POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation (Homo sapiens)

From WikiPathways

Revision as of 11:28, 9 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
4, 5, 11, 15, 17...11, 17-19, 25...11, 2211, 12, 17, 18, 25...2, 3, 8, 11, 25...11, 17, 30, 3411, 17, 25, 39, 4911, 17, 22, 3711, 13, 17, 25, 27...2, 11, 14, 21, 34...11, 17, 18, 491, 11, 12, 17, 24...6, 9, 11, 16, 17, 23...7, 11, 17, 25, 30...2, 10, 11, 17, 20...11, 17, 18, 31, 40...11, 17, 25, 49cytosolnucleoplasmEPHA1 gene TDGF1 gene TDGF1 geneSALL1NANOG POU5F1:SOX2:NANOG:SALL1 geneSOX2 SOX2 NR6A1(GCNF):TDGF1geneZIC3DPPA4POU5F1:SOX2:NANOG:ZIC3 geneFOXD3 gene POU5F1 DPPA4 gene POU5F1:SOX2:NANOG:TDGF1 geneSALL4:SALL1 geneDPPA4 genePOU5F1 FOXD3 geneNANOGPOU5F1 SOX2ZIC3 gene N-aspartyl-glycosylphosphatidylinositolethanolamine-TDGF1(31-188)NANOG NR6A1-1 POU5F1 SOX2 NANOG POU5F1 POU5F1:SOX2:NANOG:FOXD3 geneNANOG FGF2 gene SOX2 POU5F1:SOX2:NANOG:STAT3 geneFGF2 geneSOX2 POU5F1:SOX2:NANOG:DPPA4 geneZIC3 genePOU5F1:SOX2:NANOG:EPHA1 geneSTAT3 geneEPHA1 geneSOX2 SALL1 gene SALL1 genePOU5F1 POU5F1 STAT3SALL4 NANOG NANOG POU5F1 NANOG SOX2 TDGF1 gene SOX2 FOXD3NANOG POU5F1:SOX2:NANOG:FGF2 geneEPHA1STAT3 gene SALL1 gene POU5F1FGF2(10-155)11, 30, 4911, 12, 18, 30, 39...11, 39, 4911, 30, 491, 11, 12, 39, 49611, 4911, 30


Description

POU5F1 (OCT4), SOX2, and NANOG bind elements in the promoters of target genes. The target genes of each transcription factor overlap extensively: POU5F1, SOX2, and NANOG co-occupy at least 353 genes (Boyer et al. 2005). About half of POU5F1 targets also bind SOX2 and about 90% of these also bind NANOG (Boyer et al. 2005). Upon binding the transcription factors activate expression of one subset of target genes and repress another subset (Kim et al. 2006, Matoba et al. 2006, Player et al. 2006, Babaie et al. 2007). The targets listed in this module are those that have been described as composing activated genes in the core transcriptional network of pluripotent stem cells (Assou et al. 2007, Chavez et al. 2009, Jung et al. 2010). Inferences from mouse to human have been made with caution because of significant differences between the two species (Ginis et al. 2004). View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Ciardiello F, Kim N, Saeki T, Dono R, Persico MG, Plowman GD, Garrigues J, Radke S, Todaro GJ, Salomon DS.; ''Differential expression of epidermal growth factor-related proteins in human colorectal tumors.''; PubMed Europe PMC Scholia
  2. Yang J, Gao C, Chai L, Ma Y.; ''A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells.''; PubMed Europe PMC Scholia
  3. Schuringa JJ, van der Schaaf S, Vellenga E, Eggen BJ, Kruijer W.; ''LIF-induced STAT3 signaling in murine versus human embryonal carcinoma (EC) cells.''; PubMed Europe PMC Scholia
  4. Chai L, Yang J, Di C, Cui W, Kawakami K, Lai R, Ma Y.; ''Transcriptional activation of the SALL1 by the human SIX1 homeodomain during kidney development.''; PubMed Europe PMC Scholia
  5. Matoba R, Niwa H, Masui S, Ohtsuka S, Carter MG, Sharov AA, Ko MS.; ''Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling.''; PubMed Europe PMC Scholia
  6. Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjaye J.; ''Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells.''; PubMed Europe PMC Scholia
  7. Li SS, Liu YH, Tseng CN, Chung TL, Lee TY, Singh S.; ''Characterization and gene expression profiling of five new human embryonic stem cell lines derived in Taiwan.''; PubMed Europe PMC Scholia
  8. Zhong Z, Wen Z, Darnell JE.; ''Stat3 and Stat4: members of the family of signal transducers and activators of transcription.''; PubMed Europe PMC Scholia
  9. Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A, Penman-Splitt M, Bird LM, Bamforth JS, Burn J, Schlessinger D, Nelson DL, Casey B.; ''X-linked situs abnormalities result from mutations in ZIC3.''; PubMed Europe PMC Scholia
  10. Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G.; ''Transposable elements have rewired the core regulatory network of human embryonic stem cells.''; PubMed Europe PMC Scholia
  11. Fong H, Hohenstein KA, Donovan PJ.; ''Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells.''; PubMed Europe PMC Scholia
  12. Ware SM, Peng J, Zhu L, Fernbach S, Colicos S, Casey B, Towbin J, Belmont JW.; ''Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects.''; PubMed Europe PMC Scholia
  13. Hentschke M, Kurth I, Borgmeyer U, Hübner CA.; ''Germ cell nuclear factor is a repressor of CRIPTO-1 and CRIPTO-3.''; PubMed Europe PMC Scholia
  14. Chandler LA, Sosnowski BA, Greenlees L, Aukerman SL, Baird A, Pierce GF.; ''Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines.''; PubMed Europe PMC Scholia
  15. Bianco C, Rangel MC, Castro NP, Nagaoka T, Rollman K, Gonzales M, Salomon DS.; ''Role of Cripto-1 in stem cell maintenance and malignant progression.''; PubMed Europe PMC Scholia
  16. Lim LS, Hong FH, Kunarso G, Stanton LW.; ''The pluripotency regulator Zic3 is a direct activator of the Nanog promoter in ESCs.''; PubMed Europe PMC Scholia
  17. Drummond IA, Mukhopadhyay D, Sukhatme VP.; ''Expression of fetal kidney growth factors in a kidney tumor line: role of FGF2 in kidney development.''; PubMed Europe PMC Scholia
  18. de Castro NP, Rangel MC, Nagaoka T, Salomon DS, Bianco C.; ''Cripto-1: an embryonic gene that promotes tumorigenesis.''; PubMed Europe PMC Scholia
  19. Assou S, Le Carrour T, Tondeur S, Ström S, Gabelle A, Marty S, Nadal L, Pantesco V, Réme T, Hugnot JP, Gasca S, Hovatta O, Hamamah S, Klein B, De Vos J.; ''A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas.''; PubMed Europe PMC Scholia
  20. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR.; ''Human DNA methylomes at base resolution show widespread epigenomic differences.''; PubMed Europe PMC Scholia
  21. Ware SM, Harutyunyan KG, Belmont JW.; ''Zic3 is critical for early embryonic patterning during gastrulation.''; PubMed Europe PMC Scholia
  22. Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R.; ''In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach.''; PubMed Europe PMC Scholia
  23. Assou S, Cerecedo D, Tondeur S, Pantesco V, Hovatta O, Klein B, Hamamah S, De Vos J.; ''A gene expression signature shared by human mature oocytes and embryonic stem cells.''; PubMed Europe PMC Scholia
  24. Hughes SE, Hall PA.; ''Immunolocalization of fibroblast growth factor receptor 1 and its ligands in human tissues.''; PubMed Europe PMC Scholia
  25. Lim LS, Loh YH, Zhang W, Li Y, Chen X, Wang Y, Bakre M, Ng HH, Stanton LW.; ''Zic3 is required for maintenance of pluripotency in embryonic stem cells.''; PubMed Europe PMC Scholia
  26. Göke J, Jung M, Behrens S, Chavez L, O'Keeffe S, Timmermann B, Lehrach H, Adjaye J, Vingron M.; ''Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.''; PubMed Europe PMC Scholia
  27. Arduini BL, Brivanlou AH.; ''Modulation of FOXD3 activity in human embryonic stem cells directs pluripotency and paraxial mesoderm fates.''; PubMed Europe PMC Scholia
  28. Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z, Neradil J, Tichy B, Dvorakova D, Pospisilova S, Hampl A, Dvorak P.; ''A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells.''; PubMed Europe PMC Scholia
  29. Liu Y, Labosky PA.; ''Regulation of embryonic stem cell self-renewal and pluripotency by Foxd3.''; PubMed Europe PMC Scholia
  30. Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC, Firpo MT, Rose-John S, Hayek A.; ''Maintenance of pluripotency in human embryonic stem cells is STAT3 independent.''; PubMed Europe PMC Scholia
  31. Player A, Wang Y, Bhattacharya B, Rao M, Puri RK, Kawasaki ES.; ''Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines.''; PubMed Europe PMC Scholia
  32. Dvorak P, Dvorakova D, Koskova S, Vodinska M, Najvirtova M, Krekac D, Hampl A.; ''Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells.''; PubMed Europe PMC Scholia
  33. International Stem Cell Initiative, Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, McKay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O'Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Rossant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W.; ''Characterization of human embryonic stem cell lines by the International Stem Cell Initiative.''; PubMed Europe PMC Scholia
  34. Netzer C, Rieger L, Brero A, Zhang CD, Hinzke M, Kohlhase J, Bohlander SK.; ''SALL1, the gene mutated in Townes-Brocks syndrome, encodes a transcriptional repressor which interacts with TRF1/PIN2 and localizes to pericentromeric heterochromatin.''; PubMed Europe PMC Scholia
  35. Ma Y, Chai L, Cortez SC, Stopa EG, Steinhoff MM, Ford D, Morgan J, Maizel AL.; ''SALL1 expression in the human pituitary-adrenal/gonadal axis.''; PubMed Europe PMC Scholia
  36. Hafner C, Becker B, Landthaler M, Vogt T.; ''Expression profile of Eph receptors and ephrin ligands in human skin and downregulation of EphA1 in nonmelanoma skin cancer.''; PubMed Europe PMC Scholia
  37. Son MY, Seol B, Han YM, Cho YS.; ''Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency.''; PubMed Europe PMC Scholia
  38. Greber B, Lehrach H, Adjaye J.; ''Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal.''; PubMed Europe PMC Scholia
  39. Lu J, Jeong HW, Kong N, Yang Y, Carroll J, Luo HR, Silberstein LE, Yupoma, Chai L.; ''Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex.''; PubMed Europe PMC Scholia
  40. Kim CG, Lee JJ, Jung DY, Jeon J, Heo HS, Kang HC, Shin JH, Cho YS, Cha KJ, Kim CG, Do BR, Kim KS, Kim HS.; ''Profiling of differentially expressed genes in human stem cells by cDNA microarray.''; PubMed Europe PMC Scholia
  41. Jin VX, O'Geen H, Iyengar S, Green R, Farnham PJ.; ''Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches.''; PubMed Europe PMC Scholia
  42. Tantin D, Gemberling M, Callister C, Fairbrother WG.; ''High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes.''; PubMed Europe PMC Scholia
  43. Metsuyanim S, Harari-Steinberg O, Buzhor E, Omer D, Pode-Shakked N, Ben-Hur H, Halperin R, Schneider D, Dekel B.; ''Expression of stem cell markers in the human fetal kidney.''; PubMed Europe PMC Scholia
  44. Chakravarthy H, Boer B, Desler M, Mallanna SK, McKeithan TW, Rizzino A.; ''Identification of DPPA4 and other genes as putative Sox2:Oct-3/4 target genes using a combination of in silico analysis and transcription-based assays.''; PubMed Europe PMC Scholia
  45. Galán A, Montaner D, Póo ME, Valbuena D, Ruiz V, Aguilar C, Dopazo J, Simón C.; ''Functional genomics of 5- to 8-cell stage human embryos by blastomere single-cell cDNA analysis.''; PubMed Europe PMC Scholia
  46. Watanabe K, Meyer MJ, Strizzi L, Lee JM, Gonzales M, Bianco C, Nagaoka T, Farid SS, Margaryan N, Hendrix MJ, Vonderhaar BK, Salomon DS.; ''Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells.''; PubMed Europe PMC Scholia
  47. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA.; ''Core transcriptional regulatory circuitry in human embryonic stem cells.''; PubMed Europe PMC Scholia
  48. Dahéron L, Opitz SL, Zaehres H, Lensch MW, Andrews PW, Itskovitz-Eldor J, Daley GQ.; ''LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells.''; PubMed Europe PMC Scholia
  49. Jung M, Peterson H, Chavez L, Kahlem P, Lehrach H, Vilo J, Adjaye J.; ''A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells.''; PubMed Europe PMC Scholia
  50. Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS.; ''Differences between human and mouse embryonic stem cells.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114884view16:39, 25 January 2021ReactomeTeamReactome version 75
113330view11:40, 2 November 2020ReactomeTeamReactome version 74
112542view15:50, 9 October 2020ReactomeTeamReactome version 73
101455view11:32, 1 November 2018ReactomeTeamreactome version 66
100993view21:11, 31 October 2018ReactomeTeamreactome version 65
100529view19:45, 31 October 2018ReactomeTeamreactome version 64
100076view16:28, 31 October 2018ReactomeTeamreactome version 63
99627view15:01, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99233view12:44, 31 October 2018ReactomeTeamreactome version 62
93996view13:50, 16 August 2017ReactomeTeamreactome version 61
93605view11:28, 9 August 2017ReactomeTeamreactome version 61
88106view09:56, 26 July 2016RyanmillerOntology Term : 'transcription pathway' added !
88105view09:53, 26 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86712view09:24, 11 July 2016ReactomeTeamreactome version 56
83109view09:59, 18 November 2015ReactomeTeamVersion54
81441view12:58, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
DPPA4 gene ProteinENSG00000121570 (Ensembl)
DPPA4 geneGeneProductENSG00000121570 (Ensembl)
DPPA4ProteinQ7L190 (Uniprot-TrEMBL)
EPHA1 gene ProteinENSG00000146904 (Ensembl)
EPHA1 geneGeneProductENSG00000146904 (Ensembl)
EPHA1ProteinP21709 (Uniprot-TrEMBL)
FGF2 gene ProteinENSG00000138685 (Ensembl)
FGF2 geneGeneProductENSG00000138685 (Ensembl)
FGF2(10-155)ProteinP09038 (Uniprot-TrEMBL)
FOXD3 gene ProteinENSG00000187140 (Ensembl)
FOXD3 geneGeneProductENSG00000187140 (Ensembl)
FOXD3ProteinQ9UJU5 (Uniprot-TrEMBL)
N-aspartyl-glycosylphosphatidylinositolethanolamine-TDGF1(31-188)ProteinP13385 (Uniprot-TrEMBL)
NANOG ProteinQ9H9S0 (Uniprot-TrEMBL)
NANOGProteinQ9H9S0 (Uniprot-TrEMBL)
NR6A1(GCNF):TDGF1 geneComplexR-HSA-2892230 (Reactome)
NR6A1-1 ProteinQ15406-1 (Uniprot-TrEMBL)
POU5F1 ProteinQ01860 (Uniprot-TrEMBL)
POU5F1:SOX2:NANOG:DPPA4 geneComplexR-HSA-6800114 (Reactome)
POU5F1:SOX2:NANOG:EPHA1 geneComplexR-HSA-2889014 (Reactome)
POU5F1:SOX2:NANOG:FGF2 geneComplexR-HSA-2889015 (Reactome)
POU5F1:SOX2:NANOG:FOXD3 geneComplexR-HSA-2889032 (Reactome)
POU5F1:SOX2:NANOG:SALL1 geneComplexR-HSA-2889029 (Reactome)
POU5F1:SOX2:NANOG:STAT3 geneComplexR-HSA-2889003 (Reactome)
POU5F1:SOX2:NANOG:TDGF1 geneComplexR-HSA-2889018 (Reactome)
POU5F1:SOX2:NANOG:ZIC3 geneComplexR-HSA-2889030 (Reactome)
POU5F1ProteinQ01860 (Uniprot-TrEMBL)
SALL1 gene ProteinENSG00000103449 (Ensembl)
SALL1 geneGeneProductENSG00000103449 (Ensembl)
SALL1ProteinQ9NSC2 (Uniprot-TrEMBL)
SALL4 ProteinQ9UJQ4 (Uniprot-TrEMBL)
SALL4:SALL1 geneComplexR-HSA-2889010 (Reactome)
SOX2 ProteinP48431 (Uniprot-TrEMBL)
SOX2ProteinP48431 (Uniprot-TrEMBL)
STAT3 gene ProteinENSG00000168610 (Ensembl)
STAT3 geneGeneProductENSG00000168610 (Ensembl)
STAT3ProteinP40763 (Uniprot-TrEMBL)
TDGF1 gene ProteinENSG00000241186 (Ensembl)
TDGF1 geneGeneProductENSG00000241186 (Ensembl)
ZIC3 gene ProteinENSG00000156925 (Ensembl)
ZIC3 geneGeneProductENSG00000156925 (Ensembl)
ZIC3ProteinO60481 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
DPPA4 geneR-HSA-452701 (Reactome)
DPPA4 geneR-HSA-6800120 (Reactome)
DPPA4ArrowR-HSA-452701 (Reactome)
EPHA1 geneR-HSA-2972967 (Reactome)
EPHA1 geneR-HSA-480509 (Reactome)
EPHA1ArrowR-HSA-480509 (Reactome)
FGF2 geneR-HSA-2972960 (Reactome)
FGF2 geneR-HSA-480515 (Reactome)
FGF2(10-155)ArrowR-HSA-480515 (Reactome)
FOXD3 geneR-HSA-2972964 (Reactome)
FOXD3 geneR-HSA-452750 (Reactome)
FOXD3ArrowR-HSA-452750 (Reactome)
N-aspartyl-glycosylphosphatidylinositolethanolamine-TDGF1(31-188)ArrowR-HSA-452338 (Reactome)
NANOGR-HSA-2972956 (Reactome)
NANOGR-HSA-2972960 (Reactome)
NANOGR-HSA-2972962 (Reactome)
NANOGR-HSA-2972964 (Reactome)
NANOGR-HSA-2972967 (Reactome)
NANOGR-HSA-2972975 (Reactome)
NANOGR-HSA-2972978 (Reactome)
NANOGR-HSA-6800120 (Reactome)
NR6A1(GCNF):TDGF1 geneTBarR-HSA-452338 (Reactome)
POU5F1:SOX2:NANOG:DPPA4 geneArrowR-HSA-452701 (Reactome)
