Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 13:33, 16 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 4, 9, 10, 17...3, 6, 11, 13, 16520, 23, 27231932, 6, 8, 11, 12, 21...2323, 2718mitochondrial matrixMitochondrial 12S rRNA MRPL13 MRPL50 DAP3 PTCD3 MRPL49 MRPS28 MRPL36 MRPS27 MRPS36 MTRF1L tRNA(Met) MRPL13 MRPS17 Mitochondrial 12S rRNA MRPL3 MRPS2 Pro-tRNA(Pro) MRPL3 PTCD3 MRPL57 MRPS18B MRPS36 MRPL48 MRPL46 Tyr-tRNA(Tyr) MRPS24 MRPS26 MRPS22 MRPL28 mRNA ICT1 MRPL24 GADD45GIP1 MRPL19 MRPS28 MRPS12 MRPS2 fMet-tRNA(fMet) MRPS7 tRNA(Glu) Lys-tRNA(Lys) tRNA(Arg) MRPS10 DAP3 MRPS30 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPS31 MRPS2 GFM1 MRPL2 CHCHD1 MRPS6 MRPS35 MRPL21 AURKAIP1 GTP MRPS30 CHCHD1 Leu-tRNA(Leu) GADD45GIP1 tRNA(Ala) MRPL43 Phe-tRNA(Phe) MRPL48 MRPL24 ICT1 Gln-tRNA(Gln) Asn-tRNA(Asn) MRPL24 GTP MRPL23 MRPS23 tRNA(Phe) MRPS10 MRPL12 MRPS33 MRPL48 MRPL34 MRPS18B Asp-tRNA(Asp) MRPL39 DAP3 MRPS31 Gly-tRNA(Gly) MRPL17 tRNA(Leu) MRPS25 His-tRNA(His) MRPL27 MRPL17 MRPS18B MRPL40 Trp-tRNA(Trp) MRPS16 28S ribosomalsubunit:MTIF3MRPS33 MRPL1 GFM2 MRPL14 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL1 Phe-tRNA(Phe) MRPS14 fMet-tRNA(fMet) MRPS15 MRPL10 tRNA(Trp) MRPS16 Thr-tRNA(Thr) MRPS30 MRPL18 MRPL11 Mitochondrial 16S rRNA MRPL13 MRPS2 Glu-tRNA(Glu) PTCD3 MRPL27 MRPL55 MRPS36 MRPS11 MRPS17 MRPL13 MRPL28 Trp-tRNA(Trp) MRPS35 mRNA MRPS17 MRPS10 MRPL18 TUFM MRPL30 MRPL37 MRPL55 MRPS31 MRPS36 tRNA(Glu) MRPS33 MT-TV MRPL35 peptidyl-tRNA with elongated peptide tRNA(Asp) MRPS14 MRPL10 MRPS16 Mitochondrial 16S rRNA MRPS21 MRPL50 MRPL52 Glu-tRNA(Glu) Lys-tRNA(Lys) Mitochondrial 16S rRNA MRPL27 MRPL50 MRPL45 MRPS23 PTCD3 Ala-tRNA(Ala) TSFM MRRFMRPL39 ERAL1 MRPS7 MRPL28 MT-TV MRPL4 mRNA MRPS5 MRPS6 MRPL24 MRPS30 MRPS14 MRPL35 MRPL4 MRPL9 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPL51 MRPL2 MRPL3 MRPS21 MRPL48 MRPS23 MRPL40 MRPS18A MRPL2 MRPL15 MRPL41 MRPS6 Phe-tRNA(Phe) MRPL41 MRPL14 Arg-tRNA(Arg) MRPL21 MRPL41 MRPS34 MRPL13 CHCHD1 MRPS16 MRPL12 MRPS11 MRPL52 Lys-tRNA(Lys) MRPS17 MT-TV Val-tRNA(Val) MRPL34 Mitochondrial 16S rRNA MRPL13 Met-tRNA(Met) 55Sribosome:mRNA:fMet-tRNAMRPL46 CHCHD1 MRPL49 GADD45GIP1 MRPL3 MRPL48 