Arachidonic acid metabolism (Homo sapiens)

From WikiPathways

Revision as of 13:24, 16 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
849, 5349, 539791, 11695, 1139319, 8811166, 8020, 23, 33, 9975, 10718827848, 52, 77, 91, 1206311134, 46, 91, 11613, 9289311181126381, 9716, 36, 109, 12411438, 7291100, 10828, 584, 1283, 5, 2611, 4157, 65, 85, 9445, 60, 125891119638, 7210, 4035, 39, 9022, 24861, 4382, 10337, 67, 78, 87, 9449, 5345, 12132, 7920, 33, 9962, 68, 84, 10121, 306, 59, 12395, 11311149, 5320, 33, 9952, 71, 91, 1202, 55, 61, 117106, 110, 11950, 74, 989, 9912151, 6454, 7315, 122292, 55, 61, 1177, 1776, 10412, 44, 47, 9814, 10527, 1156, 59, 12383126, 12725, 70, 10230, 102426942nuclear envelopecytosollipid particleendoplasmic reticulum lumenLTA4H:Zn2+PTGS1 MDAH+12R-HpETEALOX5:Ca2+:Fe2+15k-PGE2/F2aCYP1B1 NADP+CYP(5)H+CYP2J2 NAD+EET(1)NADP+CYP2C8 Fe2+ PTGES2(88-377) CYP1B1 O2CYP2C19 8,9-DHET H+H2O12S-HpETETXN-S2H2H+ALDHCYP4F8 p-S272-ALOX5 Acyl-CoAH2OO2GGT1(1-380) H2ONADPHNADPHO2L-GluTXN-S2CYP(4)ALOX12:Fe2+CoA-SHGPX2 ALOX15 NADP+acetylsalicylateNADP+L-selenocysteine residue-GPX1 11dh-TXB2CYP1A2 AANAD+EXC4PGI2TrXB3 ARA18cooh-LTB4H2OFe2+ H+ETA19-HETE15epi-LXA4/B416-HETE PC ETAEPHX2 dimere-CYP4A11 NADH FAAHLXA4H2OL-GluALOX15B AKR1C3GSH ALOX5:ALOX5AP:LTC4SCYP2C9 CYP1A1 H2OEXE4PGE2NADP+GPX4(?-197) PTGIS PGD2/E2/F2aH+PTGS1 NADP+ALOX12 H+NADPHALOX15:Fe2+H+H+heme b GPX2 CYP2U1 PGC2GlyGPX2 PGE2PGE2 12S-HHTALOX12/15heme b O2GSHO2EXA4PTGS1 dimerFe2+ PTGIS,CYP8B117-HETE GSHALOX15 L-selenocysteine residue-GPX1 PTGR2CYP4F11 heme b Mg2+ CYP4B1 ABCC1HXA3 CYP4F3 H+PGB25-oxoETEEPHX2 14,15-EET LTC4S 15k-PGF2a CYP4F22 CYP2C19 ALOX12:Fe2+PTGR1PGH2LXB4 PTGDS15-oxoETECYP4A11 15R-HETE20-HETEH2O11epi-PGF2aGPX4(?-197) 15S-HETECYP1B1 15epi-LXA4 5,6-EET LTD4AAO2NADPH 15d-PGA2Ca2+ H+LXA4/B4NADPH16/17/18-HETEGSSG14,15-EET NADP+ H2OCYP4A11 NADHO26k-PGF1aPON3 CYP4F2 ALOX12B:Fe2+LTE4salicylate11,12-EET Ca2+ CYP1A1 AWAT1H2ODHET(1)Fe2+ LXA4 Fe2+ HPGD ALOX12 dhk-LXA4PTGS2 ALOX12B ARACOHPON2 6t/6t,12epi-LTB4PTGES 20cho-LTB45,6-DHET PTGS2 celecoxib H2OTXA2NAD(P)+CYP1A2 H2O15-HEDHNADP+H2O12-oxoLTB4DPEP2 H2OPTGR1EXD4Fe2+ ALOXE3CYP2J2 6t,12epi-LTB4 H2Op-T222,S272,T334-MAPKAPK2H+HPGDS PTGS2 15k-PGE2 HXEH2-LysophosphatidylcholinePGD2H+heme b