL16 MRPL22 MRPS26 MRPL27 GFM1 MRPS33 MRPL21 MRPL17 MRPS27 MRPS10 MRPS5 MT-TV MRPS9 mRNA MRPS22 MRPL33 MRPL15 MRPS15 MRPL11 MRPS26 MRPS7 DAP3 MRPS28 MRPL41 MRPL14 MRPS35 ICT1 MRPS18C MRPL36 MRPL17 MRPS15 Ile-tRNA(Ile) MRPL44 MRPL43 Asp-tRNA(Asp) MRPS11 MRPL19 MRPL12 MRPS26 MRPS10 MRPL52 MRPS22 GADD45GIP1 MRPL51 MRPL41 MRPS18B MRPS18B MRPS14 MRPL12 MRPL33 MRPL44 MRPL39 MRPS5 MRPS18A MRPL35 MRPL34 MRPL30 MRPL52 Mitochondrial 12S rRNA MRPL42 MRPL51 His-tRNA(His) MRPS27 MRPL30 MRPL50 MRPS15 MRPS17 Mitochondrial 16S rRNA MRPL54 MRPS25 Met-tRNA(Met) MRPL28 MRPS18A Gly-tRNA(Gly) Thr-tRNA(Thr) MRPL17 mRNA MRPS9 Ile-tRNA(Ile) MRPS21 MRPS14 MRPL49 MRPS26 MRPS30 MRPS33 MRPS12 peptidyl-tRNA with elongated peptide MRPL24 MRPL23 ICT1 MRPS12 MRPS11 TUFM:TSFMMRPS11 MRPL38 GADD45GIP1 MRPL45 MRPL46 ICT1 Ile-tRNA(Ile) MRPL50 Tyr-tRNA(Tyr) MT-TV MRPL39 MRPL35 Mitochondrial 16S rRNA MRPL32 MRPS27 MRPL42 MRPS27 55Sribosome:MRRF:GFM2:GTPMTIF2 ICT1 MRPS22 MRPL18 MRPS27 MRPS10 PTCD3 MRPL50 GTP MRPL34 Mitochondrial 16S rRNA MRPS33 MRPL27 MRPL23 MRPL46 Gly-tRNA(Gly) MRPL41 MRPS21 MRPS6 Leu-tRNA(Leu) MRPS5 MRPS15 MRPS26 MRPL38 MRPL22 MRPL18 GFM2 MRPS9 MRPS34 MRPS23 MRPL36 MRPL38 MRPS34 MRPL55 MRPS18A MRPL15 MRPL47 MRPL34 Ala-tRNA(Ala) tRNA(Arg) MRPS24 PTCD3 PiMRPL51 MRPL10 MRPL11 tRNA(Cys) MRPS33 PTCD3 MRPL21 GADD45GIP1 PTCD3 MTRF1L MRPL54 MRPS10 MRRF MRPL22 MTIF3tRNA(Gln) MRPS24 MRPL51 tRNA(His) MRPS31 Asp-tRNA(Asp) MRPL47 tRNA(Trp) MRPL36 MRPL30 MRPL24 MRPL36 MRPS22 MRPS18B MRPS26 MRPL45 MRPS7 MRPL21 MRPS30 Arg-tRNA(Arg) MRPL24 DAP3 GTP MRPL3 Leu-tRNA(Leu) MRPL4 tRNA(Tyr) MT-TV MRPL55 MRPS12 MRPL38 tRNA(Ser) Gly-tRNA(Gly) Asp-tRNA(Asp) tRNA(Gln) MRPL53 MRPL49 DAP3 MRPL13 MRPS30 Val-tRNA(Val) Mitochondrial 12S rRNA MRPL45 MRPL48 MRPS27 MRPL1 MRPL9 tRNA(Ala) MRPL4 MRPL53 MRPL23 MRPL21 GADD45GIP1 MRPL35 MRPL43 tRNA(Val) MRPL2 MRPL16 Gln-tRNA(Gln) MRPL34 tRNA(Gln) MRPL15 Gln-tRNA(Gln) CHCHD1 MRPL21 MRPL4 MRPS36 MRPL38 MRPL27 peptidyl-tRNA with elongated peptide MRPL36 MRPL1 MRPS10 MRPL46 Asn-tRNA(Asn) MRPL9 MRPL15 MRPS26 MRPS31 MRPL16 MRPS16 MRPS31 CHCHD1 tRNAMRPL52 tRNA(Val) MRPS30 PiMRPL51 MRPL45 MRPL27 MRPS34 MRPL27 MRPL17 tRNA(Pro) MRPS28 MRPS18C MRPL54 MRPL37 PTCD3 CHCHD1 MRPL51 MRPS27 MRPL39 Mitochondrial 12S rRNA mRNA MRPL53 MRPL46 MRPL30 MRPL39 MRPL10 MRPL36 MRPS36 CHCHD1 Mitochondrial 16S rRNA AURKAIP1 MRPL13 MRPS30 MRPL19 MRPL48 MRPS22 MRPL42 MRPL9 MRPS36 MRPL12 MRPS14 MRPS31 28S ribosomalsubunit:MTIF3MRPL20 tRNA(Trp) MRPS28 MRPS12 MRPL20 MT-TV MRPL15 MRPS21 MRPS10 MRPS21 MRPL52 MRPL36 MRPL28 MRPL23 MRPL20 MRPL23 PiTUFM His-tRNA(His) MRPL18 Gln-tRNA(Gln) MRPL14 MRPL32 MRPL46 MRPL12 MRPL50 MRPS10 MRPS6 MRPL38 DAP3 MRPS16 MRPS31 MRPS25 MRPL50 MRPS5 fMet-tRNA(fMet) MRPL12 Tyr-tRNA(Tyr) Mitochondrial 16S rRNA MRPS18C MRPL39 tRNA(Asp) GFM1 MRPL10 MRPS7 MRPS35 MRPS16 MRPL15 MRPS5 GTP MRPL10 MRPS34 MRPL42 peptidyl-tRNA with elongated peptide GADD45GIP1 Mitochondrial 16S rRNA Trp-tRNA(Trp) MRPL2 MRPL23 TUFM:GTP:aminoacyl-tRNAGFM1 MRPS22 MRPL23 ICT1 AURKAIP1 MRPL46 tRNA(Ser) MRPL3 MRPL35 DAP3 peptidyl-tRNA with elongated peptide MRPL3 ICT1 MRPS15 MRPL3 55Sribosome:mRNA:tRNA:MRRFMRPL15 Lys-tRNA(Lys) tRNA(Arg) Trp-tRNA(Trp) MRPL51 55Sribosome:mRNA:fMet-tRNAMRPL44 MRPL24 MRPL37 MRPL13 MRPS26 tRNA(His) MRPS18A MRPL41 MRPS5 DAP3 MRPL24 MRPL53 MRPL17 MRPS12 MRPS18C MRPL15 MRPS15 MRPL13 tRNA(Cys) MRPL55 55Sribosome:mRNA:peptidyl-tRNA at P-siteMet-tRNA(Met)MRPS16 MRPS33 MRPL43 MRPS30 MRPL45 PiMRPL16 MRPL4 MRPL38 MRPL50 MRPL16 MRPS30 MRPL9 MRPS11 MRPL51 MRPS11 AURKAIP1 mRNA MRPL37 MRPL54 MRPL27 MRPL44 MRPL48 DAP3 MRPL24 GTP Mitochondrial 12S rRNA MRPS18A MRPL35 tRNA(Tyr) MRPS23 MRPL47 MRPL40 CHCHD1 MRPL53 Mitochondrial 12S rRNA MRPS23 MRPS33 MRPL1 MRPL20 tRNA(Phe) MRPS31 Val-tRNA(Val) Ser-tRNA(Ser) GFM1:GDPMRPL46 MRPS14 MT-TV MRPL1 MRPS17 His-tRNA(His) MRPL38 MRPS35 MRPS36 MRPL14 MTIF2MRPL42 MRPS18C CHCHD1 MRPL13 MRPL51 MRPL41 MRPS21 MRPL33 MRPS18A MRPS22 MRPS17 Mitochondrial 12S rRNA Mitochondrial 12S rRNA MRPL11 PiMRPS18B MRPL18 Asp-tRNA(Asp) MRPL47 MRPL19 Mitochondrial 12S rRNA tRNA(Lys) MRPS28 Lys-tRNA(Lys) MRPS17 MRPL55 GDPMRPS14 MRPL37 MRPL22 GDP MRPL39 MRPS11 MRPS9 MRPL33 Gln-tRNA(Gln) MRPL40 MRPL19 Ile-tRNA(Ile) MRPL45 MRPL23 TSFMMRPS18A MRPS14 MRPS33 MRPL17 MRPL11 MRPS36 MRPL20 MRPL28 MRPL18 MRPL54 MRPS9 tRNA(His) GADD45GIP1 MRPS16 Cys-tRNA(Cys) 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPL33 MRPL27 MRPS24 MRPL48 MRPS5 Mitochondrial 16S rRNA MRPL20 MRPS28 MRPS10 Ser-tRNA(Ser) MRPL28 MRPL2 MRPL27 tRNA(Phe) MRPL50 MRPS24 MRPL37 AURKAIP1 MRPS34 MRPS11 MRPL43 MRPL4 Ala-tRNA(Ala) MRPL47 MRPS5 MRPS10 Mitochondrial 12S rRNA MRPL9 MRPL10 MRPL38 MRPL48 MRPL10 Ser-tRNA(Ser) TUFM:GDP55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPL34 MRPL32 MRPS33 MRPL15 MRPL12 MRPL39 MRPS12 MRPS18C MRPS18A MRPL27 MRPL46 MRPS31 MRPL50 MRPS26 CHCHD1 MT-TV MRPS21 MRPL4 MRPS31 MRPS18C MRPL3 mRNA MRPL10 MRPL30 MRPS18B MRPS25 GADD45GIP1 MRPS18B PTCD3 MRPS15 MRPS34 DAP3 MRPL54 MRPL53 Mitochondrial 16S rRNA MRPL33 tRNA(Arg) GDP Pro-tRNA(Pro) fMet-tRNA(fMet) Cys-tRNA(Cys) MRPL27 MRPS25 tRNA(Lys) MRPL37 MRPL52 MRPS21 MRPS22 Tyr-tRNA(Tyr) MRPL34 TUFM MRPL19 MRPS18B MRPL45 MRPL30 GTP 28S ribosomalsubunitMRPL52 MRPS18B GFM2 MRPL48 MRPL4 MRPL44 MRPL11 MRPS7 Phe-tRNA(Phe) PTCD3 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAMRPS6 MRPS6 MRPL36 MRPS18A MRPS25 Lys-tRNA(Lys) GTP tRNA(Trp) MRPS17 MRPL34 MRPS21 MRPS9 MRPL48 tRNA(Ala) MRPL18 polypeptideMRPL34 MTIF3 MRPS27 MRPS35 Ser-tRNA(Ser) Mitochondrial 16S rRNA MRPL10 MRPL10 MRPL43 MRPS16 MRPS12 MRPS28 MRPL45 MRPS12 Arg-tRNA(Arg) MRPL15 MRPS14 MRPS36 MRPS5 MRPL11 GDP MRPL52 MRPS28 MRPL40 Leu-tRNA(Leu) MRPS18B tRNA(Ile) MRPL21 tRNA(Asn) MRPL22 MRPL1 MRPS30 MRPS6 MRPL28 MRPS26 Ala-tRNA(Ala) MRPS18C MRPL3 MRPL46 MRPL47 MRPL17 MRPS36 MRPS18A MRPL22 MRPS35 Gly-tRNA(Gly) MRPL32 MRPS18C MRPS27 CHCHD1 MRPL50 MRPL37 tRNA(Met)MRPL42 MRPL41 MRPL28 TUFM MRPS24 MRPL24 MRPS6 MRPS34 MRPL49 MRPS21 MRPS10 MRPL13 GFM1:GTPLeu-tRNA(Leu) MRPL33 MRPL9 MRPS24 MRPL4 MRPL9 MRPS12 tRNA(Ile) MRPS22 MRPS36 MRPS33 MRPS14 ICT1 Cys-tRNA(Cys) MRPL55 MRPS9 MRPL13 MRPL41 Pro-tRNA(Pro) MRPS36 aminoacyl-tRNAMRPS17 10, 21, 267, 16, 3214, 16


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-NUL-5389836 (Reactome)
polypeptideR-NUL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools