Regulation of lipid metabolism by PPARalpha (Homo sapiens)
From WikiPathways
Description
Peroxisome proliferator-activated receptor alpha (PPAR-alpha) is the major regulator of fatty acid oxidation in the liver. PPARalpha is also the target of fibrate drugs used to treat abnormal plasma lipid levels.
PPAR-alpha is a type II nuclear receptor (its subcellular location does not depend on ligand binding). PPAR-alpha forms heterodimers with Retinoid X receptor alpha (RXR-alpha), another type II nuclear receptor. PPAR-alpha is activated by binding fatty acid ligands, especially polyunsaturated fatty acids having 18-22 carbon groups and 2-6 double bonds.
The PPAR-alpha:RXR-alpha heterodimer binds peroxisome proliferator receptor elements (PPREs) in and around target genes. Binding of fatty acids and synthetic ligands causes a conformational change in PPAR-alpha such that it releases the corepressors and binds coactivators (CBP-SRC-HAT complex, ASC complex, and TRAP-Mediator complex) which initiate transcription of the target genes.
Target genes of PPAR-alpha participate in fatty acid transport, fatty acid oxidation, triglyceride clearance, lipoprotein production, and cholesterol homeostasis. View original pathway at:Reactome.
PPAR-alpha is a type II nuclear receptor (its subcellular location does not depend on ligand binding). PPAR-alpha forms heterodimers with Retinoid X receptor alpha (RXR-alpha), another type II nuclear receptor. PPAR-alpha is activated by binding fatty acid ligands, especially polyunsaturated fatty acids having 18-22 carbon groups and 2-6 double bonds.
The PPAR-alpha:RXR-alpha heterodimer binds peroxisome proliferator receptor elements (PPREs) in and around target genes. Binding of fatty acids and synthetic ligands causes a conformational change in PPAR-alpha such that it releases the corepressors and binds coactivators (CBP-SRC-HAT complex, ASC complex, and TRAP-Mediator complex) which initiate transcription of the target genes.
Target genes of PPAR-alpha participate in fatty acid transport, fatty acid oxidation, triglyceride clearance, lipoprotein production, and cholesterol homeostasis. View original pathway at:Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
dimer:12Zn2+:HMGCR
geneProliferator Receptor Element
(PPRE)Annotated Interactions
dimer:12Zn2+:HMGCR
geneProliferator Receptor Element
(PPRE)Binding of a ligand causes a conformational change in PPAR-alpha so that it recruits coactivators. By analogy with the closely related receptor PPAR-gamma, PPAR-alpha probably binds TBL1 and TBLR1, which are responsible for recruiting the 19S proteasome to degrade corepressors during the exchange of corepressors for coactivators. The coactivators belong to the CBP-SRC-HAT complex (CBP/p300, SRC1, SRC2, SRC3, CARM1, SWI/SNF, BAF60C, PRIC320, and PRIC285), the ASC complex (PRIP/ASC2, PIMT), and the TRAP-DRIP-ARC-MEDIATOR complex (TRAP130, PBP/TRAP220). The coactivators contain LXXLL motifs (Nuclear Receptor Boxes) that interact with the AF-2 region in nuclear receptors such as PPAR-alpha.
PPAR-alpha forms heterodimers with Retinoid X receptor alpha (RXR-alpha). The heterodimers bind peroxisome proliferator receptor elements (PPREs) in and around genes regulated by PPAR-alpha.