MRPL43 ICT1 MRPL39 MRPS21 Trp-tRNA(Trp) MRPL33 MRPS25 MRPS22 ERAL1 MRPL16 MRPS16 Ala-tRNA(Ala) tRNA(Gln) MRPS12 MRPS9 MRPS23 MRPL43 GDPMRPL41 MRPL57 MRPL18 MRPL9 10-formyl-THFMRPL4 MRPS23 MRPL11 MRPL14 MRPL45 MRPS9 ICT1 CHCHD1 tRNA(His) MRPL55 MRPS35 MRPL16 MT-TV MRPS27 MRPL48 MRPL44 MRPL38 MRPL1 MRPS18A MRPL22 tRNA(Asn) tRNA(Ser) MRPL16 MRPS7 MRPL28 MRPL27 MRPL38 MRPS2 Leu-tRNA(Leu) MRPL41 tRNA(Thr) TUFM:GTP:aminoacyl-tRNAtRNA(Arg) GFM1:GDPpeptidyl-tRNA with elongated peptide CHCHD1 MRPL10 MT-TV MRPL33 MRPL10 MRPL49 MRPL41 MRPL12 MRPS6 MRPL12 MRPL15 MRPL20 MRPL53 MRPL11 Glu-tRNA(Glu) MRPL23 MRPS18C MRPL54 PiMRPL16 MRPL45 MRPL44 MRPL44 MRPS15 tRNA(Met) MRPL33 MRPS22 tRNA(Cys) PTCD3 MRPS23 Ile-tRNA(Ile) MRPS6 MRPS22 MRPS24 Mitochondrial 12S rRNA MRPS23 MTIF2 fMet-tRNA(fMet) MRPL34 CHCHD1 MRPS5 MRPS18A MRPS2 MRPS33 tRNA(Val) Met-tRNA(Met) ERAL1 MRPS10 MRPL48 MRPS25 MRPS31 MRPL42 GFM1 MRPL36 MRPL55 MRPS23 MRPL44 MRPL43 MRPS10 MRPL32 PiMRPS36 tRNA(Asn) MRPL49 tRNA(Met) tRNA(Lys) MRPL2 MRPL38 MRPL23 MRPL33 MRPS26 GFM1:GTPMRPL10 MRPS18C MRPS26 MRPL27 MRPL22 MRPS24 MRPS16 MRPS30 MRPL4 MRPL47 MRPS9 PiMRPL53 MRPL53 MRPL35 MRPL35 MRPL55 MRPL37 ICT1 GADD45GIP1 MRPS9 MRPL54 MRPL15 MRPL28 MRPS9 MRPS18A MRPS31 MRPL39 Leu-tRNA(Leu) MRPL10 MRPS2 MRPL51 MRPS17 GFM2:GTPMRPL10 MRPL23 DAP3 MRPL17 28S ribosomalsubunitMRPS18B Lys-tRNA(Lys) MRPL47 MRPS27 MRPL33 Tyr-tRNA(Tyr) tRNA(Pro) MRPS27 MRPL11 AURKAIP1 Gln-tRNA(Gln) MRPL37 MRPS6 MRPS35 CHCHD1 MT-TV tRNA(Gly) MRPL12 MRPS33 MRPL19 MRPL45 MRPL24 Met-tRNA(Met)55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPGDP MRPL13 MRPL37 MRPS26 GTPtRNA(Trp) MRPL20 MRPS14 MRPL23 tRNA(Phe) tRNA(Tyr) MRPL21 MRPL52 MRPS7 MRPL11 MRPS15 TUFM:TSFMMRPL33 tRNA(Thr) MRPL20 MRPS33 MRPL15 MRPL45 MRPL16 MRPS33 Mitochondrial 12S rRNA MRPL51 MRPS34 Gln-tRNA(Gln) MRPL21 MRPS26 mRNA MRPL43 MRPS24 MRPL15 MRPL48 tRNA(Phe) MRPL40 MRPS18A MRPL46 Val-tRNA(Val) MRPL19 Gln-tRNA(Gln) Thr-tRNA(Thr) MRPL14 MRPS5 MRPS33 39S ribosomalsubunitMRPL22 MRPS17 MT-TV MRPS7 Leu-tRNA(Leu) MRPL22 MRPL35 MRPL32 MRPL53 MRPS24 MRPL24 MRPS34 MRPS25 MRRF MRPL20 MRPS26 MRPS24 MRPL20 fMet-tRNA(fMet) tRNA(Tyr) DAP3 AURKAIP1 MRPL57 MRPL14 MRPS15 MRPL2 Ile-tRNA(Ile) tRNA(Ile) MRPS12 Cys-tRNA(Cys) His-tRNA(His) MRPL52 MRPS2 Trp-tRNA(Trp) MRPS11 MRPS11 MRPS14 CHCHD1 MRPL42 MRPS2 tRNA(Lys) Mitochondrial 12S rRNA MRPL40 MRPL14 MRPS31 ERAL1 MRPL40 MRPS21 Ser-tRNA(Ser) MRPS18A MRPS31 Ala-tRNA(Ala) MRPL27 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPL51 His-tRNA(His) MRPS14 MRPS31 MRPL27 MRPS9 MRPS21 MRPL53 GTPMRPL55 MRPL46 MRPL22 MRPL24 mRNA MRPL42 MRPL50 MRPS12 Ser-tRNA(Ser) Phe-tRNA(Phe) MRPL47 MRPS18A MRPL4 55Sribosome:mRNA:tRNA:MRRFMRPL39 Pro-tRNA(Pro) MRPL22 MRPL53 Mitochondrial 12S rRNA MRPL34 MRPS6 MRPS35 MRPL16 tRNA(Leu) Met-tRNA(Met) MRPS12 MRPS2 ERAL1 MRPL45 MRPL32 MRPS11 MTIF2 MRPL28 MRPS31 MRPL43 ICT1 MRPL47 MRPL19 MRPL18 tRNA(Val) MRPS10 MRPL18 MRPL16 ICT1 ERAL1 MRPL32 DAP3 MRPL40 MRPL52 MRPS18A MRPL1 CHCHD1 MRPS21 MRPL21 MRPL36 MRPL18 MTIF3MRPS11 MRPS6 MRPS7 GTP MRPL35 MRPL54 MTRF1L, ICT1TUFM MRPS26 MRPL9 MRPS12 MRPS22 MRPL2 MRPL30 MRPL50 MRPS21 MRPS30 MRPS22 MRPL30 MRPL54 MRPS27 TUFM MRPL21 MRPL3 Pro-tRNA(Pro) MRPL2 MRPL41 MRPL51 MRPS16 Cys-tRNA(Cys) MRPS10 MRPS24 MRPL47 MRPL34 MRPL10 MRPL14 MRPL46 tRNA(Asp) MRPL11 CHCHD1 MRPS10 Asn-tRNA(Asn) DAP3 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPS10 MRPS36 DAP3 MRPS30 MRPS35 MRPL20 MRPS24 MRPL35 MRPS28 mRNA MTRF1L MRPS26 tRNA(Glu) MRPS25 MRPS18C MRPL36 MRPS15 MRPS34 Mitochondrial 16S rRNA AURKAIP1 MRPS14 MRPL13 MRPS15 MRPS33 MRPL3 MRPS11 ERAL1 MRPS27 MTIF2ICT1 tRNA(His) MRPS34 MRPL21 GDPTUFM MRPS34 MRPL49 MRPL57 MRPL3 ICT1 MRPL21 MRPL39 MRPS18B MRPL49 MRPS23 MRPS12 MRPL48 MRPL43 GTP MRPS31 MRPS27 MRPS14 Val-tRNA(Val) MRPS9 MRPL32 MRPL55 MRPS18A MRPS25 MRPL1 MRPS18C MRPL24 MRPL38 MRPL45 MRPS36 MRPL51 Asp-tRNA(Asp) MRPS18C MRPL13 MRPL55 mRNA MRPS28 MRPL50 MRPS5 Mitochondrial 12S rRNA MRPL38 MRPS5 TUFM:GDPAURKAIP1 MRPS22 MRPS12 MRPS5 MRPL34 MRPL12 MRPS11 MRPL17 tRNA(Leu) tRNA(His) ICT1 MRPS11 MRPS11 GDPMRPL27 MRPL50 MRPL17 MRPS12 MRPL33 MRPS11 MRPL33 tRNA(Ile) MRPL10 MRPS25 MRPL54 MRPL41 tRNA(Cys) MRPL19 MRPS25 PTCD3 MRPL17 MRPS18C Asp-tRNA(Asp) MRPS17 MRPL15 MRPS34 MRPL16 MRPL45 PTCD3 MRPL49 MRPS15 ERAL1 AURKAIP1 MRPL9 MRPL35 MRPL33 MRPL41 55Sribosome:MRRF:GFM2:GTPMRPS28 MRPS26 MRPL18 MRPL30 MRPS18A MRPS21 MRPS7 ICT1 MRPS24 MRPL54 MRPS22 CHCHD1 tRNA(Ile) MRPS30 MRPL19 MRPL57 MRPL46 MRPL2 MRPS12 MRPS34 MRPL37 MRPL47 MRPL24 mRNA MRPS33 TUFM GTP tRNA(Asn) MRPL15 MRPS36 MRPL52 MRPL18 MRPS5 MRPL57 MRPL17 MRPS35 Gly-tRNA(Gly) MRPL3 MRPL20 MRPL9 MRPL27 MRPL39 MRPL46 MRPS26 MRPS30 Mitochondrial 12S rRNA Thr-tRNA(Thr) GFM2:GDPERAL1 MRPS28 MRRF MRPL9 MRPL50 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAfMet-tRNA(fMet) MRPL11 MRPL30 tRNA(Asp) MRPL22 MRPS25 MRPS25 Cys-tRNA(Cys) MRPL51 MRPS25 MRPL38 MRPS21 Gly-tRNA(Gly) MT-TV MRPS35 MRPS26 MRPS22 MRPS15 Mitochondrial 12S rRNA MRPS24 MRPL52 MRPS18C MRPS18C MRPL52 MRPL35 MRPL4 MRPL40 MRPS7 MRPL30 tRNA(Trp) MRPS6 Mitochondrial 16S rRNA MRPL40 tRNA(Ala) MRPL14 MRPL19 MRPL2 MRPS21 MRPL12 MRPL9 MRPL15 MRPL15 MRPS23 MRPL55 MRPS10 MRPL45 MRPS10 tRNA(Ala) MRPS34 MRPL40 MRPL17 ICT1 MRPL14 MRPL44 MRPS31 MRPS23 MRPL55 MRPS15 PTCD3 GADD45GIP1 MRPL37 MRPL36 Mitochondrial 16S rRNA MRPL34 MTIF3 MRPL30 PiERAL1 MRPL42 MRPL32 MRPS2 MRPL49 tRNA(Thr) MRPS18B MRPL11 MRPL9 MRPL42 MRPL23 MRPL42 MRPL57 MRPL17 MRPS6 MRPL20 Ile-tRNA(Ile) MRPS36 MRPS28 DAP3 MRPS22 MRPS23 ICT1 MRPL50 MRPS10 MRPL4 ERAL1 MRPS24 MRPS24 MRPL50 GFM2 MRPS5 MRPL12 MRPS28 MRPS35 MRPL46 PTCD3 PiMRPS27 MRPL21 MRPS15 MRPS5 MRPS11 MRPL27 MRPS28 MRPL30 MRPS16 mRNAGTP GDP TSFMtRNA(Lys) Met-tRNA(Met) MRPL37 PTCD3 MRPL49 MRPS35 MRPL40 mRNA MRPS15 MRPL10 Thr-tRNA(Thr) MRPL22 MRPS18A MRPL45 MRPL1 MRPL43 DAP3 MRPS23 AURKAIP1 MRPL2 MRPL35 GFM2 MRPL52 MRPS25 MRPL30 Ser-tRNA(Ser) MRPS12 MRPS6 AURKAIP1 MRPS16 MRPL38 MRPL38 AURKAIP1 MRPL17 MRPS7 Mitochondrial 12S rRNA MRPL47 MTIF2:GTPMRPS28 MRPS33 MRPS16 tRNA(Tyr) MRPS27 MRPS22 Asp-tRNA(Asp) tRNA(Cys) MRPL1 DAP3 MRPL47 MRPS17 MRPL18 MRPL24 MRPS31 MRPS14 MRPL39 PTCD3 MRPL48 MRPL28 MRPS30 His-tRNA(His) MRPL42 MRPS18B MRPL53 MRPL36 MRPL28 MRPS9 MRPS14 MRPL11 MRPS36 Arg-tRNA(Arg) MRPL21 MRPL50 MRPS30 MRPL36 GADD45GIP1 MRPL36 MRPL47 MRPS36 MRPL44 Asn-tRNA(Asn) MRPL54 MRPS18B MRPS18B MRPL21 MRPL52 DAP3 MRPS7 MRPS17 MRPL54 MRPL28 MRPL3 MRPL51 MRPL41 MRPL13 MRPL43 MRPL4 MRPL15 GTP MT-TV MRPL39 MRPL11 MRPL39 MRPL22 MRPS15 MRPS17 MRPL48 MRPL19 peptidyl-tRNA with elongated peptide MRPL44 MRPL44 MRPS27 MRPL1 MRPS6 MRPS33 MRPL17 MRPS34 MRPL49 MRPL23 MRPS17 MRPS28 tRNA(Met)AURKAIP1 MRPL41 ERAL1 