POU5F1:SOX2:NANOG:DPPA4 geneArrowR-HSA-6800120 (Reactome)
POU5F1:SOX2:NANOG:EPHA1 geneArrowR-HSA-2972967 (Reactome)
POU5F1:SOX2:NANOG:EPHA1 geneArrowR-HSA-480509 (Reactome)
POU5F1:SOX2:NANOG:FGF2 geneArrowR-HSA-2972960 (Reactome)
POU5F1:SOX2:NANOG:FGF2 geneArrowR-HSA-480515 (Reactome)
POU5F1:SOX2:NANOG:FOXD3 geneArrowR-HSA-2972964 (Reactome)
POU5F1:SOX2:NANOG:FOXD3 geneArrowR-HSA-452750 (Reactome)
POU5F1:SOX2:NANOG:SALL1 geneArrowR-HSA-2972975 (Reactome)
POU5F1:SOX2:NANOG:SALL1 geneArrowR-HSA-452958 (Reactome)
POU5F1:SOX2:NANOG:STAT3 geneArrowR-HSA-2972956 (Reactome)
POU5F1:SOX2:NANOG:STAT3 geneArrowR-HSA-452515 (Reactome)
POU5F1:SOX2:NANOG:TDGF1 geneArrowR-HSA-2972962 (Reactome)
POU5F1:SOX2:NANOG:TDGF1 geneArrowR-HSA-452338 (Reactome)
POU5F1:SOX2:NANOG:ZIC3 geneArrowR-HSA-2972978 (Reactome)
POU5F1:SOX2:NANOG:ZIC3 geneArrowR-HSA-480470 (Reactome)
POU5F1R-HSA-2972956 (Reactome)
POU5F1R-HSA-2972960 (Reactome)
POU5F1R-HSA-2972962 (Reactome)
POU5F1R-HSA-2972964 (Reactome)
POU5F1R-HSA-2972967 (Reactome)
POU5F1R-HSA-2972975 (Reactome)
POU5F1R-HSA-2972978 (Reactome)
POU5F1R-HSA-6800120 (Reactome)
R-HSA-2972956 (Reactome) The STAT3 gene is bound by POU5F1 (OCT4) (Boyer et al. 2005, Lister et al. 2009, Jung et al. 2010), SOX2 (Boyer et al. 2005, Lister et al. 2009), and NANOG (Boyer et al. 2005, Lister et al. 2009) and POU5F1 (Babaie et al. 2007, Greber et al. 2007), SOX2 (Greber et al. 2007), and NANOG (Greber et al. 2007) activate expression.
R-HSA-2972960 (Reactome) The FGF2 gene is bound by POU5F1 (OCT4) (Boyer et al. 2005), SOX2 (Boyer et al. 2005, Lister et al. 2009), NANOG (Boyer et al. 2005, Lister et al. 2009) and expression of the FGF2 mRNA is activated by POU5F1 (Babaie et al. 2007, Greber et al. 2007) and SOX2 (Greber et al. 2007).
R-HSA-2972962 (Reactome) The TDGF1 (CRIPTO) gene is bound by POU5F1 (OCT4) (Boyer et al. 2005, Jin et al. 2007, Tantin et al. 2008, Jung et al. 2010, Watanabe et al. 2010), SOX2 (Boyer et al. 2005, Lister et al. 2009), and NANOG (Boyer et al. 2005, Lister et al. 2009, Watanabe et al. 2010). POU5F1 (Babaie et al. 2007, Greber et al. 2007, Watanabe et al. 2010), SOX2 (Greber et al. 2007), and NANOG (Greber et al. 2007, Watanabe et al. 2010) activate expression. Embryonal carcinoma cells that express higher levels of TDGF1 are more tumorigenic (Watanabe et al. 2010).
R-HSA-2972964 (Reactome) The FOXD3 gene is bound by POU5F1 (OCT4) (Boyer et al. 2005, Jung et al. 2010), SOX2 (Boyer et al. 2005, Lister et al. 2009), and NANOG (Boyer et al. 2005, Lister et al. 2009) and POU5F1 activates expression (Babaie et al. 2007, Kunarso et al. 2010).
R-HSA-2972967 (Reactome) The EPHA1 gene is bound by POU5F1 (OCT4) (Boyer et al. 2005, Jin et al. 2007, Jung et al. 2010, Kunarso et al. 2010, Goke et al. 2011), SOX2 (Boyer et al. 2005, Lister et al. 2009), NANOG (Boyer et al. 2005, Lister et al. 2009, Kunarso et al. 2010) and expression of the EPHA1 mRNA is activated by POU5F1 (Babaie et al. 2007, Greber et al. 2007, Kunarso et al. 2010), SOX2 (Greber et al. 2007), and NANOG (Greber et al. 2007).
R-HSA-2972975 (Reactome) POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the SALL1 gene (Boyer et al. 2005, Yang et al. 2010) and activate expression (Babaie et al. 2007). SALL4 binds the SALL1 promoter and represses expression thus making SALL4 and POU5F1 antagonistic (Yang et al. 2010).
R-HSA-2972978 (Reactome) POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the ZIC3 gene (Boyer et al. 2005, Lister et al. 2009) and POU5F1 (Babaie et al. 2007, Greber et al. 2007) and SOX2 (Greber et al. 2007) activate expression. In mouse, Zic3 binds the Nanog promoter and activates transcription, thus forming a positive feedback loop (Lim et al. 2010).
R-HSA-452338 (Reactome) The TDGF1 (CRIPTO) gene is transcribed to yield mRNA and the mRNA is translated to yield protein. TDGF1/CRIPTO is expressed in embryonic stem cells (Adewumi et al. 2007, Li et al. 2006, Assou et al. 2009). GCNF (NR6A1) binds to the promoter of the TDGF1 (CRIPTO) gene and downregulates expression of TDGF1 (CRIPTO) during differentiation (Hentschke et al. 2006). POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the TDGF1 gene and enhance transcription (Babaie et al. 2007, Greber et al. 2007, Watanabe et al. 2010). SOX2 binds the TDGF1 promoter adjacent to POU5F1 (Boyer et al. 2005). TDGF1 is a marker of undifferentiated stem cells (reviewed in Bianco et al. 2010, de Castro et al. 2010). Expression of TDGF1 is associated with tumorigenesis (Ciardiello et al. 1991).
R-HSA-452515 (Reactome) The STAT3 gene is transcribed to yield mRNA and the mRNA is translated to yield protein. STAT3 is expressed in embryonic stem cells (Schuringa et al. 2002, Fong et al. 2008). POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the STAT3 gene and enhance transcription (Boyer et al. 2005, Greber et al. 2007, Fong et al. 2008). The binding site of POU5F1 is adjacent to the binding site of SOX2 in the STAT3 promoter (Boyer et al. 2005). Signaling by LIF via STAT3 in murine but not human stem cells is sufficient to prevent differentiation (Schuringa et al. 2002, Humphrey et al. 2004, Daheron et al. 2004).
R-HSA-452701 (Reactome) DPPA4 is expressed in pluripotent stem cells. The promoter of the DPPA4 gene binds OCT4 (POU5F1), SOX2, and NANOG (Player et al. 2006, Boyer et al. 2007, inferred from mouse homologs in Chakravarthy et al. 2008). OCT4 Knockdown experiments show OCT4 enhances expression of DPPA4 (Babaie et al. 2007).
R-HSA-452750 (Reactome) The Forkhead box protein D3 (FOXD3) gene is transcribed and translated to yield FOXD3 protein. FOXD3 is expressed in blastomeres of the inner cell mass (Galan et al. 2010, Arduini et al. 2012). POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the FOXD3 gene and POU5F1 enhances transcription (Babaie et al. 2007, Kunarso et al. 2010). The binding site of POU5F1 is not adjacent to the binding site of SOX2 on the FOXD3 promoter (Boyer et al. 2005). FOXD3 is a molecular marker of stem cells (Calloni et al.2013) and a balance of FOXD3 expression is required to maintain pluripotency (Arduini and Brinvalou 2012, inferred from mouse in Liu and Labosky 2008).
R-HSA-452958 (Reactome) The SALL1 gene is transcribed to yield mRNA and the mRNA is translated to yield protein. SALL1 mRNA and protein are expressed in pituitary, adrenal cortex and the placenta in addition to kidney, testicular, and ovarian cells (Ma et al 2002, Chai et al. 2006). Mutations in SALL1 cause Townes-Brocks syndrome. The protein localizes to pericentric heterochromatin (Netzer et al. 2001). POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the SALL1 gene and enhance transcription (Boyer et al. 2005, Fong et al. 2008). SOX2 binds a site in the SALL1 promoter adjacent to the site bound by POU5F1 (Boyer et al. 2005). SALL4 binds the promoter of the SALL1 gene and represses transcription by associating with Mi-2 (NuRD) repressor complex (Lu et al. 2009, Yang et al. 2010).
R-HSA-480470 (Reactome) The ZIC3 gene is transcribed to yield mRNA and the mRNA is translated to yield protein. POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the ZIC3 gene and POU5F1 (Babaie et al. 2007, Greber et al. 2007) and SOX2 (Greber et al. 2007) enhances transcription. SOX2 binds adjacent to POU5F1 on the ZIC3 promoter (Boyer et al. 2005). ZIC3 is expressed in embryonic stem cells where it maintains pluripotency (Lim et al. 2007). As inferred from mouse, ZIC3 is involved in correct patterning during gastrulation (Ware et al. 2006) and mutations in ZIC3 cause heterotaxy in humans (Gebbia et al. 1997, Ware et al. 2004).
R-HSA-480509 (Reactome) The EPHA1 gene is transcribed to yield mRNA and the mRNA is translated to yield protein. EPHA1 is expressed most highly in epidermis of skin and is downregulated in nonmelanomal skin cancers (Hafner et al. 2006). EPHA1 is expressed at lower levels in liver, colon, small intestine, bladder, kidney, prostate, and thymus (Hafner et al. 2006). POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the EPHA1 gene and OCT4 (Babaie et al. 2007, Greber et al. 2007, Kunarso et al. 2010), SOX2 (Greber et al. 2007) and NANOG (Greber et al. 2007) enhance transcription. The binding site of POU5F1 is adjacent to the binding site of SOX2 on the promoter of EPHA1 (Boyer et al. 2005). Expression and kinase activity of EPHA1 correlate with maintenance of pluripotency (Son et al. 2013).
R-HSA-480515 (Reactome) The FGF2 (bFGF) gene is transcribed to yield mRNA and the mRNA is translated to yield protein. FGF2 is expressed in most tissues including kidney, skin, liver, ureter, and vasculature (Hughes and Hall 1993). FGF2 is expressed in about 35% of tumor lines (Chandler et al. 1999). POU5F1 (OCT4), SOX2, and NANOG bind the promoter of the FGF2 gene and POU5F1 (Babaie et al. 2007, Greber et al. 2007) and SOX2 (Greber et al. 2007) enhance transcription. The binding site of POU5F1 is adjacent to the binding site of SOX2 on the FGF2 promoter (Boyer et al. 2005). FGF2 maintains human embryonic stem cells in an undifferentiated state (Dvorak et al. 2005, Eiselleova et al. 2009).
R-HSA-6800120 (Reactome) POU5F1, SOX2, and NANOG bind the promoter of the DPPA4 gene and activate transcription of DPPA4 (Player et al. 2006, Boyer et al. 2007).
SALL1 geneR-HSA-2972975 (Reactome)
SALL1 geneR-HSA-452958 (Reactome)
SALL1ArrowR-HSA-452958 (Reactome)
SALL4:SALL1 geneTBarR-HSA-452958 (Reactome)
SOX2R-HSA-2972956 (Reactome)
SOX2R-HSA-2972960 (Reactome)
SOX2R-HSA-2972962 (Reactome)
SOX2R-HSA-2972964 (Reactome)
SOX2R-HSA-2972967 (Reactome)
SOX2R-HSA-2972975 (Reactome)
SOX2R-HSA-2972978 (Reactome)
SOX2R-HSA-6800120 (Reactome)
STAT3 geneR-HSA-2972956 (Reactome)
STAT3 geneR-HSA-452515 (Reactome)
STAT3ArrowR-HSA-452515 (Reactome)
TDGF1 geneR-HSA-2972962 (Reactome)
TDGF1 geneR-HSA-452338 (Reactome)
ZIC3 geneR-HSA-2972978 (Reactome)
ZIC3 geneR-HSA-480470 (Reactome)
ZIC3ArrowR-HSA-480470 (Reactome)
Personal tools