H2OPGG2HXA3/B3CYP4A22 FAAH2H2OGPX1/2/4NADPHHPGDS dimerNADP+Cytochrome P450(CYP4F2/4F3 based)ActivePLA2:phosphatidylcholineH2OCYP2U1 18-HETE PON1,2,3:2xCa2+dimersH2O15k-LXA4GSHTXB215d-PGJ2NADPH15d-PGD2PGF2aGGT1, 5 dimersCYP1A2 LTA4FAM213BH+H2OCYP1B1 Ca2+ PTGS2:celecoxibPTGS2 dimerH2ONADP+AEAAc-PTGS2 dimerGSSG8,9/11,12/14,15-EETHXB3 PTGES3 p-S272-ALOX5 NADPHheme b DPEP3 ALOX5AP NADP+O-acetyl-L-serine-PTGS2 AAPTGES2(88-377),PTGES35-HETEdhk-PGE2/F2aarachidyl ester12S-HETEGSSG11,12-DHET GGTNADPHPGF2a LTA4H NADP+NAD(P)HDPEP1 20OH-LTB4Zn2+ Ca2+ O2NADPHH2O5-HEDHNADHGSH CYP1A2 CYP(1)ALOX12:Fe2+LTB420cooh-LTB4TBXAS1LTC4Fe2+ HXA3PGH2GGT5(1-387) O25,6-EET8,9-EET H+5-HETELNADPHH+CYP2C9 AKR1C3NAD+Zn2+ 5S-HpETEAEAHPGD dimerH2ODPEP1,2,3 dimersLTC4Fe2+ 15k-PGD2 HPGD dimerPCPON1 8,9-EET CYP2C8 H2O15k-PGF2a GSHTrXA3 CYP8B1 H+NADP+NADHGPX1/2/4O25S-HETEPGD2 delta12-PGJ2GGT5(388-586) CYP(3)PGD2PGJ2L-selenocysteine residue-GPX1 ALOX12 PGA2HPGD GPX4(?-197) TrXA3/B3NADPH15k-PGE2 MNAdhk-PGE2 DPEPGGT1(381-569) H2Odhk-PGF2a CYP1A1 14,15-DHET ALOX15 NADPHNAD+ 12R-HETEALOX15/15BALOX5 CYP1B1 TXDHGlyNADPHp-S505,S727-PLA2G4A Ac-PTGS1 dimerH2OCYP4F2 p-S272-ALOX5:Ca2+:Fe2+CBR1Ca2+ H2OGPX1/2/415epi-LXB4 O-acetyl-L-serine-PTGS1 11,12-EET Fe2+ 15S-HpETECYP1A1 ALOX12 6t-LTB4 NADP+H2OPTGES trimerCYP(2)15k-PGD2/E2/F2aH2OFe2+ celecoxib12-oxoETEH+CYP1A2 CYP1A1 14302956102102102


Description

Eicosanoids, oxygenated, 20-carbon fatty acids, are autocrine and paracrine signaling molecules that modulate physiological processes including pain, fever, inflammation, blood clot formation, smooth muscle contraction and relaxation, and the release of gastric acid. Eicosanoids are synthesized in humans primarily from arachidonic acid (all-cis 5,8,11,14-eicosatetraenoic acid) that is released from membrane phospholipids. Once released, arachidonic acid is acted on by prostaglandin G/H synthases (PTGS, also known as cyclooxygenases (COX)) to form prostaglandins and thromboxanes, by arachidonate lipoxygenases (ALOX) to form leukotrienes, epoxygenases (cytochrome P450s and epoxide hydrolase) to form epoxides such as 15-eicosatetraenoic acids, and omega-hydrolases (cytochrome P450s) to form hydroxyeicosatetraenoic acids (Buczynski et al. 2009, Vance & Vance 2008).