MRPL37 MRPS14 GADD45GIP1 MRPL38 MRPL57 MRPS17 MRPL57 MRPS7 MRPL30 ERAL1 MRPS33 MRPL20 MRPL46 MRPL32 tRNA(Gly) tRNA(Gln) Mitochondrial 12S rRNA MRPS36 MRPS18B MRPS5 MRPL51 MRPL46 MRPL20 MRPL32 Val-tRNA(Val) 55Sribosome:mRNA:tRNAMRPS26 MRPL13 MRPS18A MRPL18 MRPS5 Arg-tRNA(Arg) MRPL22 MRPL53 MRPL34 AURKAIP1 peptidyl-tRNA with elongated peptide MRPL12 Mitochondrial 12S rRNA MRPS35 MRPL33 MRPL54 MRPS24 MRPS9 MRPS27 THFMRPS26 MRPS18B MRPL32 tRNA(Ser) GADD45GIP1 MRPL34 MRPL12 MRPL53 GTP MRPL54 Pro-tRNA(Pro) MRPL34 Mitochondrial 16S rRNA MRPL18 Asn-tRNA(Asn) MRPL42 GFM1 PTCD3 MRPS28 MRPS11 MRPL44 MRPL57 MRPL1 CHCHD1 MRPS16 MRPL23 MRPL34 Mitochondrial 16S rRNA aminoacyl-tRNAAURKAIP1 Gly-tRNA(Gly) MRPS12 MRPL45 MRPL36 MRPS7 GTP Glu-tRNA(Glu) MRPL28 MRPL36 MRPL47 MRPS18B AURKAIP1 MRPS9 MRPL57 MRPS9 MRPS18B MRPL30 MRPS18C MRPL19 Tyr-tRNA(Tyr) MRPL19 MRPS9 tRNA(Pro) MRPS34 MRPL4 MRPS7 MRPL23 MT-TV MRPS22 MRPL38 polypeptideMRPL33 MRPS36 tRNA(Gln) MRPL39 MRPS2 MRPS17 Arg-tRNA(Arg) MRPS35 MRPS12 MRPS28 MRPS31 MTFMTMRPS5 MRPL3 MRPL28 MRPL37 MRPL54 MRPL44 mRNA MRPL20 MRPL27 MRPL2 MRPL11 MRPS18C DAP3 MRPL43 MRPS34 MRPL22 MRPL43 MRPS16 MRPS27 Mitochondrial 16S rRNA MRPS9 MRPS16 tRNAGADD45GIP1 tRNA(Gly) MRPL1 MRPL37 fMet-tRNA(fMet)MRPL23 MRPL15 MRPL53 MRPL40 MRPS5 MRPS18C MRPL4 Ser-tRNA(Ser) MRPS22 MRPL35 MRPL16 GTP MRPL23 MRPL42 Mitochondrial 16S rRNA MRPL51 MRPL36 MRPS18C MRPL51 tRNA(Ser) MRPL52 Mitochondrial 12S rRNA tRNA(Arg) MRPS30 fMet-tRNA(fMet) MRPL49 MRPL32 MRPL4 GADD45GIP1 MRPL42 MRPS21 MRPS10 MRPS27 MT-TV MRPL44 GADD45GIP1 GDP TUFM:GTPMRPL19 MRPS14 Ala-tRNA(Ala) Cys-tRNA(Cys) MRPS35 MRPL9 MRPS18C MRPS25 tRNA(Val) MRPS14 MRPL10 MRPL47 MRPL55 MRPL46 MRPL38 MRPS34 MRPL32 MRPS6 MTIF3 MRPS2 MRPL24 MRPS21 PTCD3 MRPL42 tRNA(Pro) MRPS21 MRPS30 MRPL1 Ile-tRNA(Ile) MRPL3 Tyr-tRNA(Tyr) MRPS18A MRPL16 MRPL16 MRPL12 MRPL9 MRPL53 MRPS15 MRPL9 MRPL37 MRPL14 MRPL14 14, 2814, 288, 13, 3314, 2814, 2814, 281, 15, 2514, 2814, 2814, 2814, 287, 14, 15, 2814, 2814, 2814, 2814, 28


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 61
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-NUL-5389836 (Reactome)
polypeptideR-NUL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools