SUMOylation of RNA binding proteins (Homo sapiens)

From WikiPathways

Revision as of 11:19, 9 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
4, 51, 5-7, 15...1, 2, 10, 12, 16111, 2, 15-17, 19nucleoplasmNOP58NUP43 SUMO2:UBE2INUP160 NUP85 POM121 NUP205 NUP93 SUMO2-C93-UBE2I RAE1 NDC1 Nuclear Pore Complex(NPC)SUMO1:HNRNPCNUP98-3 UBE2INUP155 UBE2I-G93-SUMO2 RANBP2 NUP35 SUMO2-K422-HNRNPKNUP88 NUP62 PHC2 NUP98-5 K467-NOP58-G97-SUMO1 UBE2I-G97-SUMO1 PCGF2 PRC1 complexNUP54 SEH1L-2 HNRNPC-G97-SUMO1 CBX8 PHC3 POM121C UBE2INUP37 2SUMO1:NOP58SUMO1-K250-HNRNPC NUP98-4 HNRNPKSCMH1-2 SUMO1:C93-UBE2INUPL1-2 CBX2 SUMO1-K467,K497-NOP58 NUP107 NUP153 BMI1 NUP210 TPR NUPL2 UBE2IRING1 SUMO2-K467,K497-NOP58SUMO1-C93-UBE2I RNF2 SUMO1-C93-UBE2I SUMO2-C93-UBE2I UBE2I-G93-SUMO2 AAAS UBE2I-G97-SUMO1 PHC1 Nup45 NUP188 SUMO1:C93-UBE2IK497-NOP58-G97-SUMO1 NUP50 SUMO2:UBE2IHNRNPCNUP133 CBX4 NUP214 81, 2, 15-17, 191, 15, 199, 13119, 131, 2, 163, 10, 14, 18


Description

SUMOylation of RNA-binding proteins (Li et al. 2004, reviewed in Filosa et al. 2013) alters their interactions with nucleic acids and with proteins. Whereas SUMOylation of HNRNPC decreases its affinity for nucleic acid (ssDNA), SUMOylation of NOP58 is required for binding of snoRNAs. SUMOylation of HNRNPK is required for its coactivation of TP53-dependent transcription. View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Rabut G, Doye V, Ellenberg J.; ''Mapping the dynamic organization of the nuclear pore complex inside single living cells.''; PubMed Europe PMC Scholia
  2. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ.; ''Proteomic analysis of the mammalian nuclear pore complex.''; PubMed Europe PMC Scholia
  3. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJ, Briggs JA, Glavy JS, Hurt E, Beck M.; ''Molecular architecture of the inner ring scaffold of the human nuclear pore complex.''; PubMed Europe PMC Scholia
  4. Impens F, Radoshevich L, Cossart P, Ribet D.; ''Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli.''; PubMed Europe PMC Scholia
  5. Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC.; ''Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.''; PubMed Europe PMC Scholia
  6. Westman BJ, Lamond AI.; ''A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics.''; PubMed Europe PMC Scholia
  7. Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T, Mobbs G, Fan Y, Thierbach K, Huber FM, Collins LN, Davenport AM, Jeon YE, Hoelz A.; ''Architecture of the symmetric core of the nuclear pore.''; PubMed Europe PMC Scholia
  8. Ori A, Banterle N, Iskar M, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M.; ''Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines.''; PubMed Europe PMC Scholia
  9. Su HL, Li SS.; ''Molecular features of human ubiquitin-like SUMO genes and their encoded proteins.''; PubMed Europe PMC Scholia
  10. Westman BJ, Verheggen C, Hutten S, Lam YW, Bertrand E, Lamond AI.; ''A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58.''; PubMed Europe PMC Scholia
  11. Vassileva MT, Matunis MJ.; ''SUMO modification of heterogeneous nuclear ribonucleoproteins.''; PubMed Europe PMC Scholia
  12. Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT.; ''Proteome-wide identification of SUMO2 modification sites.''; PubMed Europe PMC Scholia
  13. Kabachinski G, Schwartz TU.; ''The nuclear pore complex--structure and function at a glance.''; PubMed Europe PMC Scholia
  14. Matafora V, D'Amato A, Mori S, Blasi F, Bachi A.; ''Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition.''; PubMed Europe PMC Scholia
  15. Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC.; ''Uncovering global SUMOylation signaling networks in a site-specific manner.''; PubMed Europe PMC Scholia
  16. Li T, Evdokimov E, Shen RF, Chao CC, Tekle E, Wang T, Stadtman ER, Yang DC, Chock PB.; ''Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis.''; PubMed Europe PMC Scholia
  17. Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET.; ''Characterization of a second member of the sentrin family of ubiquitin-like proteins.''; PubMed Europe PMC Scholia
  18. Pelisch F, Pozzi B, Risso G, Muñoz MJ, Srebrow A.; ''DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation.''; PubMed Europe PMC Scholia
  19. Suntharalingam M, Wente SR.; ''Peering through the pore: nuclear pore complex structure, assembly, and function.''; PubMed Europe PMC Scholia
  20. Filosa G, Barabino SM, Bachi A.; ''Proteomics strategies to identify SUMO targets and acceptor sites: a survey of RNA-binding proteins SUMOylation.''; PubMed Europe PMC Scholia
  21. Fontoura BM, Blobel G, Matunis MJ.; ''A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96.''; PubMed Europe PMC Scholia
  22. Lee SW, Lee MH, Park JH, Kang SH, Yoo HM, Ka SH, Oh YM, Jeon YJ, Chung CH.; ''SUMOylation of hnRNP-K is required for p53-mediated cell-cycle arrest in response to DNA damage.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114952view16:47, 25 January 2021ReactomeTeamReactome version 75
113396view11:47, 2 November 2020ReactomeTeamReactome version 74
112601view15:57, 9 October 2020ReactomeTeamReactome version 73
101517view11:38, 1 November 2018ReactomeTeamreactome version 66
101053view21:20, 31 October 2018ReactomeTeamreactome version 65
100584view19:53, 31 October 2018ReactomeTeamreactome version 64
100133view16:39, 31 October 2018ReactomeTeamreactome version 63
99683view15:08, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99275view12:45, 31 October 2018ReactomeTeamreactome version 62
93764view13:34, 16 August 2017ReactomeTeamreactome version 61
93288view11:19, 9 August 2017ReactomeTeamreactome version 61
87599view08:15, 25 July 2016MirellaKalafatiOntology Term : 'classic metabolic pathway' added !
86372view09:16, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
2SUMO1:NOP58ComplexR-HSA-4570540 (Reactome)
AAAS ProteinQ9NRG9 (Uniprot-TrEMBL)
BMI1 ProteinP35226 (Uniprot-TrEMBL)
CBX2 ProteinQ14781 (Uniprot-TrEMBL)
CBX4 ProteinO00257 (Uniprot-TrEMBL)
CBX8 ProteinQ9HC52 (Uniprot-TrEMBL)
HNRNPC-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
HNRNPCProteinP07910 (Uniprot-TrEMBL)
HNRNPKProteinP61978 (Uniprot-TrEMBL)
K467-NOP58-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
K497-NOP58-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
NDC1 ProteinQ9BTX1 (Uniprot-TrEMBL)
NOP58ProteinQ9Y2X3 (Uniprot-TrEMBL)
NUP107 ProteinP57740 (Uniprot-TrEMBL)
NUP133 ProteinQ8WUM0 (Uniprot-TrEMBL)
NUP153 ProteinP49790 (Uniprot-TrEMBL)
NUP155 ProteinO75694 (Uniprot-TrEMBL)
NUP160 ProteinQ12769 (Uniprot-TrEMBL)
NUP188 ProteinQ5SRE5 (Uniprot-TrEMBL)
NUP205 ProteinQ92621 (Uniprot-TrEMBL)
NUP210 ProteinQ8TEM1 (Uniprot-TrEMBL)
NUP214 ProteinP35658 (Uniprot-TrEMBL)
NUP35 ProteinQ8NFH5 (Uniprot-TrEMBL)
NUP37 ProteinQ8NFH4 (Uniprot-TrEMBL)
NUP43 ProteinQ8NFH3 (Uniprot-TrEMBL)
NUP50 ProteinQ9UKX7 (Uniprot-TrEMBL)
NUP54 ProteinQ7Z3B4 (Uniprot-TrEMBL)
NUP62 ProteinP37198 (Uniprot-TrEMBL)
NUP85 ProteinQ9BW27 (Uniprot-TrEMBL)
NUP88 ProteinQ99567 (Uniprot-TrEMBL)
NUP93 ProteinQ8N1F7 (Uniprot-TrEMBL)
NUP98-3 ProteinP52948-3 (Uniprot-TrEMBL)
NUP98-4 ProteinP52948-4 (Uniprot-TrEMBL)
NUP98-5 ProteinP52948-5 (Uniprot-TrEMBL)
NUPL1-2 ProteinQ9BVL2-1 (Uniprot-TrEMBL)
NUPL2 ProteinO15504 (Uniprot-TrEMBL)
Nuclear Pore Complex (NPC)ComplexR-HSA-157689 (Reactome)
Nup45 ProteinQ9BVL2-2 (Uniprot-TrEMBL)
PCGF2 ProteinP35227 (Uniprot-TrEMBL)
PHC1 ProteinP78364 (Uniprot-TrEMBL)
PHC2 ProteinQ8IXK0 (Uniprot-TrEMBL)
PHC3 ProteinQ8NDX5 (Uniprot-TrEMBL)
POM121 ProteinQ96HA1 (Uniprot-TrEMBL)
POM121C ProteinA8CG34 (Uniprot-TrEMBL)
PRC1 complexComplexR-HSA-389114 (Reactome)
RAE1 ProteinP78406 (Uniprot-TrEMBL)
RANBP2 ProteinP49792 (Uniprot-TrEMBL)
RING1 ProteinQ06587 (Uniprot-TrEMBL)
RNF2 ProteinQ99496 (Uniprot-TrEMBL)
SCMH1-2 ProteinQ96GD3-2 (Uniprot-TrEMBL)
SEH1L-2 ProteinQ96EE3-2 (Uniprot-TrEMBL)
SUMO1-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO1-K250-HNRNPC ProteinP07910 (Uniprot-TrEMBL)
SUMO1-K467,K497-NOP58 ProteinQ9Y2X3 (Uniprot-TrEMBL)
SUMO1:C93-UBE2IComplexR-HSA-2993783 (Reactome)
SUMO1:HNRNPCComplexR-HSA-4570453 (Reactome)
SUMO2-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO2-K422-HNRNPKProteinP61978 (Uniprot-TrEMBL)
SUMO2-K467,K497-NOP58ProteinQ9Y2X3 (Uniprot-TrEMBL)
SUMO2:UBE2IComplexR-HSA-2993778 (Reactome)
TPR ProteinP12270 (Uniprot-TrEMBL)
UBE2I-G93-SUMO2 ProteinP61956 (Uniprot-TrEMBL)
UBE2I-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
UBE2IProteinP63279 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
2SUMO1:NOP58ArrowR-HSA-4570467 (Reactome)
HNRNPCR-HSA-4570493 (Reactome)
HNRNPKR-HSA-4570499 (Reactome)
NOP58R-HSA-4570467 (Reactome)
NOP58R-HSA-4570489 (Reactome)
Nuclear Pore Complex (NPC)mim-catalysisR-HSA-4570493 (Reactome)
PRC1 complexmim-catalysisR-HSA-4570499 (Reactome)
R-HSA-4570467 (Reactome) NOP58 (NOP5) is SUMOylated at lysine-467 and lysine-497 with SUMO1 (Matafora et al. 2009, Westman et al. 2010, Westman and Lamond 2011,Impens et al. 2014). SUMOylation is required for binding of snoRNAs by NOP58.
R-HSA-4570489 (Reactome) NOP58 (NOP5) is SUMOylated at lysine-467 and lysine-497 with SUMO2 (Matic et al. 2010, Westman et al. 2010, Westman and Lamond 2011, Hendriks et al. 2014, Impens et al. 2014, Tammsalu et al. 2014). (Two molecules of SUMO2 are shown for each modification in order to represent the oligomeric chains of SUMO2 that are attached to a target protein.) SUMOylation of NOP58 is required for high affinity binding of snoRNAs by NOP58
R-HSA-4570493 (Reactome) RANBP2 (NUP358) SUMOylates HNRNPC at lysine-237 of isoform C1 (lysine-250 of the reference isoform C2) with SUMO1 (Vassileva et al. 2004). SUMOylation decreases the interaction of HNRNPC with single-stranded DNA.
R-HSA-4570499 (Reactome) CBX4 (Pc2) SUMOylates HNRNPK at lysine-422 with SUMO2 (Li et al. 2004, Lee et al. 2012, Pelisch et al. 2012, Hendriks et al. 2014, Impens et al. 2014, Tammsalu et al. 2014). (Two molecules of SUMO2 are shown in the reaction in order to represent the oligomeric chains of SUMO2 that are attached to a target protein.) PIAS3 also SUMOylates HNRNPK predominantly with SUMO1 (Lee et al. 2012). HNRNPK is SUMOylated in response to DNA damage and SUMOylation is regulated by HIPK2 and CBX4. SUMOylation of HNRNPK is required for coactivation of TP53 (p53) activated transcription. SUMOylation increases the stability of HNRNPK, the nonSUMOylated form of which is normally ubiquinated by HDM2 (Lee et al. 2012).
SUMO1:C93-UBE2IR-HSA-4570467 (Reactome)
SUMO1:C93-UBE2IR-HSA-4570493 (Reactome)
SUMO1:C93-UBE2Imim-catalysisR-HSA-4570467 (Reactome)
SUMO1:HNRNPCArrowR-HSA-4570493 (Reactome)
SUMO2-K422-HNRNPKArrowR-HSA-4570499 (Reactome)
SUMO2-K467,K497-NOP58ArrowR-HSA-4570489 (Reactome)
SUMO2:UBE2IR-HSA-4570489 (Reactome)
SUMO2:UBE2IR-HSA-4570499 (Reactome)
SUMO2:UBE2Imim-catalysisR-HSA-4570489 (Reactome)
UBE2IArrowR-HSA-4570467 (Reactome)
UBE2IArrowR-HSA-4570489 (Reactome)
UBE2IArrowR-HSA-4570493 (Reactome)
UBE2IArrowR-HSA-4570499 (Reactome)
Personal tools