Nucleotide Excision Repair (Homo sapiens)

From WikiPathways

Revision as of 09:02, 26 July 2016 by Ryanmiller (Talk | contribs)
Jump to: navigation, search
5, 26, 30, 73, 74, 823, 24, 31, 48, 79...4, 27, 5438, 44, 45, 537, 39, 64, 883, 20, 24, 31, 48...3520, 28, 84, 85, 956910, 5852, 582, 5, 38, 43-45, 53...25, 75, 10014, 67, 68, 7036, 71, 75, 10010, 5825, 10034, 46, 55, 61, 63...9110049, 70, 9111, 77, 9415, 62, 81, 874, 27, 54995636, 1005610036, 10022, 38, 43-45, 47...1, 16, 17, 33, 37...62, 8136, 71, 75, 1009, 18, 28, 41, 59...694, 8, 12, 21, 23...nucleoplasmGTF2H4 POLE UBB(153-228) UBC(153-228) RPS27A(1-76) UBC(533-608) PAR-DDB2 XPA DDB1 UBC(305-380) CUL4B POLR2K RPA1 RAD23B POLR2B GTF2H5 GTF2H5 RPS27A(1-76) UBB(153-228) UBC(305-380) UBB(77-152) POLD3 UBC(305-380) POLR2I UBC(77-152) RPA2 GG-NERincisioncomplex:5'-inciseddamagedDNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFCUBE2N RBX1 POLR2L CUL4A PAR-PARP2 CUL4B POLR2J UBC(77-152) UBC(457-532) HMGN1 RPA1 ISY1 RBX1 MCRS1 ACTL6A UBC(229-304) Ub,p-S2,S5-POLR2A POLD1 RBX1 RPA1 RPS27A(1-76) POLR2F UBB(77-152) RBX1 DDB2 UBB(1-76) GTF2H2 UBC(229-304) RFC3 GTF2H3 POLR2F damaged DNA substrate:nascent mRNA hybrid PCNA INO80D RBX1 CUL4A GG-NER incisioncomplex:5'-inciseddamaged DNADDB1 UBE2V2 UBC(381-456) ERCC3 PAR-PARP2 PRPF19 GTF2H3 POLR2H UVSSA POLD2 POLR2K UBB(77-152) UBC(457-532) EP300 GTF2H1 UBB(153-228) POLR2H POLR2E p-S2,S5-POLR2A UBC(77-152) ERCC6 POLR2G UBC(229-304) UBA52(1-76) UBC(1-76) UBA52(1-76) ERCC2 CUL4A POLR2F XPC USP7 UBC(533-608) GTF2H4 COPS3 POLR2B POLR2B POLR2I DDB2 POLR2I ERCC3 UBC(457-532) CUL4B UBC(609-684) dNTPUBC(229-304) p-S2,S5-POLR2A UBB(153-228) damaged DNA with open bubble structure CUL4B UBC(609-684) UBC(381-456) GTF2H5 RAD23A PAR-PARP1 UBC(457-532) TCEA1 UBC(305-380) GTF2H4 PAR-PARP2 UBB(77-152) POLR2H ERCC2 GTF2H2 RBX1 UBC(457-532) RAD23B UBB(1-76) UBC(305-380) CUL4B DDB2 PRPF19 Ub-63-UBA52(1-76) Ub-ERCC6 DDB1 UBC(609-684) UBC(533-608) ERCC3 Ub-63-UBB(1-76) Distorted dsDNA POLK GTF2H4 GTF2H5 UVSSA GTF2H2 POLR2I ELLPOLD4 GTF2H4 UBC(153-228) UBC(609-684) UBC(77-152) DDB1 Ub,p-S2,S5-POLR2A UBB(1-76) RPS27A(1-76) RAD23B CETN2 POLR2C RFC4 UBB(77-152) TFIIH CoreGTF2H3 ERCC2 UbiquitinCETN2 RFC5 Ub-291-UBC(229-304) ERCC8 Ub-ERCC6 PPIE UBB(1-76) PPIE SUMO1-C93-UBE2I TC-NER pre-incisioncomplexUVSSA:USP7RFC5 POLR2L XAB2 UBB(153-228) RAD23A UBB(77-152) Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2UBE2IUBB(153-228) USP7 GTF2H5 CETN2 UBC(77-152) UBC(305-380) UBB(77-152) PPIE CCNH ACTB(1-375) DDB1 ERCC3 XAB2 UBB(153-228) ERCC6 UBC(457-532) ERCC1 PAR-PARP1 RPS27A(1-76) ERCC6 UBA52(1-76) PCNA POLR2G CUL4A ERCC3 POLR2L RBX1 INO80C ZNF830 UBC(153-228) UBC(609-684) GTF2H5 Ub-595-UBC(533-608) UBC(381-456) Ub-595-UBC(533-608) POLR2B MNAT1 UBC(1-76) UBA52(1-76) RBX1 MNAT1 POLR2G UBC(77-152) Ub-519-UBC(457-532) POLR2H POLE POLK UBC(533-608) UBC(229-304) Ub,SUMO:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1, PAR-PARP2:CHD1LUb,p-S2,S5-POLR2A ERCC4 Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2GTF2H2 UBB(153-228) UBC(305-380) RFC2 POLR2C Ub-XPC RPA heterotrimerERCC3 CCNH Ub,SUMO-XPC UBC(457-532) UVSSA UBC(609-684) POLR2D UBA52(1-76) CCNH POLR2F UbiquitinCHD1LPCNA RFC4 UBB(153-228) RAD23B POLR2C CUL4B POLD3 POLR2B POLD,POLE POLR2K UBC(305-380) GTF2H4 UBB(77-152) CCNH CUL4B Ub-XPC UBC(609-684) XAB2 complexDDB1 UBC(609-684) Ub-139-UBC(77-152) RAD23A RPA3 POLD1 POLR2H AQR COPS2 ERCC3 UBC(305-380) UBC(229-304) ERCC5 POLR2E PRPF19 RPA1 TC-NERpost-incisioncomplex:SSB-dsDNA:trimmed nascent mRNA: (PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFCUBC(153-228) DDB1 PIAS3 PAR-DDB2 CUL4A DDB1 INO80 CCNH PCNA POLR2E DDB1 POLD2 UBC(381-456) Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1LCUL4A DamageddsDNAwithopentranscriptionbubble:Hyperphosphorylated RNA Pol II:TFIIHUBC(533-608) ERCC8 UBC(229-304) UBA52(1-76) ERCC2 POLR2I PAR-PARP2 SUMO2 UBA52(1-76) COPS6 Open bubble damaged DNA template:trimmed nascent mRNA Ub,p-S2,S5-POLR2A ERCC3 ERCC8 CUL4B Ub-63-UBC(1-76) RFC4 CETN2 INO80B DDB1 Ub,p-S2,S5-POLR2A Ub-671-UBC(609-684) HMGN1 EP300 RFC5 dsDNA with transcription bubble POLR2D HMGN1 RFC5 ZNF830 UBC(457-532) GTF2H1 UBC(229-304) MonoUb-K164-PCNA POLR2D UBC(533-608) POLR2J RPS27A(1-76) RPS27A(1-76) UBB(153-228) GTF2H3 UBC(533-608) MonoUb-K164-PCNA GTF2H4 GTF2H4 POLD3 Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1LERCC2 RBX1 UBC(77-152) ERCC4UBC(229-304) RBX1 GTF2H4 POLR2D GTF2H3 UBB(1-76) MonoUb-K164-PCNA RPA3 UBC(609-684) UBC(381-456) CCNH UBC(457-532) GTF2H5 CETN2 POLR2H p-S2,S5-POLR2A UBC(305-380) TCEA1 RPA1 TCEA1 UBC(457-532) PIAS1 UBB(1-76) UBA52(1-76) GTF2H1 CDK7 ERCC3 DDB1 CUL4A Ub-519-UBC(457-532) UBC(609-684) XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBGTF2H3 UBC(381-456) TCEA1 GTF2H5 UBC(457-532) UBC(305-380) UBA52(1-76) GTF2H2 UBC(153-228) POLR2E UBB(77-152) CUL4A CUL4B ISY1 AQR H2OERCC1 UBC(1-76) POLR2D PAR-DDB2 GTF2H5 GTF2H1 CUL4B RUVBL1 RFC2 POLR2B CDK7 UBB(153-228) UBB(153-228) ERCC3 POLR2F UBC(77-152) UBC(609-684) HMGN1 HMGN1 COPS2 POLE2 ERCC2 GTF2H5 GTF2H1 Open bubble damaged DNA template:trimmed nascent mRNA UBC(457-532) POLR2L PiUBC(305-380) UBC(533-608) RAD23A RBX1 GTF2H3 PAR-DDB2 GTF2H3 ERCC2 Ub,p-S2,S5-POLR2A UBC(1-76) CETN2RPA2 Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH:PAR-PARP1,PAR-PARP2RFC1 GTF2H1 UBB(77-152) SUMO2-C93-UBE2I UVSSA RPA1 COPS7A TCEA1 UBC(229-304) POLR2K GTF2H5 RPA1 UBC(229-304) PARP2 ERCC2 DDB1 CDK7 POLR2G POLR2E RAD23A RPA2 CUL4A UBB(153-228) SUMO3 UBC(609-684) Distorted dsDNA Ub,p-S2,S5-POLR2A UBA52(1-76) CUL4A GTF2H5 GTF2H5 PCNA UBC(457-532) ERCC1:ERCC4UBC(229-304) ERCC4 UBC(153-228) GTF2H3 CDK7 UBC(153-228) UBB(1-76) XPCGTF2H2 ERCC2 UVSSA RPA3 Ub-ERCC1 UBC(153-228) ERCC3 UbiquitinERCC5 EP300 POLE RFC1 UBC(609-684) UBC(153-228) RFC4 POLR2G POLD3 UBC(533-608) CHD1L UBB(77-152) USP45XPA POLR2F POLR2I RAD23A Ub-63-RPS27A(1-76) RBX1 GTF2H3 UBC(229-304) UBC(153-228) XPC COPS4 HMGN1 UBC(533-608) UBC(77-152) Ub-63-RPS27A(1-76) LIG1,LIG3:XRCC1COPS7B SUMO3 RPS27A(1-76) ERCC3 AQR EP300 UBC(153-228) RBX1 UBB(153-228) COPS4 RFC2 UBC(609-684) POLR2L UBC(153-228) ERCC3 p-S2,S5-POLR2A Ub-63-UBC(1-76) UBB(77-152) ERCC1 DDB1 UBC(533-608) POLR2H POLR2K UBB(77-152) UBC(609-684) damaged DNA with 5' incision XRCC1 UBC(229-304) POLR2I MonoUb-K164-PCNA XPA CUL4A POLR2I GTF2H3 UBA52(1-76) POLR2G UBC(457-532) POLR2I MNAT1 UBC(77-152) RFC3 PAR-DDB2 CDK7 CCNH COPS8 UBA52(1-76) UBC(457-532) ERCC3 RPS27A(1-76) RAD23A GTF2H1 POLK HyperphosphorylatedRNA Pol II:DamagedDNAtemplate:nascentmRNA hybrid:TFIIHPOLR2J CHD1L UBC(381-456) ERCC2 CHD1L CUL4A UBC(305-380) COPS6 POLR2L Ub,p-S2,S5-POLR2A PPiPPIE UBC(77-152) UBC(533-608) GTF2H1 UBC(609-684) AQR PRPF19 CDK7 CUL4A UBA52(1-76) dsDNARAD23B UBC(1-76) PPiUBC(457-532) TCEA1 CUL4B CUL4A POLR2L CUL4B POLD,POLE,POLKUb-291-UBC(229-304) POLE2 UBC(1-76) UBA52(1-76) UBC(305-380) GTF2H5 RPA2 ERCC3 CHD1L POLD3 Ub,SUMO,K63polyUb:XPC:RAD23:CETN2POLR2G UBB(77-152) RPA2 MNAT1 RPA2 CETN2 GTF2H3 RBX1 POLR2E CETN2 TFIIHMonoUb-K164-PCNA ERCC6 UBC(77-152) UBC(153-228) COPS7B POLR2L CETN2 RAD23B UBB(77-152) ERCC4 UBA52(1-76) RFC4 UBC(153-228) GTF2H3 POLR2D GTF2H4 ERCC6 UBC(381-456) POLR2B UBC(1-76) ERCC8 RAD23A GG-NER incisioncomplex:Open bubbledsDNAERCC2 UBB(1-76) PAR-PARP1 ERCC3 COPS4 ERCC5 PRPF19 GTF2H3 DDB1 UBC(153-228) ERCC8:DDB1:CUL4:RBX1:COP9 SignalosomeUSP7 CUL4B UBC(381-456) NAMPOLR2B ISY1 GTF2H3 GTF2H4 RBX1 UVSSA GTF2H5 EP300 ERCC2 UBC(153-228) UBB(77-152) Ub:ERCC6UBE2I-G92-SUMO3 XAB2 UBC(229-304) UBC(153-228) USP7 POLR2K UBC(381-456) damaged DNA substrate:nascent mRNA hybrid POLE POLR2D UBB(153-228) UBA52(1-76) Ub-367-UBC(305-380) GTF2H2 POLR2C UBC(229-304) GTF2H2 RPS27A(1-76) (PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC:Incised DNA without lesionUBB(153-228) POLD3 UBB(1-76) POLR2B UBC(381-456) damaged DNA substrate:nascent mRNA hybrid UBC(1-76) Distorted dsDNAXAB2 ERCC1 UBC(1-76) UBE2V2 RBX1 POLR2E UBC(381-456) UBC(533-608) Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBUBC(305-380) UBC(229-304) YY1 ERCC2 UBA52(1-76) POLR2L POLR2I POLR2L POLE POLR2E POLR2C UBC(77-152) POLR2J UBC(381-456) POLD4 SSB-dsDNA:trimmed nascent mRNA UBC(381-456) RBX1 Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1:UVSSA:USP7:XAB2 complex:XPA:TCEA1:HMGN1:EP300XPA UBC(533-608) ERCC5 POLR2B ERCC3 TC-NERincisioncomplex:5'-inciseddamagedDNA:trimmednascentmRNA:(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFCRPA3 PAR-PARP2 GTF2H2 DDB1 UBC(1-76) POLD3 POLR2F UBB(153-228) PRPF19 TCEA1 UBC(229-304) ERCC2 ERCC8 PPIE UBC(77-152) UBC(77-152) ERCC6 UBB(153-228) POLR2J RFC4 CDK7 RPA1 RAD23B GTF2H4 POLR2H POLR2K MNAT1 POLR2D POLR2K UV-DDB:COP9SignalosomeCUL4B HMGN1 DDB1 RBX1 ERCC1 (PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC:SSB-dsDNARPS27A(1-76) damaged DNA with open bubble structure POLR2H POLR2F UBC(609-684) RPS27A(1-76) UBC(229-304) UBB(1-76) dNTPUBC(609-684) POLR2F ERCC2 RPA2 ERCC4 Ub-XPC UBC(1-76) UBB(1-76) GTF2H2 UBC(77-152) RPA1 DDB1 GTF2H1 UBB(1-76) UBC(305-380) RFC5 PAR-PARP1,PAR-PARP2dimersPAR-UV-DDBPOLR2J COP9 signalosomeUBC(1-76) POLR2H POLR2A UBB(1-76) POLR2K UBC(305-380) Ub-139-UBB(77-152) UBB(153-228) MonoUb-K164-PCNA GTF2H4 ERCC3 PAR-DDB2 RPA1 Ub,p-S2,S5-POLR2A USP7 UBC(533-608) UBC(153-228) CUL4B GTF2H5 AQR CHD1L ERCC6 GTF2H3 CCNH GTF2H5 USP7 UBB(1-76) PPIE UBB(77-152) RPS27A(1-76) AQR UBC(153-228) PARP2 RPA2 ISY1 CDK7 UBC(381-456) PAR-PARP1 Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2Distorted dsDNA ERCC6 UBC(1-76) CUL4B ZNF830 RBX1 RPA1 UBB(153-228) CUL4A CUL4B UBC(457-532) POLR2C POLR2D CUL4A DDB1 Damaged dsDNA with open transcription bubble RPS27A(1-76) UBE2N:UBE2V2CUL4B PPIE XAB2 DDB1 PAR-PARP2 GTF2H4 UBC(1-76) TCEA1 GTF2H5 UbiquitinOpenbubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1, PAR-PARP2:CHD1LUBC(77-152) POLR2G POLR2J UBB(77-152) COPS3 5'-incised damaged DNA:trimmed nascent mRNA MonoUb-K164-PCNA RFC2 GTF2H5 UBC(305-380) UBC(153-228) UBB(1-76) Ub-215-UBC(153-228) ERCC3 UBC(381-456) MNAT1 EP300 PAR-DDB2 GTF2H2 POLR2B PRPF19 UBC(457-532) RBX1 ERCC8 ERCC2 CDK7 UBC(609-684) RFC1 UBC(533-608) ERCC1 XAB2 Ub-139-UBC(77-152) ERCC3 UBC(1-76) GTF2H1 GTF2H1 UBC(305-380) ERCC4 UBA52(1-76) NAD+ERCC2 RAD23B RFC2 RFC1 RNF111POLR2C ERCC8 UBC(381-456) EP300 RFC5 RAD23B RNAPolymeraseIIholoenzymecomplex(hyperphosphorylated)UBC(1-76) CUL4B UBB(77-152) PAR-PARP2 UBB(1-76) 5'-incised damaged DNA:trimmed nascent mRNA UBB(1-76) COPS3 POLR2K ERCC3 UBC(153-228) UBB(77-152) RFC1 POLR2D POLR2K CUL4A UBB(153-228) CUL4A CUL4B POLR2C POLR2F DDB1 damaged DNA substrate:nascent mRNA hybrid POLR2C UBB(1-76) RPS27A(1-76) ERCC6 GTF2H3 POLR2C ERCC2 GTF2H1 XPA TCEA1 POLR2C UBC(533-608) GTF2H4 POLR2E GTF2H2 PAR-PARP1 UBC(609-684) POLE2 GTF2H4 UBC(457-532) GTF2H5 GTF2H2 UBC(1-76) PRPF19 SUMO1 POLR2E H2ORPA1 RFC3 POLR2G UBB(153-228) ERCC3 HyperphosphorylatedRNA Pol II:DamagedDNAtemplate:nascentmRNAhybrid:TFIIH:ERCC6ERCC6 COPS5 UBA52(1-76) POLR2L NFRKB UBC(305-380) ERCC3 COPS8 ERCC2 damaged DNA substrate:nascent mRNA hybrid UBA52(1-76) DDB1 DDB1 UBC(1-76) UBC(381-456) POLE2 UBC(381-456) CUL4B RFC5 POLR2B RPS27A(1-76) UBC(305-380) POLR2H RPA3 UBC(153-228) ISY1 POLR2G PAR-DDB2 RFC3 UBC(229-304) UVSSA POLR2B RPA3 UBC(305-380) ERCC2 RBX1 UBC(153-228) GTF2H3 POLR2D RPS27A(1-76) GTF2H1 AQR POLR2E CETN2 POLR2F MonoUb-K164-PCNA ERCC5 PAR-PARP1 UBC(305-380) POLR2J XPA INO80E PAR-PARP1 UBC(533-608) LIG1 POLR2E POLR2K XAB2 UBC(77-152) POLR2F MNAT1 UBC(305-380) XAB2 UBC(1-76) ERCC5 damaged DNA substrate:nascent mRNA hybrid UBB(153-228) MNAT1 POLE2 UBC(229-304) UBA52(1-76) PAR-PARP2 POLR2J UBB(1-76) UBC(457-532) GTF2H1 UBB(77-152) Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1ERCC3 Distorted dsDNA ISY1 UBA52(1-76) RFC1 UBC(1-76) UBB(1-76) UBC(457-532) MNAT1 GTF2H1 CCNH RFC4 PAR-PARP2 damaged DNA with 5' incision POLD2 damaged DNA with open bubble structure UBC(381-456) GTF2H1 CCNH RPS27A(1-76) Ub-63-UBB(1-76) ERCC2 CUL4A AQR HMGN1 POLR2L ZNF830 RAD23B DDB1 UBB(77-152) PAR-PARP2 UBC(1-76) DDB1 POLR2K AQR RAD23B RPS27A(1-76) UBB(1-76) CDK7 POLR2I RFC2 ERCC6 PRPF19 POLE UBC(381-456) POLK UBB(1-76) AQR POLR2H UBB(153-228) LIG3 ERCC1 POLR2J RPA3 POLR2I UBC(77-152) POLR2G POLR2E USP7 SSB-dsDNA DDB1 UBC(229-304) UBA52(1-76) TFPT POLD2 damaged DNA with open bubble structure POLR2J UBC(229-304) PAR-PARP2 damaged DNA with open bubble structure INO80 complexUBC(381-456) UBA52(1-76) GTF2H5 Ub,p-S2,S5-POLR2A POLR2D SUMO3-C93-UBE2I DDB1 RBX1 ERCC2 ERCC8 UBC(381-456) UBC(457-532) POLR2E UBB(77-152) POLR2G HMGN1 ERCC8 PPIE GTF2H5 POLR2G UVSSA CUL4B UBC(457-532) UBC(533-608) UBC(533-608) SUMO1,2,3:UBE2IPOLR2G PIAS1,3ZNF830 RPS27A(1-76) GTF2H2 RFC4 ERCC3 UBB(1-76) UBC(153-228) POLR2C RPA3 GTF2H1 XPA UBB(153-228) RPS27A(1-76) POLR2K UBA52(1-76) MNAT1 POLR2C GTF2H1 COPS7A AQR COPS7B CUL4B TCEA1 UBC(229-304) UBB(1-76) PAR-DDB2 ribonucleosidetriphosphateGTF2H2 PAR-PARP1 GPS1 UBC(229-304) POLR2L UBC(533-608) USP7 UBC(229-304) UBC(609-684) ISY1 POLR2B POLR2J POLR2B RAD23RFC1 PARP1 Ub:ERCC1RFC3 POLD1 POLR2D GTF2H4 POLR2I UBC(457-532) ERCC3 COPS6 POLD4 ZNF830 UBC(457-532) DDB1 CHD1L UBB(1-76) UBC(77-152) Ub-63-UBA52(1-76) GTF2H1 CUL4B MNAT1 RBX1 RPA3 UBC(1-76) POLR2H PPIE TC-NER incisioncomplexERCC8 GTF2H3 POLD4 RPS27A(1-76) UBC(77-152) CCNH TC-NER post-incisioncomplex:dsDNA withtranscriptionbubbleUBC(153-228) GTF2H1 POLD4 XPA GTF2H5 Distorted dsDNA RBX1 PAR-PARP1 PCNAhomotrimer,MonoUb:K164-PCNA homotrimerERCC2 PARP1,PARP2 dimersGTF2H2 DDB1 UBC(305-380) USP7 mRNAGTF2H3 COPS5 CDK7 CDK7 Ub-XPC UBC(609-684) UBB(77-152) Ub-XPC HyperphosphorylatedRNAPolII:DamagedDNAtemplate:nascentmRNAhybrid:TFIIH:ERCC6:ERCC8:DDB1:CUL4:RBX1CCNH POLR2D RPS27A(1-76) UBC(153-228) UBC(609-684) CUL4A Ub-ERCC6 PiXPA ADPPAR-PARP1 UBC(153-228) POLD4 UBB(153-228) EP300Ub-215-UBB(153-228) GPS1 RPA3 GTF2H4 PPIE RPS27A(1-76) ERCC8 PAR-DDB2 UBC(305-380) POLK Ub-215-UBC(153-228) RPA2 RPA2 UBC(609-684) CAKCCNH UBC(533-608) UBC(533-608) UBC(1-76) UBB(77-152) CDK7 RPA2 POLR2B UBC(1-76) MNAT1 UBC(381-456) UBC(457-532) UBC(1-76) GTF2H2 POLR2J RFC HeteropentamerUBC(533-608) RPA3 PRPF19 POLR2I POLR2L RAD23A PPiUBC(381-456) CUL4B UBC(77-152) ERCC4 CHD1L UBC(533-608) UBC(77-152) GTF2H3 POLR2I TCEA1PCNA RPS27A(1-76) RBX1 UBC(609-684) POLD2 UBC(457-532) GTF2H3 GTF2H1 CUL4A POLR2L UBB(1-76) Ub-215-UBB(153-228) COPS7A ERCC2 RFC2 XPA GTF2H3 XPA UBC(229-304) DDB1 CUL4A POLR2L UBC(1-76) COPS8 ERCC6ERCC5UBC(457-532) UBC(153-228) SUMO1 GTF2H4 RNA Polymerase IIholoenzyme complex(unphosphorylated)UBB(153-228) RPS27A(1-76) HMGN1Ub-139-UBB(77-152) EP300 UBC(381-456) UBC(381-456) CUL4A POLR2J GTF2H2 UBC(229-304) CDK7 ERCC8 CUL4A USP7 POLR2E RBX1 UBC(381-456) GTF2H4 RBX1 RPA2 Distorted dsDNA (PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFCUBC(457-532) RFC1 GTF2H2 RFC3 GTF2H1 ACTR8 GTF2H1 UBC(533-608) GTF2H4 PAR-PARP1 RPA2 POLR2G CCNH RBX1 UBA52(1-76) EP300 UBC(229-304) POLK CUL4B CCNH POLR2H UBC(229-304) RAD23B POLD2 GTF2H4 UBC(533-608) RPA3 ERCC8:DDB1:CUL4:RBX1POLD1 POLD1 RFC5 MNAT1 POLR2K UBC(77-152) ERCC3 UBC(457-532) POLR2F UBC(609-684) ERCC5 GTF2H5 UBE2I-G93-SUMO2 RPA3 ISY1 incised DNA without lesion PARP1 p-S2,S5-POLR2A POLR2J ZNF830 PAR-DDB2 UVSSA CUL4A COPS5 GTF2H1 RPS27A(1-76) UBC(305-380) ATPRPA1 CETN2 XPA GTF2H2 UBB(1-76) CUL4B CUL4A ADPPAR-DDB2 UBC(1-76) XPC:RAD23:CETN2MNAT1 GTF2H3 COPS2 incised DNA without lesion:trimmed nascent mRNA CCNH UBB(1-76) XPA RFC3 UBC(1-76) CUL4B POLR2K POLR2E DDB1 Open bubble damaged DNA template:trimmed nascent mRNA UBC(305-380) POLR2J XPAUBB(153-228) CUL4B PRPF19 ERCC4 ERCC5 PPIE ERCC2 ERCC8 USP7 XAB2 UBC(1-76) GTF2H4 POLR2C CCNH UBE2I-G97-SUMO1 GTF2H3 UBC(153-228) GTF2H2 GTF2H1 ERCC1MNAT1 MNAT1 ISY1 UBC(153-228) PCNA POLR2G UBC(609-684) GTF2H3 ERCC2 RBX1 POLR2E CDK7 UBC(381-456) GTF2H4 UBC(609-684) POLR2C POLR2H GG-NER pre-incisioncomplex:Openbubble-dsDNARPA2 UBC(305-380) POLD4 POLR2F Ub-XPC ZNF830 PAR-PARP2 POLR2D GTF2H5 UBA52(1-76) RAD23A UBC(533-608) CUL4A UBC(305-380) POLE TC-NER incisioncomplex:5'-inciseddamaged DNA:trimmednascent mRNAUBC(229-304) POLR2C ATPRPS27A(1-76) UBC(533-608) HMGN1 K63polyUb-C87-UBE2N Distorted dsDNA K63polyUb:C87-UBE2N:UBE2V2GTF2H5 POLK UBC(381-456) UBB(153-228) GTF2H2 RAD23A MNAT1 PCNA GTF2H2 TC-NERpost-incisioncomplex:incisedDNAwithoutlesion:trimmednascentmRNA:PCNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFCUBC(609-684) CDK7 CUL4B POLD2 RPA1 UBB(77-152) GTF2H1 GTF2H2 POLR2F UBC(77-152) UBC(1-76) UBC(381-456) UBB(153-228) RFC2 ZNF830 ZNF830 POLE2 XAB2 UVSSA POLR2H GTF2H2 UBC(457-532) Ub,p-S2,S5-POLR2A GTF2H4 CUL4A GTF2H2 CUL4A TC-NERpre-incisioncomplex:OpenbubbledamagedDNAtemplate:RPA:ERCC5:trimmed nascent mRNAUBB(77-152) UBC(609-684) UBC(609-684) UBC(153-228) EP300 GTF2H4 UBB(77-152) XPA POLR2K POLR2H CCNH POLD1 UBC(533-608) RBX1 CUL4A POLR2C POLR2F CDK7 Ub-443-UBC(381-456) Ub,SUMO,K63polyUb-XPC RPS27A(1-76) POLK Ub-671-UBC(609-684) UBC(77-152) POLE2 POLR2B TC-NER pre-incisioncomplex:Open bubbledamaged DNAtemplate:trimmednascent mRNAUBC(77-152) RPA3 ERCC8 CHD1L UBB(77-152) UBC(77-152) POLR2I MNAT1 ACTR5 GTF2H2 UBB(77-152) UBB(153-228) UBC(77-152) Ub-443-UBC(381-456) GTF2H4 POLR2F POLR2J DDB2 Ub-XPC UBB(1-76) ERCC2 excised DNA fragmentwith lesionUBA52(1-76) RPS27A(1-76) UBC(533-608) UBA52(1-76) POLD1 ISY1 UBB(77-152) UBC(77-152) RAD23A UBB(1-76) SUMO2 CETN2 GPS1 POLR2I RFC3 UBC(1-76) GTF2H1 POLR2D GTF2H5 UBA52(1-76) ZNF830 Ub-367-UBC(305-380) RPS27A(1-76) PAR-PARP1 ISY1 POLR2G UBA52(1-76) POLR2L UBC(305-380) UVSSA XAB2 CDK7 POLR2D UBC(77-152) GTF2H3 XPA XPA UBB(1-76) 1919191961919651972, 8661919100721919198, 12, 21, 558, 12, 21191919191961972191919191919619191972, 8672, 8697419191919191919461319191919321919197219191919191919191919191919191919191919


Description

Nucleotide excision repair (NER) was first described in the model organism E. coli in the early 1960s as a process whereby bulky base damage is enzymatically removed from DNA, facilitating the recovery of DNA synthesis and cell survival. Deficient NER processes have been identified from the cells of cancer-prone patients with different variants of xeroderma pigmentosum (XP), trichothiodystrophy (TTD), and Cockayne's syndrome. The XP cells exhibit an ultraviolet radiation hypersensitivity that leads to a hypermutability response to UV, offering a direct connection between deficient NER, increased mutation rate, and cancer. While the NER pathway in prokaryotes is unique, the pathway utilized in yeast and higher eukaryotes is highly conserved.
NER is involved in the repair of bulky adducts in DNA, such as UV-induced photo lesions (both 6-4 photoproducts (6-4 PPDs) and cyclobutane pyrimidine dimers (CPDs)), as well as chemical adducts formed from exposure to aflatoxin, benzopyrene and other genotoxic agents. Specific proteins have been identified that participate in base damage recognition, cleavage of the damaged strand on both sides of the lesion, and excision of the oligonucleotide bearing the lesion. Reparative DNA synthesis and ligation restore the strand to its original state.
NER consists of two related pathways called global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER). The pathways differ in the way in which DNA damage is initially recognized, but the majority of the participating molecules are shared between these two branches of NER. GG-NER is transcription-independent, removing lesions from non-coding DNA strands, as well as coding DNA strands that are not being actively transcribed. TC-NER repairs damage in transcribed strands of active genes.
Several of the proteins involved in NER are key components of the basal transcription complex TFIIH. An ubiquitin ligase complex composed of DDB1, CUL4A or CUL4B and RBX1 participates in both GG-NER and TC-NER, implying an important role of ubiquitination in NER regulation. The establishment of mutant mouse models for NER genes and other DNA repair-related genes has been useful in demonstrating the associations between NER defects and cancer.
For past and recent reviews of nucleotide excision repair, please refer to Lindahl and Wood 1998, Friedberg et al. 2002, Christmann et al. 2003, Hanawalt and Spivak 2008, Marteijn et al. 2014). View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Wang QE, Zhu Q, Wani G, Chen J, Wani AA.; ''UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2.''; PubMed Europe PMC Scholia
  2. Robu M, Shah RG, Petitclerc N, Brind'Amour J, Kandan-Kulangara F, Shah GM.; ''Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair.''; PubMed Europe PMC Scholia
  3. Fousteri M, Vermeulen W, van Zeeland AA, Mullenders LH.; ''Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo.''; PubMed Europe PMC Scholia
  4. Lee KB, Wang D, Lippard SJ, Sharp PA.; ''Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro.''; PubMed Europe PMC Scholia
  5. Shiyanov P, Nag A, Raychaudhuri P.; ''Cullin 4A associates with the UV-damaged DNA-binding protein DDB.''; PubMed Europe PMC Scholia
  6. Masutani C, Sugasawa K, Yanagisawa J, Sonoyama T, Ui M, Enomoto T, Takio K, Tanaka K, van der Spek PJ, Bootsma D.; ''Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23.''; PubMed Europe PMC Scholia
  7. Winkler GS, Sugasawa K, Eker AP, de Laat WL, Hoeijmakers JH.; ''Novel functional interactions between nucleotide excision DNA repair proteins influencing the enzymatic activities of TFIIH, XPG, and ERCC1-XPF.''; PubMed Europe PMC Scholia
  8. Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y.; ''Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage.''; PubMed Europe PMC Scholia
  9. Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, Coin F, Egly JM, Tanaka K.; ''XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients.''; PubMed Europe PMC Scholia
  10. Birger Y, West KL, Postnikov YV, Lim JH, Furusawa T, Wagner JP, Laufer CS, Kraemer KH, Bustin M.; ''Chromosomal protein HMGN1 enhances the rate of DNA repair in chromatin.''; PubMed Europe PMC Scholia
  11. Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM.; ''Nucleotide excision repair driven by the dissociation of CAK from TFIIH.''; PubMed Europe PMC Scholia
  12. Brueckner F, Hennecke U, Carell T, Cramer P.; ''CPD damage recognition by transcribing RNA polymerase II.''; PubMed Europe PMC Scholia
  13. Ziani S, Nagy Z, Alekseev S, Soutoglou E, Egly JM, Coin F.; ''Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin.''; PubMed Europe PMC Scholia
  14. Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly JM.; ''Molecular structure of human TFIIH.''; PubMed Europe PMC Scholia
  15. Bregman DB, Halaban R, van Gool AJ, Henning KA, Friedberg EC, Warren SL.; ''UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells.''; PubMed Europe PMC Scholia
  16. Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier Y.; ''Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells.''; PubMed Europe PMC Scholia
  17. Friedberg EC.; ''How nucleotide excision repair protects against cancer.''; PubMed Europe PMC Scholia
  18. Orelli B, McClendon TB, Tsodikov OV, Ellenberger T, Niedernhofer LJ, Schärer OD.; ''The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways.''; PubMed Europe PMC Scholia
  19. Selby CP, Sancar A.; ''Cockayne syndrome group B protein enhances elongation by RNA polymerase II.''; PubMed Europe PMC Scholia
  20. Kuper J, Wolski SC, Michels G, Kisker C.; ''Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation.''; PubMed Europe PMC Scholia
  21. Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F.; ''The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA.''; PubMed Europe PMC Scholia
  22. Fujiwara Y, Masutani C, Mizukoshi T, Kondo J, Hanaoka F, Iwai S.; ''Characterization of DNA recognition by the human UV-damaged DNA-binding protein.''; PubMed Europe PMC Scholia
  23. Ng JM, Vermeulen W, van der Horst GT, Bergink S, Sugasawa K, Vrieling H, Hoeijmakers JH.; ''A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein.''; PubMed Europe PMC Scholia
  24. Camenisch U, Dip R, Schumacher SB, Schuler B, Naegeli H.; ''Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair.''; PubMed Europe PMC Scholia
  25. Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L.; ''PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1.''; PubMed Europe PMC Scholia
  26. Anindya R, Mari PO, Kristensen U, Kool H, Giglia-Mari G, Giglia-Mari G, Mullenders LH, Fousteri M, Vermeulen W, Egly JM, Svejstrup JQ.; ''A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair.''; PubMed Europe PMC Scholia
  27. Overmeer RM, Moser J, Volker M, Kool H, Tomkinson AE, van Zeeland AA, Mullenders LH, Fousteri M.; ''Replication protein A safeguards genome integrity by controlling NER incision events.''; PubMed Europe PMC Scholia
  28. Dunand-Sauthier I, Hohl M, Thorel F, Jaquier-Gubler P, Clarkson SG, Schärer OD.; ''The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity.''; PubMed Europe PMC Scholia
  29. King BS, Cooper KL, Liu KJ, Hudson LG.; ''Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair.''; PubMed Europe PMC Scholia
  30. Park CH, Bessho T, Matsunaga T, Sancar A.; ''Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease.''; PubMed Europe PMC Scholia
  31. Nakatsu Y, Asahina H, Citterio E, Rademakers S, Vermeulen W, Kamiuchi S, Yeo JP, Khaw MC, Saijo M, Kodo N, Matsuda T, Hoeijmakers JH, Tanaka K.; ''XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription.''; PubMed Europe PMC Scholia
  32. Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A, Grosbart M, Theil AF, van Cappellen WA, Kimura H, Bartek J, Fousteri M, Houtsmuller AB, Vermeulen W, Marteijn JA.; ''Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage.''; PubMed Europe PMC Scholia
  33. Conaway RC, Conaway JW.; ''The INO80 chromatin remodeling complex in transcription, replication and repair.''; PubMed Europe PMC Scholia
  34. Mackinnon-Roy C, Stubbert LJ, McKay BC.; ''RNA interference against transcription elongation factor SII does not support its role in transcription-coupled nucleotide excision repair.''; PubMed Europe PMC Scholia
  35. Riedl T, Hanaoka F, Egly JM.; ''The comings and goings of nucleotide excision repair factors on damaged DNA.''; PubMed Europe PMC Scholia
  36. Ikegami T, Kuraoka I, Saijo M, Kodo N, Kyogoku Y, Morikawa K, Tanaka K, Shirakawa M.; ''Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA.''; PubMed Europe PMC Scholia
  37. Christmann M, Tomicic MT, Roos WP, Kaina B.; ''Mechanisms of human DNA repair: an update.''; PubMed Europe PMC Scholia
  38. Min JH, Pavletich NP.; ''Recognition of DNA damage by the Rad4 nucleotide excision repair protein.''; PubMed Europe PMC Scholia
  39. Schwertman P, Lagarou A, Dekkers DH, Raams A, van der Hoek AC, Laffeber C, Hoeijmakers JH, Demmers JA, Fousteri M, Vermeulen W, Marteijn JA.; ''UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair.''; PubMed Europe PMC Scholia
  40. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH.; ''Understanding nucleotide excision repair and its roles in cancer and ageing.''; PubMed Europe PMC Scholia
  41. Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F.; ''Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair.''; PubMed Europe PMC Scholia
  42. Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA.; ''Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability.''; PubMed Europe PMC Scholia
  43. Mourgues S, Gautier V, Lagarou A, Bordier C, Mourcet A, Slingerland J, Kaddoum L, Coin F, Vermeulen W, Gonzales de Peredo A, Monsarrat B, Mari PO, Giglia-Mari G.; ''ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair.''; PubMed Europe PMC Scholia
  44. Wang QE, Zhu Q, Wani G, El-Mahdy MA, Li J, Wani AA.; ''DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation.''; PubMed Europe PMC Scholia
  45. Balajee AS, May A, Dianova I, Bohr VA.; ''Efficient PCNA complex formation is dependent upon both transcription coupled repair and genome overall repair.''; PubMed Europe PMC Scholia
  46. Scrima A, Konícková R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thomä NH.; ''Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex.''; PubMed Europe PMC Scholia
  47. Hanawalt PC, Spivak G.; ''Transcription-coupled DNA repair: two decades of progress and surprises.''; PubMed Europe PMC Scholia
  48. Jiang Y, Wang X, Bao S, Guo R, Johnson DG, Shen X, Li L.; ''INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway.''; PubMed Europe PMC Scholia
  49. Wakasugi M, Shimizu M, Morioka H, Linn S, Nikaido O, Matsunaga T.; ''Damaged DNA-binding protein DDB stimulates the excision of cyclobutane pyrimidine dimers in vitro in concert with XPA and replication protein A.''; PubMed Europe PMC Scholia
  50. Fei J, Chen J.; ''KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR).''; PubMed Europe PMC Scholia
  51. Sugasawa K, Akagi J, Nishi R, Iwai S, Hanaoka F.; ''Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning.''; PubMed Europe PMC Scholia
  52. Tsodikov OV, Ivanov D, Orelli B, Staresincic L, Shoshani I, Oberman R, Schärer OD, Wagner G, Ellenberger T.; ''Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA.''; PubMed Europe PMC Scholia
  53. Sarker AH, Tsutakawa SE, Kostek S, Ng C, Shin DS, Peris M, Campeau E, Tainer JA, Nogales E, Cooper PK.; ''Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome.''; PubMed Europe PMC Scholia
  54. Rossignol M, Kolb-Cheynel I, Egly JM.; ''Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH.''; PubMed Europe PMC Scholia
  55. Mathieu N, Kaczmarek N, Naegeli H.; ''Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase.''; PubMed Europe PMC Scholia
  56. Zhang X, Horibata K, Saijo M, Ishigami C, Ukai A, Kanno S, Tahara H, Neilan EG, Honma M, Nohmi T, Yasui A, Tanaka K.; ''Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair.''; PubMed Europe PMC Scholia
  57. Poulsen SL, Hansen RK, Wagner SA, van Cuijk L, van Belle GJ, Streicher W, Wikström M, Choudhary C, Houtsmuller AB, Marteijn JA, Bekker-Jensen S, Mailand N.; ''RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response.''; PubMed Europe PMC Scholia
  58. Fang L, Wang X, Yamoah K, Chen PL, Pan ZQ, Huang L.; ''Characterization of the human COP9 signalosome complex using affinity purification and mass spectrometry.''; PubMed Europe PMC Scholia
  59. Jawhari A, Lainé JP, Dubaele S, Lamour V, Poterszman A, Coin F, Moras D, Egly JM.; ''p52 Mediates XPB function within the transcription/repair factor TFIIH.''; PubMed Europe PMC Scholia
  60. Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B, Proshkin S, Mironov A, Nudler E.; ''UvrD facilitates DNA repair by pulling RNA polymerase backwards.''; PubMed Europe PMC Scholia
  61. Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LH, Fousteri MI.; ''Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner.''; PubMed Europe PMC Scholia
  62. Akita M, Tak YS, Shimura T, Matsumoto S, Okuda-Shimizu Y, Shimizu Y, Nishi R, Saitoh H, Iwai S, Mori T, Ikura T, Sakai W, Hanaoka F, Sugasawa K.; ''SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair.''; PubMed Europe PMC Scholia
  63. Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly JM, Coin F.; ''Molecular insights into the recruitment of TFIIH to sites of DNA damage.''; PubMed Europe PMC Scholia
  64. Ahel D, Horejsí Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I, Flynn H, Skehel M, West SC, Jackson SP, Owen-Hughes T, Boulton SJ.; ''Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1.''; PubMed Europe PMC Scholia
  65. Coin F, Marinoni JC, Rodolfo C, Fribourg S, Pedrini AM, Egly JM.; ''Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH.''; PubMed Europe PMC Scholia
  66. Reardon JT, Ge H, Gibbs E, Sancar A, Hurwitz J, Pan ZQ.; ''Isolation and characterization of two human transcription factor IIH (TFIIH)-related complexes: ERCC2/CAK and TFIIH.''; PubMed Europe PMC Scholia
  67. Groisman R, Groisman R, Kuraoka I, Chevallier O, Gaye N, Magnaldo T, Tanaka K, Kisselev AF, Harel-Bellan A, Nakatani Y.; ''CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome.''; PubMed Europe PMC Scholia
  68. Vermeulen W, Fousteri M.; ''Mammalian transcription-coupled excision repair.''; PubMed Europe PMC Scholia
  69. Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LH, Yamashita S, Fousteri MI, Lehmann AR.; ''Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells.''; PubMed Europe PMC Scholia
  70. Donahue BA, Yin S, Taylor JS, Reines D, Hanawalt PC.; ''Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template.''; PubMed Europe PMC Scholia
  71. Groisman R, Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y.; ''The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage.''; PubMed Europe PMC Scholia
  72. Moser J, Volker M, Kool H, Alekseev S, Vrieling H, Yasui A, van Zeeland AA, Mullenders LH.; ''The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions.''; PubMed Europe PMC Scholia
  73. Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB.; ''Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH.''; PubMed Europe PMC Scholia
  74. Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F.; ''Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein.''; PubMed Europe PMC Scholia
  75. Perez-Oliva AB, Lachaud C, Szyniarowski P, Muñoz I, Macartney T, Hickson I, Rouse J, Alessi DR.; ''USP45 deubiquitylase controls ERCC1-XPF endonuclease-mediated DNA damage responses.''; PubMed Europe PMC Scholia
  76. Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET.; ''Characterization of a second member of the sentrin family of ubiquitin-like proteins.''; PubMed Europe PMC Scholia
  77. Nakazawa Y, Sasaki K, Mitsutake N, Matsuse M, Shimada M, Nardo T, Takahashi Y, Ohyama K, Ito K, Mishima H, Nomura M, Kinoshita A, Ono S, Takenaka K, Masuyama R, Kudo T, Slor H, Utani A, Tateishi S, Yamashita S, Stefanini M, Lehmann AR, Yoshiura K, Ogi T.; ''Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair.''; PubMed Europe PMC Scholia
  78. Wittschieben BØ, Iwai S, Wood RD.; ''DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA.''; PubMed Europe PMC Scholia
  79. Wakasugi M, Kasashima H, Fukase Y, Imura M, Imai R, Yamada S, Cleaver JE, Matsunaga T.; ''Physical and functional interaction between DDB and XPA in nucleotide excision repair.''; PubMed Europe PMC Scholia
  80. He Z, Henricksen LA, Wold MS, Ingles CJ.; ''RPA involvement in the damage-recognition and incision steps of nucleotide excision repair.''; PubMed Europe PMC Scholia
  81. Volker M, Moné MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JH, van Driel R, van Zeeland AA, Mullenders LH.; ''Sequential assembly of the nucleotide excision repair factors in vivo.''; PubMed Europe PMC Scholia
  82. Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapić-Otrin V, Levine AS.; ''The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites.''; PubMed Europe PMC Scholia
  83. Hofmann RM, Pickart CM.; ''Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair.''; PubMed Europe PMC Scholia
  84. Sarkar S, Kiely R, McHugh PJ.; ''The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair.''; PubMed Europe PMC Scholia
  85. Mocquet V, Lainé JP, Riedl T, Yajin Z, Lee MY, Egly JM.; ''Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step.''; PubMed Europe PMC Scholia
  86. Mathieu N, Kaczmarek N, Rüthemann P, Luch A, Naegeli H.; ''DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH.''; PubMed Europe PMC Scholia
  87. Giglia-Mari G, Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, Jaspers NG, Raams A, Argentini M, van der Spek PJ, Botta E, Stefanini M, Egly JM, Aebersold R, Hoeijmakers JH, Vermeulen W.; ''A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A.''; PubMed Europe PMC Scholia
  88. Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, Iwai S, Gut H, Sugasawa K, Thomä NH.; ''The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation.''; PubMed Europe PMC Scholia
  89. Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N, Dunand-Sauthier I, Giglia-Mari G, Giglia-Mari G, Clarkson SG, Vermeulen W, Schärer OD.; ''Coordination of dual incision and repair synthesis in human nucleotide excision repair.''; PubMed Europe PMC Scholia
  90. Camenisch U, Träutlein D, Clement FC, Fei J, Leitenstorfer A, Ferrando-May E, Naegeli H.; ''Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein.''; PubMed Europe PMC Scholia
  91. de Laat WL, Appeldoorn E, Sugasawa K, Weterings E, Jaspers NG, Hoeijmakers JH.; ''DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair.''; PubMed Europe PMC Scholia
  92. Takedachi A, Saijo M, Tanaka K.; ''DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA.''; PubMed Europe PMC Scholia
  93. Fitch ME, Nakajima S, Yasui A, Ford JM.; ''In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product.''; PubMed Europe PMC Scholia
  94. Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F.; ''UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex.''; PubMed Europe PMC Scholia
  95. Coin F, Oksenych V, Egly JM.; ''Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair.''; PubMed Europe PMC Scholia
  96. Oh KS, Imoto K, Emmert S, Tamura D, DiGiovanna JJ, Kraemer KH.; ''Nucleotide excision repair proteins rapidly accumulate but fail to persist in human XP-E (DDB2 mutant) cells.''; PubMed Europe PMC Scholia
  97. Kuraoka I, Ito S, Wada T, Hayashida M, Lee L, Saijo M, Nakatsu Y, Matsumoto M, Matsunaga T, Handa H, Qin J, Nakatani Y, Tanaka K.; ''Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair.''; PubMed Europe PMC Scholia
  98. van Cuijk L, van Belle GJ, van Belle GJ, Turkyilmaz Y, Poulsen SL, Janssens RC, Theil AF, Sabatella M, Lans H, Mailand N, Houtsmuller AB, Vermeulen W, Marteijn JA.; ''SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair.''; PubMed Europe PMC Scholia
  99. Su HL, Li SS.; ''Molecular features of human ubiquitin-like SUMO genes and their encoded proteins.''; PubMed Europe PMC Scholia
  100. Morris DP, Michelotti GA, Schwinn DA.; ''Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans.''; PubMed Europe PMC Scholia
  101. Lindahl T, Wood RD.; ''Quality control by DNA repair.''; PubMed Europe PMC Scholia
  102. Araújo SJ, Wood RD.; ''Protein complexes in nucleotide excision repair.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
115027view16:56, 25 January 2021ReactomeTeamReactome version 75
113472view11:54, 2 November 2020ReactomeTeamReactome version 74
112671view16:06, 9 October 2020ReactomeTeamReactome version 73
101588view11:45, 1 November 2018ReactomeTeamreactome version 66
101124view21:29, 31 October 2018ReactomeTeamreactome version 65
100652view20:03, 31 October 2018ReactomeTeamreactome version 64
100202view16:48, 31 October 2018ReactomeTeamreactome version 63
99753view15:14, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93777view13:35, 16 August 2017ReactomeTeamreactome version 61
93305view11:19, 9 August 2017ReactomeTeamreactome version 61
88077view09:04, 26 July 2016RyanmillerOntology Term : 'DNA repair pathway' added !
88076view09:02, 26 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86389view09:16, 11 July 2016ReactomeTeamreactome version 56
83072view09:53, 18 November 2015ReactomeTeamVersion54
81391view12:55, 21 August 2015ReactomeTeamVersion53
76859view08:13, 17 July 2014ReactomeTeamFixed remaining interactions
76564view11:54, 16 July 2014ReactomeTeamFixed remaining interactions
75897view09:55, 11 June 2014ReactomeTeamRe-fixing comment source
75597view10:44, 10 June 2014ReactomeTeamReactome 48 Update
74952view13:47, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74596view08:38, 30 April 2014ReactomeTeamReactome46
42219view00:30, 8 March 2011MaintBotModified categories
42218view00:23, 8 March 2011MaintBot
42217view00:22, 8 March 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:Incised DNA without lesionComplexR-HSA-5690478 (Reactome)
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:SSB-dsDNAComplexR-HSA-5690470 (Reactome)
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFCComplexR-HSA-6790530 (Reactome)
5'-incised damaged DNA:trimmed nascent mRNA R-NUL-6782202 (Reactome)
ACTB(1-375) ProteinP60709 (Uniprot-TrEMBL)
ACTL6A ProteinO96019 (Uniprot-TrEMBL)
ACTR5 ProteinQ9H9F9 (Uniprot-TrEMBL)
ACTR8 ProteinQ9H981 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
AQR ProteinO60306 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
CAKComplexR-HSA-69221 (Reactome)
CCNH ProteinP51946 (Uniprot-TrEMBL)
CDK7 ProteinP50613 (Uniprot-TrEMBL)
CETN2 ProteinP41208 (Uniprot-TrEMBL)
CETN2ProteinP41208 (Uniprot-TrEMBL)
CHD1L ProteinQ86WJ1 (Uniprot-TrEMBL)
CHD1LProteinQ86WJ1 (Uniprot-TrEMBL)
COP9 signalosomeComplexR-HSA-5697024 (Reactome)
COPS2 ProteinP61201 (Uniprot-TrEMBL)
COPS3 ProteinQ9UNS2 (Uniprot-TrEMBL)
COPS4 ProteinQ9BT78 (Uniprot-TrEMBL)
COPS5 ProteinQ92905 (Uniprot-TrEMBL)
COPS6 ProteinQ7L5N1 (Uniprot-TrEMBL)
COPS7A ProteinQ9UBW8 (Uniprot-TrEMBL)
COPS7B ProteinQ9H9Q2 (Uniprot-TrEMBL)
COPS8 ProteinQ99627 (Uniprot-TrEMBL)
CUL4A ProteinQ13619 (Uniprot-TrEMBL)
CUL4B ProteinQ13620 (Uniprot-TrEMBL)
DDB1 ProteinQ16531 (Uniprot-TrEMBL)
DDB2 ProteinQ92466 (Uniprot-TrEMBL)
Damaged

dsDNA with open transcription

bubble:Hyperphosphorylated RNA Pol II:TFIIH
ComplexR-HSA-6781821 (Reactome)
Damaged dsDNA with open transcription bubble R-NUL-6781820 (Reactome)
Distorted dsDNA R-NUL-5688114 (Reactome)
Distorted dsDNAR-NUL-5688114 (Reactome)
ELLProteinP55199 (Uniprot-TrEMBL)
EP300 ProteinQ09472 (Uniprot-TrEMBL)
EP300ProteinQ09472 (Uniprot-TrEMBL)
ERCC1 ProteinP07992 (Uniprot-TrEMBL)
ERCC1:ERCC4ComplexR-HSA-109943 (Reactome)
ERCC1ProteinP07992 (Uniprot-TrEMBL)
ERCC2 ProteinP18074 (Uniprot-TrEMBL)
ERCC3 ProteinP19447 (Uniprot-TrEMBL)
ERCC4 ProteinQ92889 (Uniprot-TrEMBL)
ERCC4ProteinQ92889 (Uniprot-TrEMBL)
ERCC5 ProteinP28715 (Uniprot-TrEMBL)
ERCC5ProteinP28715 (Uniprot-TrEMBL)
ERCC6 ProteinQ03468 (Uniprot-TrEMBL)
ERCC6ProteinQ03468 (Uniprot-TrEMBL)
ERCC8 ProteinQ13216 (Uniprot-TrEMBL)
ERCC8:DDB1:CUL4:RBX1:COP9 SignalosomeComplexR-HSA-6781842 (Reactome)
ERCC8:DDB1:CUL4:RBX1ComplexR-HSA-6781841 (Reactome)
GG-NER

incision complex:5'-incised damaged

DNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC
ComplexR-HSA-5690214 (Reactome)
GG-NER incision

complex:5'-incised

damaged DNA
ComplexR-HSA-5691059 (Reactome)
GG-NER incision

complex:Open bubble

dsDNA
ComplexR-HSA-5691046 (Reactome)
GG-NER pre-incision

complex:Open

bubble-dsDNA
ComplexR-HSA-5691043 (Reactome)
GPS1 ProteinQ13098 (Uniprot-TrEMBL)
GTF2H1 ProteinP32780 (Uniprot-TrEMBL)
GTF2H2 ProteinQ13888 (Uniprot-TrEMBL)
GTF2H3 ProteinQ13889 (Uniprot-TrEMBL)
GTF2H4 ProteinQ92759 (Uniprot-TrEMBL)
GTF2H5 ProteinQ6ZYL4 (Uniprot-TrEMBL)
H2OMetaboliteCHEBI:15377 (ChEBI)
HMGN1 ProteinP05114 (Uniprot-TrEMBL)
HMGN1ProteinP05114 (Uniprot-TrEMBL)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent mRNA

hybrid:TFIIH:ERCC6:ERCC8:DDB1:CUL4:RBX1
ComplexR-HSA-6781839 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent mRNA

hybrid:TFIIH:ERCC6
ComplexR-HSA-6781837 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent

mRNA hybrid:TFIIH
ComplexR-HSA-6781822 (Reactome)
INO80 ProteinQ9ULG1 (Uniprot-TrEMBL)
INO80 complexComplexR-HSA-5689568 (Reactome)
INO80B ProteinQ9C086 (Uniprot-TrEMBL)
INO80C ProteinQ6PI98 (Uniprot-TrEMBL)
INO80D ProteinQ53TQ3 (Uniprot-TrEMBL)
INO80E ProteinQ8NBZ0 (Uniprot-TrEMBL)
ISY1 ProteinQ9ULR0 (Uniprot-TrEMBL)
K63polyUb-C87-UBE2N ProteinP61088 (Uniprot-TrEMBL)
K63polyUb:C87-UBE2N:UBE2V2ComplexR-HSA-6790510 (Reactome)
LIG1 ProteinP18858 (Uniprot-TrEMBL)
LIG1,LIG3:XRCC1ComplexR-HSA-5690475 (Reactome)
LIG3 ProteinP49916 (Uniprot-TrEMBL)
MCRS1 ProteinQ96EZ8 (Uniprot-TrEMBL)
MNAT1 ProteinP51948 (Uniprot-TrEMBL)
MonoUb-K164-PCNA ProteinP12004 (Uniprot-TrEMBL)
NAD+MetaboliteCHEBI:15846 (ChEBI)
NAMMetaboliteCHEBI:17154 (ChEBI)
NFRKB ProteinQ6P4R8 (Uniprot-TrEMBL)
Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1, PAR-PARP2:CHD1LComplexR-HSA-6790517 (Reactome)
Open bubble damaged DNA template:trimmed nascent mRNA R-NUL-6782110 (Reactome)
PAR-DDB2 ProteinQ92466 (Uniprot-TrEMBL)
PAR-PARP1 ProteinP09874 (Uniprot-TrEMBL)
PAR-PARP1,PAR-PARP2 dimersComplexR-HSA-5651709 (Reactome)
PAR-PARP2 ProteinQ9UGN5 (Uniprot-TrEMBL)
PAR-UV-DDBComplexR-HSA-5696649 (Reactome)
PARP1 ProteinP09874 (Uniprot-TrEMBL)
PARP1,PARP2 dimersComplexR-HSA-5649884 (Reactome)
PARP2 ProteinQ9UGN5 (Uniprot-TrEMBL)
PCNA homotrimer,MonoUb:K164-PCNA homotrimerComplexR-HSA-6790532 (Reactome)
PCNA ProteinP12004 (Uniprot-TrEMBL)
PIAS1 ProteinO75925 (Uniprot-TrEMBL)
PIAS1,3ComplexR-HSA-6790455 (Reactome)
PIAS3 ProteinQ9Y6X2 (Uniprot-TrEMBL)
POLD,POLE R-HSA-5651800 (Reactome)
POLD,POLE,POLKComplexR-HSA-6790535 (Reactome)
POLD1 ProteinP28340 (Uniprot-TrEMBL)
POLD2 ProteinP49005 (Uniprot-TrEMBL)
POLD3 ProteinQ15054 (Uniprot-TrEMBL)
POLD4 ProteinQ9HCU8 (Uniprot-TrEMBL)
POLE ProteinQ07864 (Uniprot-TrEMBL)
POLE2 ProteinP56282 (Uniprot-TrEMBL)
POLK ProteinQ9UBT6 (Uniprot-TrEMBL)
POLR2A ProteinP24928 (Uniprot-TrEMBL)
POLR2B ProteinP30876 (Uniprot-TrEMBL)
POLR2C ProteinP19387 (Uniprot-TrEMBL)
POLR2D ProteinO15514 (Uniprot-TrEMBL)
POLR2E ProteinP19388 (Uniprot-TrEMBL)
POLR2F ProteinP61218 (Uniprot-TrEMBL)
POLR2G ProteinP62487 (Uniprot-TrEMBL)
POLR2H ProteinP52434 (Uniprot-TrEMBL)
POLR2I ProteinP36954 (Uniprot-TrEMBL)
POLR2J ProteinP52435 (Uniprot-TrEMBL)
POLR2K ProteinP53803 (Uniprot-TrEMBL)
POLR2L ProteinP62875 (Uniprot-TrEMBL)
PPIE ProteinQ9UNP9 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
PRPF19 ProteinQ9UMS4 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
RAD23A ProteinP54725 (Uniprot-TrEMBL)
RAD23B ProteinP54727 (Uniprot-TrEMBL)
RAD23ComplexR-HSA-5688130 (Reactome)
RBX1 ProteinP62877 (Uniprot-TrEMBL)
RFC HeteropentamerComplexR-HSA-68436 (Reactome)
RFC1 ProteinP35251 (Uniprot-TrEMBL)
RFC2 ProteinP35250 (Uniprot-TrEMBL)
RFC3 ProteinP40938 (Uniprot-TrEMBL)
RFC4 ProteinP35249 (Uniprot-TrEMBL)
RFC5 ProteinP40937 (Uniprot-TrEMBL)
RNA

Polymerase II holoenzyme complex

(hyperphosphorylated)
ComplexR-HSA-109909 (Reactome)
RNA Polymerase II

holoenzyme complex

(unphosphorylated)
ComplexR-HSA-113401 (Reactome)
RNF111ProteinQ6ZNA4 (Uniprot-TrEMBL)
RPA heterotrimerComplexR-HSA-68462 (Reactome)
RPA1 ProteinP27694 (Uniprot-TrEMBL)
RPA2 ProteinP15927 (Uniprot-TrEMBL)
RPA3 ProteinP35244 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
RUVBL1 ProteinQ9Y265 (Uniprot-TrEMBL)
SSB-dsDNA R-HSA-110340 (Reactome)
SSB-dsDNA:trimmed nascent mRNA R-NUL-6782212 (Reactome)
SUMO1 ProteinP63165 (Uniprot-TrEMBL)
SUMO1,2,3:UBE2IComplexR-HSA-6790471 (Reactome)
SUMO1-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO2 ProteinP61956 (Uniprot-TrEMBL)
SUMO2-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO3 ProteinP55854 (Uniprot-TrEMBL)
SUMO3-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
TC-NER

incision complex: 5'-incised damaged DNA:trimmed nascent

mRNA:(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC
ComplexR-HSA-6782219 (Reactome)
TC-NER

post-incision

complex:SSB-dsDNA:trimmed nascent mRNA: (PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC
ComplexR-HSA-6782220 (Reactome)
TC-NER

post-incision complex:incised DNA without lesion:trimmed nascent

mRNA:PCNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC
ComplexR-HSA-6782222 (Reactome)
TC-NER

pre-incision complex:Open bubble damaged DNA

template:RPA:ERCC5:trimmed nascent mRNA
ComplexR-HSA-6782134 (Reactome)
TC-NER incision

complex:5'-incised damaged DNA:trimmed

nascent mRNA
ComplexR-HSA-6782205 (Reactome)
TC-NER incision complexComplexR-HSA-6782142 (Reactome)
TC-NER post-incision

complex:dsDNA with transcription

bubble
ComplexR-HSA-6782230 (Reactome)
TC-NER pre-incision

complex:Open bubble damaged DNA template:trimmed

nascent mRNA
ComplexR-HSA-6782111 (Reactome)
TC-NER pre-incision complexComplexR-HSA-6782066 (Reactome)
TCEA1 ProteinP23193 (Uniprot-TrEMBL)
TCEA1ProteinP23193 (Uniprot-TrEMBL)
TFIIH CoreComplexR-HSA-5689624 (Reactome)
TFIIHComplexR-HSA-109634 (Reactome)
TFPT ProteinP0C1Z6 (Uniprot-TrEMBL)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UBE2I-G92-SUMO3 ProteinP55854 (Uniprot-TrEMBL)
UBE2I-G93-SUMO2 ProteinP61956 (Uniprot-TrEMBL)
UBE2I-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
UBE2IProteinP63279 (Uniprot-TrEMBL)
UBE2N ProteinP61088 (Uniprot-TrEMBL)
UBE2N:UBE2V2ComplexR-HSA-5682542 (Reactome)
UBE2V2 ProteinQ15819 (Uniprot-TrEMBL)
USP45ProteinQ70EL2 (Uniprot-TrEMBL)
USP7 ProteinQ93009 (Uniprot-TrEMBL)
UV-DDB:COP9 SignalosomeComplexR-HSA-5697031 (Reactome)
UVSSA ProteinQ2YD98 (Uniprot-TrEMBL)
UVSSA:USP7ComplexR-HSA-6781845 (Reactome)
Ub,SUMO,K63polyUb-XPC ProteinQ01831 (Uniprot-TrEMBL)
Ub,SUMO,K63polyUb:XPC:RAD23:CETN2ComplexR-HSA-6790519 (Reactome)
Ub,SUMO-XPC ProteinQ01831 (Uniprot-TrEMBL)
Ub,SUMO:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1, PAR-PARP2:CHD1LComplexR-HSA-6790468 (Reactome)
Ub,p-S2,S5-POLR2A ProteinP24928 (Uniprot-TrEMBL)
Ub-139-UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-139-UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-215-UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-215-UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-291-UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-367-UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-443-UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-519-UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-595-UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-63-RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
Ub-63-UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
Ub-63-UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-63-UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-671-UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-ERCC1 ProteinP07992 (Uniprot-TrEMBL)
Ub-ERCC6 ProteinQ03468 (Uniprot-TrEMBL)
Ub-XPC ProteinQ01831 (Uniprot-TrEMBL)
Ub:ERCC1ComplexR-HSA-5696466 (Reactome)
Ub:ERCC6ComplexR-HSA-6781849 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2ComplexR-HSA-5696681 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1LComplexR-HSA-5696652 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2ComplexR-HSA-5689300 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH:PAR-PARP1,PAR-PARP2ComplexR-HSA-5689862 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2ComplexR-HSA-5696660 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBComplexR-HSA-6782948 (Reactome)
Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1LComplexR-HSA-5691018 (Reactome)
UbiquitinComplexR-HSA-68524 (Reactome)
Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1:UVSSA:USP7:XAB2 complex:XPA:TCEA1:HMGN1:EP300ComplexR-HSA-6782063 (Reactome)
Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1ComplexR-HSA-6781866 (Reactome)
XAB2 ProteinQ9HCS7 (Uniprot-TrEMBL)
XAB2 complexComplexR-HSA-6781957 (Reactome)
XPA ProteinP23025 (Uniprot-TrEMBL)
XPAProteinP23025 (Uniprot-TrEMBL)
XPC ProteinQ01831 (Uniprot-TrEMBL)
XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBComplexR-HSA-5691012 (Reactome)
XPC:RAD23:CETN2ComplexR-HSA-5691010 (Reactome)
XPCProteinQ01831 (Uniprot-TrEMBL)
XRCC1 ProteinP18887 (Uniprot-TrEMBL)
YY1 ProteinP25490 (Uniprot-TrEMBL)
ZNF830 ProteinQ96NB3 (Uniprot-TrEMBL)
dNTPMetaboliteCHEBI:16516 (ChEBI)
damaged DNA substrate:nascent mRNA hybrid R-NUL-110291 (Reactome)
damaged DNA with 5' incision R-NUL-5691056 (Reactome)
damaged DNA with open bubble structure R-NUL-109944 (Reactome)
dsDNA with transcription bubble R-NUL-6782229 (Reactome)
dsDNAR-HSA-5649637 (Reactome)
excised DNA fragment with lesionR-NUL-109960 (Reactome)
incised DNA without lesion R-NUL-109961 (Reactome)
incised DNA without lesion:trimmed nascent mRNA R-NUL-6782213 (Reactome)
mRNAR-HSA-6782236 (Reactome)
p-S2,S5-POLR2A ProteinP24928 (Uniprot-TrEMBL) The C-terminal domain (CTD) of POLR2A contains about 52 repeats of the consensus heptad YSPTSPS. Serines-2 and 5 of the heptads are phosphorylated in RNA polymerase II initiating transcription of protein coding genes. The exact repeats that are phosphorylated are not known.
ribonucleoside triphosphateMetaboliteCHEBI:17972 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:Incised DNA without lesionArrowR-HSA-5690988 (Reactome)
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:Incised DNA without lesionR-HSA-5691001 (Reactome)
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:Incised DNA without lesionmim-catalysisR-HSA-5691001 (Reactome)
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:SSB-dsDNAArrowR-HSA-5691001 (Reactome)
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:SSB-dsDNAR-HSA-5690997 (Reactome)
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFCArrowR-HSA-5690997 (Reactome)
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFCArrowR-HSA-6782227 (Reactome)
ADPArrowR-HSA-5690996 (Reactome)
ADPArrowR-HSA-6782131 (Reactome)
ATPR-HSA-5690996 (Reactome)
ATPR-HSA-6782131 (Reactome)
CAKArrowR-HSA-5689861 (Reactome)
CETN2R-HSA-5691004 (Reactome)
CHD1LArrowR-HSA-5690988 (Reactome)
CHD1LR-HSA-5696670 (Reactome)
COP9 signalosomeArrowR-HSA-5691006 (Reactome)
COP9 signalosomeArrowR-HSA-6781833 (Reactome)
Damaged

dsDNA with open transcription

bubble:Hyperphosphorylated RNA Pol II:TFIIH
ArrowR-HSA-6781818 (Reactome)
Damaged

dsDNA with open transcription

bubble:Hyperphosphorylated RNA Pol II:TFIIH
R-HSA-6781824 (Reactome)
Damaged

dsDNA with open transcription

bubble:Hyperphosphorylated RNA Pol II:TFIIH
mim-catalysisR-HSA-6781824 (Reactome)
Distorted dsDNAR-HSA-5691006 (Reactome)
Distorted dsDNAR-HSA-6781818 (Reactome)
ELLArrowR-HSA-6782234 (Reactome)
EP300ArrowR-HSA-6782234 (Reactome)
EP300R-HSA-6782004 (Reactome)
ERCC1:ERCC4ArrowR-HSA-109955 (Reactome)
ERCC1:ERCC4ArrowR-HSA-5690988 (Reactome)
ERCC1:ERCC4ArrowR-HSA-6782224 (Reactome)
ERCC1:ERCC4R-HSA-5690991 (Reactome)
ERCC1:ERCC4R-HSA-6782141 (Reactome)
ERCC1ArrowR-HSA-5696465 (Reactome)
ERCC1R-HSA-109955 (Reactome)
ERCC4R-HSA-109955 (Reactome)
ERCC5ArrowR-HSA-5690988 (Reactome)
ERCC5ArrowR-HSA-6782224 (Reactome)
ERCC5R-HSA-5689317 (Reactome)
ERCC5R-HSA-6782138 (Reactome)
ERCC6R-HSA-6781840 (Reactome)
ERCC8:DDB1:CUL4:RBX1:COP9 SignalosomeR-HSA-6781833 (Reactome)
ERCC8:DDB1:CUL4:RBX1ArrowR-HSA-6782234 (Reactome)
GG-NER

incision complex:5'-incised damaged

DNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC
ArrowR-HSA-5690213 (Reactome)
GG-NER

incision complex:5'-incised damaged

DNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC
R-HSA-5690988 (Reactome)
GG-NER

incision complex:5'-incised damaged

DNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC
mim-catalysisR-HSA-5690988 (Reactome)
GG-NER incision

complex:5'-incised

damaged DNA
ArrowR-HSA-5690990 (Reactome)
GG-NER incision

complex:5'-incised

damaged DNA
R-HSA-5690213 (Reactome)
GG-NER incision

complex:Open bubble

dsDNA
ArrowR-HSA-5690991 (Reactome)
GG-NER incision

complex:Open bubble

dsDNA
R-HSA-5690990 (Reactome)
GG-NER incision

complex:Open bubble

dsDNA
mim-catalysisR-HSA-5690990 (Reactome)
GG-NER pre-incision

complex:Open

bubble-dsDNA
ArrowR-HSA-5689317 (Reactome)
GG-NER pre-incision

complex:Open

bubble-dsDNA
R-HSA-5690991 (Reactome)
H2OR-HSA-5696465 (Reactome)
H2OR-HSA-6782069 (Reactome)
HMGN1ArrowR-HSA-6782234 (Reactome)
HMGN1R-HSA-6782004 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent mRNA

hybrid:TFIIH:ERCC6:ERCC8:DDB1:CUL4:RBX1
ArrowR-HSA-6781833 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent mRNA

hybrid:TFIIH:ERCC6:ERCC8:DDB1:CUL4:RBX1
R-HSA-6781867 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent mRNA

hybrid:TFIIH:ERCC6:ERCC8:DDB1:CUL4:RBX1
mim-catalysisR-HSA-6781867 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent mRNA

hybrid:TFIIH:ERCC6
ArrowR-HSA-6781840 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent mRNA

hybrid:TFIIH:ERCC6
R-HSA-6781833 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent

mRNA hybrid:TFIIH
ArrowR-HSA-6781824 (Reactome)
Hyperphosphorylated

RNA Pol II:Damaged DNA template:nascent

mRNA hybrid:TFIIH
R-HSA-6781840 (Reactome)
INO80 complexArrowR-HSA-5691006 (Reactome)
K63polyUb:C87-UBE2N:UBE2V2R-HSA-6790487 (Reactome)
LIG1,LIG3:XRCC1mim-catalysisR-HSA-5690997 (Reactome)
LIG1,LIG3:XRCC1mim-catalysisR-HSA-6782227 (Reactome)
NAD+R-HSA-5696655 (Reactome)
NAMArrowR-HSA-5696655 (Reactome)
Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1, PAR-PARP2:CHD1LArrowR-HSA-6790487 (Reactome)
Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1, PAR-PARP2:CHD1LR-HSA-5689317 (Reactome)
PAR-PARP1,PAR-PARP2 dimersArrowR-HSA-5690988 (Reactome)
PAR-UV-DDBArrowR-HSA-5690988 (Reactome)
PARP1,PARP2 dimersR-HSA-5696664 (Reactome)
PCNA homotrimer,MonoUb:K164-PCNA homotrimerR-HSA-5690213 (Reactome)
PCNA homotrimer,MonoUb:K164-PCNA homotrimerR-HSA-6782211 (Reactome)
PIAS1,3mim-catalysisR-HSA-6790454 (Reactome)
POLD,POLE,POLKR-HSA-5690213 (Reactome)
POLD,POLE,POLKR-HSA-6782211 (Reactome)
PPiArrowR-HSA-5691001 (Reactome)
PPiArrowR-HSA-6781824 (Reactome)
PPiArrowR-HSA-6782208 (Reactome)
PiArrowR-HSA-5690996 (Reactome)
PiArrowR-HSA-6782131 (Reactome)
R-HSA-109955 (Reactome) ERCC1 binds ERCC4 (XPF) to form a heterodimeric ERCC1:ERCC4 (ERCC1:XPF) complex with a DNA endonuclease activity, where ERCC4 is the catalytic subunit. Suitable substrates for the ERCC1:ERCC4 endonuclease are single strand DNA (ssDNA) and ssDNA region of a duplex DNA with an open bubble structure (Park et al. 1995).
R-HSA-5689317 (Reactome) Once an open bubble structure is generated in damaged dsDNA through a DNA helicase activity of the TFIIH complex, the RPA heterotrimer composed of RPA1, RPA2 and RPA3, coats the undamaged single strand DNA (ssDNA) (de Laat et al. 1998), thereby protecting it from incision and enabling the correct positioning of the NER endonucleases. The interaction of RPA with XPA facilitates RPA recruitment to the global genome nucleotide excision repair (GG-NER) site (He et al. 1995, Ikegami et al. 1998). A DNA endonuclease ERCC5 (XPG) is recruited to the GG-NER site, 3' to the DNA damage, through its interaction with the TFIIH complex (Dunand-Sauthier et al. 2005, Zotter et al. 2006, Ito et al. 2007) and the RPA heterotrimer (de Laat et al. 1998).
R-HSA-5689861 (Reactome) XPA binds the DNA damage site through interaction with the TFIIH complex subunit GTF2H5 (TTDA) (Ziani et al. 2014), and also interacts with the DDB2 subunit of the UV-DDB complex (Wakasugi et al. 2001, Wakasugi et al. 2009, Takedachi et al. 2010). PARylated PARP1 (or possibly PARP2) (King et al. 2012) facilitates XPA association with chromatin. Binding of XPA is accompanied by the release of the CAK subcomplex from the TFIIH complex (Coin et al. 2008).
R-HSA-5690213 (Reactome) The DNA repair synthesis complex, consisting of PCNA, RFC, RPA and polymerase delta (POLD) or epsilon (POLE) complexes, or DNA translesion synthesis polymerase kappa (POLK) (Ogi et al. 2010), is formed at the nucleotide excision repair (NER) site following the incision of the damaged DNA strand 5' to the lesion by the ERCC1:ERCC4 (ERCC1:XPF) complex. 3' incision by XPG (ERCC5) is not required for the loading of the DNA polymerases and may not be required for the initiation of NER-mediated DNA synthesis (Staresincic et al. 2009). XPG and RPA promote the assembly of the DNA synthesis complex at the NER site (Mocquet et al. 2008).
R-HSA-5690988 (Reactome) In global genome nucleotide excision repair (GG-NER), as well as transcription-coupled nucleotide excision repair (TC-NER), the cleavage of the damaged DNA strand 3' to the site of damage is carried out by a DNA endonuclease XPG (ERCC5). While the DNA repair synthesis may be initiated prior to the 3' incision (Staresincic et al. 2009), the components of the incision complex probably dissociate from the NER site shortly after the replicative complex assembly and 3' incision (Overmeer et al. 2011). The exception is the RPA heterotrimer, which is a constituent of the DNA synthesis complex, and also coats the undamaged DNA strand, thereby protecting it from endonucleolytic cleavage.
R-HSA-5690990 (Reactome) In global genome nucleotide excision repair (GG-NER), just like in transcription-coupled nucleotide excision repair (TC-NER), the cleavage of the damaged strand of DNA 5' to the site of damage occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound. The 5' incision is carried out by the ERCC1:XPF (ERCC1:ERCC4) complex and precedes the 3' incision (Staresincic et al. 2009).
R-HSA-5690991 (Reactome) ERCC1:ERCC4 (ERCC1:XPF) DNA endonuclease complex binds 5' to the DNA damage at global genome nucleotide excision repair (GG-NER) sites to form the incision complex. Binding of ERCC5 (XPG) to the NER site precedes the recruitment of ERCC1:ERCC4 (Riedl et al. 2003). ERCC1 directly interacts with XPA, and this interaction is necessary for the loading of ERCC1:ERCC4 to the open bubble structure in damaged dsDNA and the progression of GG-NER (Tsodikov et al. 2007, Orelli et al. 2010).
R-HSA-5690996 (Reactome) Two DNA helicases XPB (ERCC3) and XPD (ERCC2), which are part of the TFIIH complex, unwind the distorted DNA duplex around the lesion to form an open bubble structure that exposes the damaged site. The helicase activity of the TFIIH complex is stimulated by the presence of XPA and the XPC:RAD23:CETN2 complex (Winkler et al. 2001). The 5'->3' directed helicase activity of ERCC2 (Kuper et al. 2012) is crucial for unwinding of the distorted dsDNA during nucleotide excision repair (NER) (Coin et al. 2007). The 3'->5' directed DNA helicase ERCC3 contributes to dsDNA unwinding during NER through ATP hydrolysis (Coin et al. 2007). In addition to DNA unwinding, ERCC2 and ERCC3 verify the presence of DNA damage (Oksenych et al. 2009, Mathieu et al. 2010, Mathieu et al. 2013). Verification of DNA damage also involves XPA (Camenisch et al. 2006). The binding site of XPC determines which DNA strand is selected by ERCC2 to verify the presence of lesions (Sugasawa et al. 2009).
R-HSA-5690997 (Reactome) The nucleotide excision repair (NER) is completed when the newly synthesized fragment is ligated to the incised DNA strand, thus closing the single stranded nick (SSB). Two DNA ligases, LIG1 and LIG3 (as part of the LIG3:XRCC1 complex) can perform the ligation in global genome NER (GG-NER), as well as in transcription-coupled NER (TC-NER). The choice of NER DNA ligase depends on the DNA polymerase involved in the repair synthesis and on the stage of the cell cycle (Moser et al. 2007).
R-HSA-5691000 (Reactome) Transcription factor II H (TFIIH) complex is recruited to DNA damage sites after the damage is recognized by the XPC:RAD23:CETN2 complex and the UV-DDB complex (DDB1:DDB2) (Volker et al. 2001, Araujo and Wood 1999).

TFIIH consists of ten subunits organized into a ring-like structure (Schultz et al. 2000). The TFIIH core, also forming a ring-like structure, includes a DNA helicase ERCC3 (XPB), GTF2H1 (BTF2-p62), GTF2H2 (BTF2-p44), GTF2H3 (BTF2-p34) and GTF2H4 (BTF2-p52). GTF2H4 directly interacts with ERCC3 and anchors it to the TFIIH complex (Jawhari et al. 2002). Another DNA helicase, ERCC2 (XPD) is anchored to the TFIIH complex by binding to the GTF2H2 subunit (Coin et al. 1998). The CDK-activating kinase (CAK) complex, consisting of CCNH (cyclin H), CDK7 and MNAT1 (MAT1) is included in the TFIIH complex through an interaction with ERCC2 (Reardon et al. 1996, Rossignol et al. 1997). The tenth subunit, GTF2H5 (TTDA, TFB5, BTF2-p5) is important for the stability of the TFIIH complex (Giglia-Mari et al. 2004). The TFIIH complex binds the DNA damage site after XPC:RAD23:CETN2 complex recognizes the damage (Volker et al. 2001, Riedl et al. 2003), and the ERCC3 and GTF2H1 subunits of TFIIH directly interact with XPC (Yokoi et al. 2003).

R-HSA-5691001 (Reactome) In global genome nucleotide excision repair (GG-NER), as well as transcription-coupled nucleotide excision repair (TC-NER), the DNA synthesis complex consisting of PCNA, RPA, RFC and polymerase delta (POLD) or epsilon (POLE) complexes performs DNA repair synthesis after the damaged DNA strand is incised 5' to the lesion by the endonuclease complex ERCC1:ERCC4 (ERCC1:XPF) and 3' to the lesion by the endonuclease XPG (ERCC5). Depending on damage-induced PCNA monoubiquitination, DNA polymerase kappa (POLK) is also involved in gap-filling DNA synthesis during nucleotide excision repair (NER) (Balajee et al. 1998, Staresincic et al. 2009, Ogi et al. 2010, Overmeer et al. 2011).
R-HSA-5691004 (Reactome) XPC is mutated in individuals with xeroderma pigmentosum from genetic Complementation Group C (XP-C). It forms a tight complex with RAD23B (HR23B) or, to a lesser extent, RAD23A (HR23A), two human homologs of yeast Rad23 (Masutani et al. 1994, Ng et al. 2003). CETN2 (centrin 2, CEN2) is also part of the XPC complex with RAD23 (Araki et al. 2001, Nishi et al. 2005).
R-HSA-5691006 (Reactome) XPC, in complex with RAD23B or RAD23A and CETN2, employs a two-stage process to recognize a distorted DNA helix. In the first stage, XPC rapidly probes dsDNA, which is promoted by a DNA repulsive action of a negatively charged beta-turn extension of XPC, located in the vicinity of the XPC DNA-binding domain. In the second stage, the DNA binding domain, consisting of two beta hairpins, binds non-hydrogen bonded bases in dsDNA (Camenisch et al. 2009). Rad4, the yeast ortholog of XPC, recognizes lesions that thermodynamically disrupt normal Watson-Crick base pairing. Rad4 inserts a beta-hairpin through the DNA duplex, causing damaged base pairs to flip out of the double helix. Rad4 associates with the undamaged strand, whereas the DNA strand that contains damaged nucleotides becomes distorted (Min and Pavletich 2007).

Binding of the XPC:RAD23:CETN2 complex to distorted DNA is enhanced in the presence of the DDB1:DDB2 complex, also known as the UV-DDB complex. The UV-DDB complex preferentially binds UV-generated lesions, such as pyrimidine-pyrimidone photodimers (6-4 PPDs) and cyclobutane pyrimidine dimers (CPDs), but also recognizes DNA with apurinic/apyrimidinic (AP) sites, and 2-3 bp mismatches (Fujiwara et al. 1999, Wittschieben et al. 2005). The DDB2 subunit of the UV-DDB complex is a WD40 repeat beta-propeller protein. The beta-propeller domain of DDB2 binds the damaged DNA strand (Scrima et al. 2008). The UV-DDB complex is part of a larger ubiquitin ligase complex that, besides DDB1 and DDB2, also contains CUL4A or CUL4B and RBX1 (Groisman et al. 2003, Sugasawa et al. 2005). In the case of 6-4 PPDs and CPDs, UV-DDB binding to damaged DNA probably precedes the binding of the XPC:RAD23:CETN2 complex. However, in the case of 6-4 PPDs, the XPC:RAD23:CETN2 complex may also recognize damaged DNA in the absence of the UV-DDB complex (Fitch et al. 2003, Moser et al. 2005, Wang et al. 2004), but the UV-DDB complex may be important for retention of DNA repair proteins at the DNA damage site (Oh et al. 2011).

The INO80 chromatin remodelling complex positively regulates GG-NER. INO80 and ACTR5 (ARP5) subunits of the INO80 complex are enriched at GG-NER sites, probably via interaction with DDB1. Chromatin relaxation by the INO80 complex at DNA damage site may be necessary for XPC recruitment (Jiang et al. 2010). In yeast, the interaction between INO80 and the orthologs of XPC and RAD23 has been reported and it was suggested that this interaction is important for the restoration of chromatin structure after GG-NER completion (Sarkar et al. 2010).

R-HSA-5696465 (Reactome) USP45 ubiquitin protease, mutated in prostate cancer and B-cell lymphoma, deubiquitinates ERCC1. While the mechanism and timing of ERCC1 ubiquitination are not known, deubiquitination of ERCC1 by USP45 enables ERCC1 recruitment to DNA damage sites in nucleotide excision repair (NER) and repair of interstrand cross-links (ICLR) (Perez-Oliva et al. 2015).
R-HSA-5696655 (Reactome) PARP1 and/or PARP2 homo- or heterodimers recruited to global genomic nucleotide excision repair (GG-NER) site poly(ADP)ribosylate (PARylate) DDB2 and also progressively autoPARylate. PARylation promotes retention of DDB2 at DNA damage sites (Pines et al. 2012, Robu et al. 2013).
R-HSA-5696664 (Reactome) PARP1 (or PARP2) is recruited to global genomic nucleotide excision repair (GG-NER) site through interaction with DDB2 and, probably, distorted single strand DNA (Pines et al. 2012, Robu et al. 2013).
R-HSA-5696670 (Reactome) A chromatin remodeling enzyme CHD1L (ALC1) is recruited to DNA damage sites through interaction with PARylated PARP1 (or possibly PARP2) (Ahel et al. 2009) or PARylated DDB2 (Pines et al. 2012). CHD1L catalyzes PARP-stimulated nucleosome sliding and is needed for efficient PARP-dependent DNA repair (Ahel et al. 2009). CHD1L depletion or PARP inhibition impair global genomic nucleotide excision repair (GG-NER) of UV-induced DNA damage (Pines et al. 2012).
R-HSA-6781818 (Reactome) Once the transcription is initiated from a DNA template that contains an RNA polymerase II (RNA Pol II) promoter, RNA Pol II synthesizes mRNA in the presence of the elongation complex TFIIH until the damaged DNA base(s) is reached (Brueckner et al. 2007).
R-HSA-6781824 (Reactome) An active RNA polymerase II complex (RNA Pol II, POLR2) transcribes a damaged DNA template. Once damaged DNA bases, such as cyclobutane pyrimidine dimers (CPDs), enter the active site of the polymerase, RNA Pol II misincorporates a ribonucleotide into nascent mRNA, which blocks the translocation step and results in polymerase stalling. In the stalled complex, the lesion is inaccessible, while the RNA Pol II conformation is unchanged (Brueckner et al. 2007).
R-HSA-6781833 (Reactome) Cockayne syndrome protein A (ERCC8, also known as CSA) is recruited to a stalled RNA polymerase II complex (RNA Pol II) at a site of DNA damage in an ERCC6 (CSB) dependent manner (Fousteri et al. 2006). ERCC8 is part of an ubiquitin ligase complex that, in addition to ERCC8, also contains DDB1, CUL4 (CUL4A or CUL4B) and RBX1 (Groisman et al. 2003). The COP9 signalosome complex prevents the ubiquitin ligase activity of the ERCC8:DDB1:CUL4:RBX1 at the early steps after DNA damage induction (Groisman et al. 2003, Fischer et al. 2011).
R-HSA-6781840 (Reactome) Cockayne syndrome protein B (ERCC6, also known as CSB) binds RNA polymerase II complex (RNA Pol II) stalled at a DNA damage site (Fousteri et al. 2006).
R-HSA-6781867 (Reactome) The ubiquitin ligase complex ERCC8:DDB1:CUL4:RBX1 may ubiquitinate ERCC6 (CSB) (Groisman et al. 2006) at the later steps of TC-NER and may also be required in the ubiquitination of the RNA Pol II subunit POLR2A in response to damage (Bregman et al. 1996, Lee et al. 2002). Ubiquitination mediated by ERCC8 (CSA) containing ubiquitin ligase complex plays an important role in progression and termination of transcription-coupled nucleotide excision repair (TC-NER), although the mechanistic details are largely unknown.
R-HSA-6782004 (Reactome) In addition to ERCC6 (CSB) and the ERCC8 (CSA) ubiquitin ligase complex, several other proteins and protein complexes are loaded onto stalled RNA polymerase II (RNA Pol II) at DNA damage sites to form a pre-incision complex that operates in the transcription-coupled nucleotide excision repair (TC-NER).
XPA, which also participates in global genome nucleotide excision repair (GG-NER), is necessary for the progression of TC-NER (Furuta et al. 2002). XPA interacts with the GTF2H5 subunit of the TFIIH complex (Ziani et al. 2014). In GG-NER, XPA loading is accompanied by the release of the CAK subcomplex from TFIIH (Coin et al. 2008), but in TC-NER the CAK complex remains bound to the TC-NER site (Mourgues et al. 2013).
XAB2 protein exists in the complex with five other proteins, AQR, PRPF19, ZNF830, ISY1 and PPIE. The XAB2 complex, which is also involved in pre-mRNA splicing, loads onto stalled RNA Pol II site (Kuraoka et al. 2008) through the interaction of XAB2 with RNA Pol II, ERCC6, ERCC8 and XPA (Nakatsu et al. 2000). The AQR (aquarius) subunit of the XAB2 complex is an RNA-DNA helicase that processes R-loops. An R-loop is a structure formed by hybridization of a nascent mRNA with a DNA template. In the absence of AQR, TC-NER machinery processes R-loops into double strand breaks (Sollier et al. 2014).
TCEA1 (TFIIS) is a transcription elongation factor that facilitates partial digestion of the 3' protruding end of the nascent transcript by a stalled RNA Pol II, which is generated during the reverse translocation of RNA Pol II from the damage site, and allows the resumption of RNA synthesis once the DNA damage is removed (Donahue et al. 1994).
HMGN1, a non-histone high mobility group N nucleosome-binding protein, facilitates TC-NER probably by increasing accessibility of damaged DNA to repair machinery. HMGN1 is recruited at RNA Pol II/TC-NER sites in an ERCC8 (CSA)-dependent manner (Birger et al. 2003, Fousteri et al. 2006).
Histone acetyltransferase p300 (EP300) is recruited to stalled RNA Pol II/TC-NER complexes in an ERCC6-dependent manner, and probably acts to facilitate access of repair proteins to damaged DNA via chromatin remodeling (Fousteri et al. 2006).
UVSSA protein forms a complex with ubiquitin protease USP7. It is recruited to TC-NER sites via interaction with ubiquitinated RNA Pol II and ERCC6. The UVSSA:USP7 complex stabilizes ERCC6, preventing its proteasome-mediated degradation prior to TC-NER completion, and may de-ubiquitinate RNA Pol II after TC-NER is completed, to allow resumption of RNA synthesis (Nakazawa et al. 2012, Schwertman et al. 2012, Zhang et al. 2012, Fei and Chen 2012).
R-HSA-6782069 (Reactome) UVSSA stabilizes ERCC6 (CSB) during transcription-coupled nucleotide excision repair (TC-NER) by targeting ubiquitin protease USP7 to ubiquitinated ERCC6, thus preventing proteasome-mediated degradation of ERCC6. Mutations in UVSSA cause UV-sensitive syndrome (Nakazawa et al. 2012, Schwertman et al. 2012, Zhang et al. 2012, Fei and Chen 2012).
R-HSA-6782131 (Reactome) Two DNA helicases XPB (ERCC3) and XPD (ERCC2), which are part of the TFIIH complex, unwind the distorted DNA duplex around the lesion to form an open bubble structure that exposes the damaged site. The 5'->3 directed helicase activity of ERCC2 (Kuper et al. 2012) together with the ATPase activity of the 3'->5' directed DNA helicase ERCC3 contribute to dsDNA unwinding during nucleotide excision repair (NER) (Coin et al. 2007). In transcription-coupled NER (TC-NER), the ATPase activity of TFIIH complex, related to its helicase activity, is in addition necessary for the incision of the damaged DNA strand. While the endonuclease ERCC5 (XPG) can bind stalled RNA polymerase II (RNA Pol II) at a transcription bubble, it cannot perform incision in the absence of the TFIIH ATPase activity (Sarker et al. 2005). The helicase activity of the TFIIH complex may allow backtracking of the RNA Pol II, similar to the UvrD helicase involved in TC-NER in E.coli. Pulling RNA Pol II backwards from the DNA damage site would resolve steric hindrance of the RNA Pol II complex with the TC-NER endonucleases (Epshtein et al. 2014). RNA Pol II backtracking is accompanied by a partial digestion of the nascent 3' protruding mRNA via the 3'->5' directed exonuclease activity of RNA Pol II, which is stimulated by TCEA1 (TFIIS) (Donahue et al. 1994). Partial transcript digestion and RNA Pol II backtracking move the transcription bubble away from the open bubble that contains the DNA damage site (reviewed by Hanawalt and Spivak 2008).
R-HSA-6782138 (Reactome) It has been suggested that, similar to the UvrD helicase involved in TC-NER in E.coli, the DNA helicase activity of TFIIH complex may facilitate damage-stalled RNA polymerase II (RNA Pol II) backtracking (Epshtein et al. 2014). RNA Pol II backtracking, together with the cleavage of the 3' protruding end of nascent mRNA, might promote the movement of the transcription bubble away from the transcription-coupled nucleotide excision repair (TC-NER) site, while an open bubble is created (Sarker et al. 2005, Hanawalt and Spivak 2008). Once the open bubble is generated, the RPA heterotrimer composed of RPA1, RPA2 and RPA3 coats the undamaged single strand DNA (ssDNA) (de Laat et al. 1998), thereby protecting it from endonucleases. The interaction of RPA with XPA facilitates RPA recruitment to the nucleotide excision repair (NER) site (He et al. 1995, Ikegami et al. 1998). A DNA endonuclease ERCC5 (XPG) is recruited to the TC-NER site through its interaction with the stalled RNA Pol II (Sarker et al. 2005), the TFIIH complex (Dunand-Sauthier et al. 2005, Zotter et al. 2006, Ito et al. 2007) and the RPA heterotrimer (de Laat et al. 1998).
R-HSA-6782141 (Reactome) ERCC1:ERCC4 (ERCC1:XPF) DNA endonuclease complex binds to the pre-incision complex at the transcription-coupled nucleotide excision repair (TC-NER) site to form the incision complex. Binding of ERCC5 (XPG) to the NER site precedes the recruitment of ERCC1:ERCC4 (Riedl et al. 2003). ERCC1 directly interacts with the XPA, and this interaction is necessary for the loading of ERCC1:ERCC4 to the open bubble structure in damaged dsDNA and the progression of TC-NER (Tsodikov et al. 2007, Orelli et al. 2010).
R-HSA-6782204 (Reactome) In transcription-coupled nucleotide excision repair (TC-NER), just like in global genome nucleotide excision repair (GG-NER), the cleavage of the damaged strand of DNA 5' to the site of damage occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound. The 5' incision is carried out by ERCC1:XPF (ERCC1:ERCC4) complex and precedes the 3' incision by ERCC5 (XPG) (Staresincic et al. 2009).
R-HSA-6782208 (Reactome) In transcription-coupled nucleotide excision repair (TC-NER), as well as in global genome nucleotide excision repair (GG-NER), the DNA synthesis complex (NER post-incision complex) consisting of PCNA, RPA, RFC and polymerase delta (POLD) or epsilon (POLE) complexes performs DNA repair synthesis after the damaged DNA strand is incised 5' to the lesion by the endonuclease complex ERCC1:ERCC4 (ERCC1:XPF) and 3' to the lesion by the endonuclease XPG (ERCC5). Depending on damage-induced PCNA monoubiquitination, DNA polymerase kappa (POLK) may also be involved in gap-filling DNA synthesis during nucleotide excision repair (NER) (Balajee et al. 1998, Staresincic et al. 2009, Ogi et al. 2010, Overmeer et al. 2011).
R-HSA-6782211 (Reactome) The DNA repair synthesis complex, consisting of PCNA, RFC, RPA and polymerase delta (POLD) or epsilon (POLE) complexes, or polymerase kappa (POLK), is formed at the transcription coupled nucleotide excision repair (TC-NER) site, as well as the global genome nucleotide excision repair (GG-NER) site, following the incision of the damaged DNA strand 5' to the lesion by the ERCC1:ERCC4 (ERCC1:XPF) complex. 3' incision by XPG (ERCC5) is not required for the loading of the DNA polymerases and may not be required for the initiation of NER-mediated DNA synthesis (Staresincic et al. 2009). XPG and RPA promote the assembly of the DNA synthesis complex at the NER site (Mocquet et al. 2008).
R-HSA-6782224 (Reactome) In transcription-coupled nucleotide excision repair (TC-NER), as well as in global genome nucleotide excision repair (GG-NER), the cleavage of the damaged DNA strand 3' to the site of damage is carried out by a DNA endonuclease XPG (ERCC5). While the NER-mediated DNA synthesis may be initiated prior to the 3' incision (Staresincic et al. 2009), the components of the incision complex probably dissociate from the NER site shortly after the DNA synthesis complex assembly and 3' incision (Overmeer et al. 2011). The exception is the RPA heterotrimer, which is a constituent of the NER post-incision complex, and also coats the undamaged DNA strand, thereby protecting it from endonucleolytic cleavage. RNA polymerase II-associated factors also remain bound to the TC-NER site.
R-HSA-6782227 (Reactome) The nucleotide excision repair (NER) is completed when the newly synthesized fragment is ligated to the incised DNA strand, thus sealing the single stranded nick (SSB). Two DNA ligases, LIG1 and LIG3 (as a part of LIG3:XRCC1 complex) can perform the ligation in transcription-coupled NER (TC-NER), as well as in global genome NER (GG-NER). The choice of NER DNA ligase depends on the DNA polymerase involved in repair synthesis and probably the stage of the cell cycle (Moser et al. 2007).
R-HSA-6782234 (Reactome) After DNA repair synthesis is completed at transcription-coupled nucleotide excision repair (TC-NER) sites, transcription resumes. A number of factors have been implicated in this process. ERCC6 (CSB) contains an ubiquitin-binding domain that is indispensable for its function in TC-NER and the restoration of damage-inhibited RNA synthesis (Anindya et al. 2010). The ubiquitin ligase activity of the ERCC8:DDB1:CUL4:RBX1 complex plays an important role in termination of TC-NER, possibly by targeting ERCC6 or its ubiquitinated partner for degradation and promoting dissociation of repair factors from the RNA polymerase II complex (Groisman et al. 2006, Vermeulen and Fousteri 2013). The ubiquitin protease complex composed of UVSSA and USP7 is also implicated in the recovery of RNA synthesis (RRS) (Nakazawa et al. 2012, Scwertman et al. 2012, Zhang et al. 2012, Fei and Chen 2012). ELL protein, recruited to the TFIIH complex, possibly as a component of the little elongation complex, is needed for RRS (Mourgues et al. 2013). Furthermore, histone chaperone FACT promotes accelerated histone exchange at TC-NER sites, allowing efficient progression of TC-NER and restoration of RNA synthesis after the repair of transcription blocking damages is completed (Dinant et al. 2013).
R-HSA-6782943 (Reactome) The role of UV-DDB-mediated ubiquitination in global genome nucleotide excision repair (GG-NER) has not been fully elucidated.

In the absence of DNA damage, the ubiquitin ligase activity of UV-DDB complex is inhibited by association with the COP9 signalosome (CSN complex), which dissociates from the UV-DDB complex upon binding to damaged DNA (Groisman et al. 2003, Fischer et al. 2011). Ubiquitination of XPC by UV-DDB promotes XPC retention at GG-NER sites, while progressive autoubiquitination of UV-DDB promotes the dissociation of UV-DDB from the DNA and may act as an intracellular signal (Sugasawa et al. 2005). The UV-DDB complex also ubiquitinates histones H2A, H3 and H4, which may trigger chromatin remodeling at DNA damage site and regulate the accessibility of damaged DNA to repair factors (Kapetanaki et al. 2006, Wang et al. 2006).

R-HSA-6790454 (Reactome) XPC undergoes SUMOylation following UV irradiation on several consensus SUMOylation sites (van Cuijk et al. 2015). SUMOylation of XPC probably succeeds the UV-DDB mediated ubiquitination of XPC, as the presence of both DDB2 and XPA is required for SUMOylation (Wang et al. 2005), but it has also been reported that SUMOylation of XPC was DDB2-independent (Akita et al. 2015). It is unclear whether XPC is modified by SUMO1 (Wang et al. 2005, Akita et al. 2015) or poly-SUMO2/3 (Poulsen et al. 2013). SUMO conjugases PIAS1 and PIAS3 both interact with XPC and may catalyze XPC SUMOylation (Akita et al. 2015).
R-HSA-6790487 (Reactome) SUMOylated XPC is recognized by the SUMO-targeted ubiquitin ligase RNF111 (Arcadia) that, together with the E2 ubiquitin conjugating complex of UBE2N (UBC13) and UBE2V2 (MMS2), generates K63-linked polyubiquitin chains on XPC (Poulsen et al. 2013) to efficiently release XPC from UV lesions (van Cuijk et al. 2015). The release of K63-polyubiquitinated XPC occurs from GG-NER pre-incision complexes that contain TFIIH and XPA and promotes optimal access/binding of ERCC5 (XPG) endonuclease to the pre-incision complex (van Cuijk et al. 2015). Successful binding of ERCC5 endonuclease 3' to the damage facilitates binding of the ERCC1:ERCC4 (ERCC1:XPF) endonuclease and progression of the NER reaction.
RAD23R-HSA-5691004 (Reactome)
RFC HeteropentamerR-HSA-5690213 (Reactome)
RFC HeteropentamerR-HSA-6782211 (Reactome)
RNA

Polymerase II holoenzyme complex

(hyperphosphorylated)
ArrowR-HSA-6782234 (Reactome)
RNA Polymerase II

holoenzyme complex

(unphosphorylated)
R-HSA-6781818 (Reactome)
RNF111mim-catalysisR-HSA-6790487 (Reactome)
RPA heterotrimerR-HSA-5689317 (Reactome)
RPA heterotrimerR-HSA-6782138 (Reactome)
SUMO1,2,3:UBE2IR-HSA-6790454 (Reactome)
TC-NER

incision complex: 5'-incised damaged DNA:trimmed nascent

mRNA:(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC
ArrowR-HSA-6782211 (Reactome)
TC-NER

incision complex: 5'-incised damaged DNA:trimmed nascent

mRNA:(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC
R-HSA-6782224 (Reactome)
TC-NER

incision complex: 5'-incised damaged DNA:trimmed nascent

mRNA:(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC
mim-catalysisR-HSA-6782224 (Reactome)
TC-NER

post-incision

complex:SSB-dsDNA:trimmed nascent mRNA: (PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC
ArrowR-HSA-6782208 (Reactome)
TC-NER

post-incision

complex:SSB-dsDNA:trimmed nascent mRNA: (PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC
R-HSA-6782227 (Reactome)
TC-NER

post-incision complex:incised DNA without lesion:trimmed nascent

mRNA:PCNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC
ArrowR-HSA-6782224 (Reactome)
TC-NER

post-incision complex:incised DNA without lesion:trimmed nascent

mRNA:PCNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC
R-HSA-6782208 (Reactome)
TC-NER

post-incision complex:incised DNA without lesion:trimmed nascent

mRNA:PCNA:(PCNA:POLD,POLE),(MonoUb:K164-PCNA:POLK):RPA:RFC
mim-catalysisR-HSA-6782208 (Reactome)
TC-NER

pre-incision complex:Open bubble damaged DNA

template:RPA:ERCC5:trimmed nascent mRNA
ArrowR-HSA-6782138 (Reactome)
TC-NER

pre-incision complex:Open bubble damaged DNA

template:RPA:ERCC5:trimmed nascent mRNA
R-HSA-6782141 (Reactome)
TC-NER incision

complex:5'-incised damaged DNA:trimmed

nascent mRNA
ArrowR-HSA-6782204 (Reactome)
TC-NER incision

complex:5'-incised damaged DNA:trimmed

nascent mRNA
R-HSA-6782211 (Reactome)
TC-NER incision complexArrowR-HSA-6782141 (Reactome)
TC-NER incision complexR-HSA-6782204 (Reactome)
TC-NER incision complexmim-catalysisR-HSA-6782204 (Reactome)
TC-NER post-incision

complex:dsDNA with transcription

bubble
ArrowR-HSA-6782227 (Reactome)
TC-NER post-incision

complex:dsDNA with transcription

bubble
R-HSA-6782234 (Reactome)
TC-NER pre-incision

complex:Open bubble damaged DNA template:trimmed

nascent mRNA
ArrowR-HSA-6782131 (Reactome)
TC-NER pre-incision

complex:Open bubble damaged DNA template:trimmed

nascent mRNA
R-HSA-6782138 (Reactome)
TC-NER pre-incision complexArrowR-HSA-6782069 (Reactome)
TC-NER pre-incision complexR-HSA-6782131 (Reactome)
TC-NER pre-incision complexmim-catalysisR-HSA-6782131 (Reactome)
TCEA1ArrowR-HSA-6782234 (Reactome)
TCEA1R-HSA-6782004 (Reactome)
TFIIH CoreArrowR-HSA-5690988 (Reactome)
TFIIHArrowR-HSA-6782234 (Reactome)
TFIIHR-HSA-5691000 (Reactome)
TFIIHR-HSA-6781818 (Reactome)
UBE2IArrowR-HSA-6790454 (Reactome)
UBE2N:UBE2V2ArrowR-HSA-6790487 (Reactome)
USP45mim-catalysisR-HSA-5696465 (Reactome)
UV-DDB:COP9 SignalosomeR-HSA-5691006 (Reactome)
UVSSA:USP7ArrowR-HSA-6782234 (Reactome)
UVSSA:USP7R-HSA-6782004 (Reactome)
Ub,SUMO,K63polyUb:XPC:RAD23:CETN2ArrowR-HSA-6790487 (Reactome)
Ub,SUMO:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1, PAR-PARP2:CHD1LArrowR-HSA-6790454 (Reactome)
Ub,SUMO:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1, PAR-PARP2:CHD1LR-HSA-6790487 (Reactome)
Ub:ERCC1R-HSA-5696465 (Reactome)
Ub:ERCC6ArrowR-HSA-6782234 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2ArrowR-HSA-5696655 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2R-HSA-5691000 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1LArrowR-HSA-5696670 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1LR-HSA-5690996 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1Lmim-catalysisR-HSA-5690996 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2ArrowR-HSA-5689861 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2R-HSA-5696670 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH:PAR-PARP1,PAR-PARP2ArrowR-HSA-5691000 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH:PAR-PARP1,PAR-PARP2R-HSA-5689861 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2ArrowR-HSA-5696664 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2R-HSA-5696655 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBArrowR-HSA-6782943 (Reactome)
Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBR-HSA-5696664 (Reactome)
Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1LArrowR-HSA-5690996 (Reactome)
Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1LR-HSA-6790454 (Reactome)
UbiquitinArrowR-HSA-5696465 (Reactome)
UbiquitinArrowR-HSA-6782069 (Reactome)
UbiquitinR-HSA-6781867 (Reactome)
UbiquitinR-HSA-6782943 (Reactome)
Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1:UVSSA:USP7:XAB2 complex:XPA:TCEA1:HMGN1:EP300ArrowR-HSA-6782004 (Reactome)
Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1:UVSSA:USP7:XAB2 complex:XPA:TCEA1:HMGN1:EP300R-HSA-6782069 (Reactome)
Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1:UVSSA:USP7:XAB2 complex:XPA:TCEA1:HMGN1:EP300mim-catalysisR-HSA-6782069 (Reactome)
Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1ArrowR-HSA-6781867 (Reactome)
Ubiquitinated,hyperphosphorylated RNA Pol II:Damaged DNA template:nascent mRNA hybrid:TFIIH:Ub:ERCC6:ERCC8:DDB1:CUL4:RBX1R-HSA-6782004 (Reactome)
XAB2 complexArrowR-HSA-6782234 (Reactome)
XAB2 complexR-HSA-6782004 (Reactome)
XPAArrowR-HSA-5690988 (Reactome)
XPAArrowR-HSA-6782224 (Reactome)
XPAR-HSA-5689861 (Reactome)
XPAR-HSA-6782004 (Reactome)
XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBArrowR-HSA-5691006 (Reactome)
XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBR-HSA-6782943 (Reactome)
XPC:RAD23:CETN2:Distorted dsDNA:UV-DDBmim-catalysisR-HSA-6782943 (Reactome)
XPC:RAD23:CETN2ArrowR-HSA-5691004 (Reactome)
XPC:RAD23:CETN2R-HSA-5691006 (Reactome)
XPCR-HSA-5691004 (Reactome)
dNTPR-HSA-5691001 (Reactome)
dNTPR-HSA-6782208 (Reactome)
dsDNAArrowR-HSA-5690997 (Reactome)
dsDNAArrowR-HSA-6782234 (Reactome)
excised DNA fragment with lesionArrowR-HSA-5690988 (Reactome)
mRNAArrowR-HSA-6782234 (Reactome)
ribonucleoside triphosphateR-HSA-6781824 (Reactome)
Personal tools