Levels of free arachidonic acid in the cell are normally very low so the rate of synthesis of eicosanoids is determined primarily by the activity of phospholipase A2, which mediates phospholipid cleavage to generate free arachidonic acid. The enzymes involved in arachidonic acid metabolism are typically constitutively expressed so the subset of these enzymes expressed by a cell determines the range of eicosanoids it can synthesize.
Eicosanoids are unstable, undergoing conversion to inactive forms with half-times under physiological conditions of seconds or minutes. Many of these reactions appear to be spontaneous. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 2142753
Reactome-version 
Reactome version: 61
Reactome Author 
Reactome Author: Williams, MG

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Berry KA, Borgeat P, Gosselin J, Flamand L, Murphy RC.; ''Urinary metabolites of leukotriene B4 in the human subject.''; PubMed Europe PMC Scholia
  2. Wang T, Xu C, Zhou X, Li C, Zhang H, Lian BQ, Lee JJ, Shen J, Liu Y, Lian CG.; ''Homozygous ALOXE3 Nonsense Variant Identified in a Patient with Non-Bullous Congenital Ichthyosiform Erythroderma Complicated by Superimposed Bullous Majocchi's Granuloma: The Consequences of Skin Barrier Dysfunction.''; PubMed Europe PMC Scholia
  3. Sjölinder M, Tornhamre S, Claesson HE, Hydman J, Lindgren J.; ''Characterization of a leukotriene C4 export mechanism in human platelets: possible involvement of multidrug resistance-associated protein 1.''; PubMed Europe PMC Scholia
  4. Yu Z, Schneider C, Boeglin WE, Brash AR.; ''Mutations associated with a congenital form of ichthyosis (NCIE) inactivate the epidermal lipoxygenases 12R-LOX and eLOX3.''; PubMed Europe PMC Scholia
  5. Antón R, Puig L, Esgleyes T, de Moragas JM, Vila L.; ''Occurrence of hepoxilins and trioxilins in psoriatic lesions.''; PubMed Europe PMC Scholia
  6. Izumi T, Hoshiko S, Rådmark O, Samuelsson B.; ''Cloning of the cDNA for human 12-lipoxygenase.''; PubMed Europe PMC Scholia
  7. Murakami M, Taketomi Y, Sato H, Yamamoto K.; ''Secreted phospholipase A2 revisited.''; PubMed Europe PMC Scholia
  8. Aviram M, Rosenblat M.; ''Paraoxonases (PON1, PON2, PON3) analyses in vitro and in vivo in relation to cardiovascular diseases.''; PubMed Europe PMC Scholia
  9. Chiba N, Imai H, Narashima K, Arai M, Oshima G, Kunimoto M, Nakagawa Y.; ''Cellular glutathione peroxidase as a predominant scavenger of hydroperoxyeicosatetraenoic acids in rabbit alveolar macrophages.''; PubMed Europe PMC Scholia
  10. Lam BK, Owen WF, Austen KF, Soberman RJ.; ''The identification of a distinct export step following the biosynthesis of leukotriene C4 by human eosinophils.''; PubMed Europe PMC Scholia
  11. Lam BK, Penrose JF, Freeman GJ, Austen KF.; ''Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4.''; PubMed Europe PMC Scholia
  12. Feltenmark S, Gautam N, Brunnström A, Griffiths W, Backman L, Edenius C, Lindbom L, Björkholm M, Claesson HE.; ''Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells.''; PubMed Europe PMC Scholia
  13. Powell PK, Wolf I, Jin R, Lasker JM.; ''Metabolism of arachidonic acid to 20-hydroxy-5,8,11, 14-eicosatetraenoic acid by P450 enzymes in human liver: involvement of CYP4F2 and CYP4A11.''; PubMed Europe PMC Scholia
  14. Werz O, Klemm J, Samuelsson B, Rådmark O.; ''5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases.''; PubMed Europe PMC Scholia
  15. Kühn H, Barnett J, Grunberger D, Baecker P, Chow J, Nguyen B, Bursztyn-Pettegrew H, Chan H, Sigal E.; ''Overexpression, purification and characterization of human recombinant 15-lipoxygenase.''; PubMed Europe PMC Scholia
  16. Antón R, Vila L.; ''Stereoselective biosynthesis of hepoxilin B3 in human epidermis.''; PubMed Europe PMC Scholia
  17. Gainer JV, Bellamine A, Dawson EP, Womble KE, Grant SW, Wang Y, Cupples LA, Guo CY, Demissie S, O'Donnell CJ, Brown NJ, Waterman MR, Capdevila JH.; ''Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension.''; PubMed Europe PMC Scholia
  18. Wheelan P, Hankin JA, Bilir B, Guenette D, Murphy RC.; ''Metabolic transformations of leukotriene B4 in primary cultures of human hepatocytes.''; PubMed Europe PMC Scholia
  19. Soberman RJ, Sutyak JP, Okita RT, Wendelborn DF, Roberts LJ, Austen KF.; ''The identification and formation of 20-aldehyde leukotriene B4.''; PubMed Europe PMC Scholia
  20. Kikuta Y, Kato M, Yamashita Y, Miyauchi Y, Tanaka K, Kamada N, Kusunose M.; ''Human leukotriene B4 omega-hydroxylase (CYP4F3) gene: molecular cloning and chromosomal localization.''; PubMed Europe PMC Scholia
  21. Rådmark O, Shimizu T, Jörnvall H, Samuelsson B.; ''Leukotriene A4 hydrolase in human leukocytes. Purification and properties.''; PubMed Europe PMC Scholia
  22. Ensor CM, Zhang H, Tai HH.; ''Purification, cDNA cloning and expression of 15-oxoprostaglandin 13-reductase from pig lung.''; PubMed Europe PMC Scholia
  23. McGee J, Fitzpatrick F.; ''Enzymatic hydration of leukotriene A4. Purification and characterization of a novel epoxide hydrolase from human erythrocytes.''; PubMed Europe PMC Scholia
  24. Anderson ME, Allison RD, Meister A.; ''Interconversion of leukotrienes catalyzed by purified gamma-glutamyl transpeptidase: concomitant formation of leukotriene D4 and gamma-glutamyl amino acids.''; PubMed Europe PMC Scholia
  25. Bryant RW, Simon TC, Bailey JM.; ''Role of glutathione peroxidase and hexose monophosphate shunt in the platelet lipoxygenase pathway.''; PubMed Europe PMC Scholia
  26. Sirois P, Brousseau Y, Chagnon M, Gentile J, Gladu M, Salari H, Borgeat P.; ''Metabolism of leukotrienes by adult and fetal human lungs.''; PubMed Europe PMC Scholia
  27. Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC.; ''Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart.''; PubMed Europe PMC Scholia
  28. Clària J, Serhan CN.; ''Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions.''; PubMed Europe PMC Scholia
  29. Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL.; ''Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin.''; PubMed Europe PMC Scholia
  30. Chu FF, Doroshow JH, Esworthy RS.; ''Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI.''; PubMed Europe PMC Scholia
  31. Stables MJ, Gilroy DW.; ''Old and new generation lipid mediators in acute inflammation and resolution.''; PubMed Europe PMC Scholia
  32. Chuang SS, Helvig C, Taimi M, Ramshaw HA, Collop AH, Amad M, White JA, Petkovich M, Jones G, Korczak B.; ''CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes omega- and (omega-1)-hydroxylation of fatty acids.''; PubMed Europe PMC Scholia
  33. Tang S, Bhatia B, Maldonado CJ, Yang P, Newman RA, Liu J, Chandra D, Traag J, Klein RD, Fischer SM, Chopra D, Shen J, Zhau HE, Chung LW, Tang DG.; ''Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells.''; PubMed Europe PMC Scholia
  34. Boeglin WE, Kim RB, Brash AR.; ''A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression.''; PubMed Europe PMC Scholia
  35. Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB.; ''Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1.''; PubMed Europe PMC Scholia
  36. Kikuta Y, Kusunose E, Kusunose M.; ''Prostaglandin and leukotriene omega-hydroxylases.''; PubMed Europe PMC Scholia
  37. Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF.; ''A second fatty acid amide hydrolase with variable distribution among placental mammals.''; PubMed Europe PMC Scholia
  38. Gulliksson M, Brunnström A, Johannesson M, Backman L, Nilsson G, Harvima I, Dahlén B, Kumlin M, Claesson HE.; ''Expression of 15-lipoxygenase type-1 in human mast cells.''; PubMed Europe PMC Scholia
  39. Funk CD, Furci L, FitzGerald GA.; ''Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase.''; PubMed Europe PMC Scholia
  40. Yu Z, Schneider C, Boeglin WE, Marnett LJ, Brash AR.; ''The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase.''; PubMed Europe PMC Scholia
  41. Bylund J, Ericsson J, Oliw EH.; ''Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography-mass spectrometry with ion trap MS.''; PubMed Europe PMC Scholia
  42. Reed KA, Tucker DE, Aloulou A, Adler D, Ghomashchi F, Gelb MH, Leslie CC, Oates JA, Boutaud O.; ''Functional characterization of mutations in inherited human cPLA₂ deficiency.''; PubMed Europe PMC Scholia
  43. Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN.; ''Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities.''; PubMed Europe PMC Scholia
  44. Irvine RF.; ''How is the level of free arachidonic acid controlled in mammalian cells?''; PubMed Europe PMC Scholia
  45. Hill TD, White JG, Rao GH.; ''Role of glutathione and glutathione peroxidase in human platelet arachidonic acid metabolism.''; PubMed Europe PMC Scholia
  46. Mansour M, Agha A.; ''Inhibition of calcium ionophore-stimulated leukotriene generation from intact human neutrophils by captopril.''; PubMed Europe PMC Scholia
  47. Werner K, Schaefer WR, Schweer H, Deppert WR, Karck U, Zahradnik HP.; ''Characterization and identification of cytochrome P450 metabolites of arachidonic acid released by human peritoneal macrophages obtained from the pouch of Douglas.''; PubMed Europe PMC Scholia
  48. Antón R, Abián J, Vila L.; ''Characterization of arachidonic acid metabolites through the 12-lipoxygenase pathway in human epidermis by high-performance liquid chromatography and gas chromatography/mass spectrometry.''; PubMed Europe PMC Scholia
  49. Welsch DJ, Creely DP, Hauser SD, Mathis KJ, Krivi GG, Isakson PC.; ''Molecular cloning and expression of human leukotriene-C4 synthase.''; PubMed Europe PMC Scholia
  50. Pace-Asciak CR, Granström E, Samuelsson B.; ''Arachidonic acid epoxides. Isolation and structure of two hydroxy epoxide intermediates in the formation of 8,11,12- and 10,11,12-trihydroxyeicosatrienoic acids.''; PubMed Europe PMC Scholia
  51. Kaczocha M, Glaser ST, Chae J, Brown DA, Deutsch DG.; ''Lipid droplets are novel sites of N-acylethanolamine inactivation by fatty acid amide hydrolase-2.''; PubMed Europe PMC Scholia
  52. Rouzer CA, Samuelsson B.; ''Reversible, calcium-dependent membrane association of human leukocyte 5-lipoxygenase.''; PubMed Europe PMC Scholia
  53. Rouzer CA, Matsumoto T, Samuelsson B.; ''Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities.''; PubMed Europe PMC Scholia
  54. Wickham S, West MB, Cook PF, Hanigan MH.; ''Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes.''; PubMed Europe PMC Scholia
  55. Buczynski MW, Dumlao DS, Dennis EA.; ''Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology.''; PubMed Europe PMC Scholia
  56. Powell WS, Gravelle F, Gravel S.; ''Metabolism of 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid and other 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human polymorphonuclear leukocytes.''; PubMed Europe PMC Scholia
  57. Claesson HE, Griffiths WJ, Brunnström A, Schain F, Andersson E, Feltenmark S, Johnson HA, Porwit A, Sjöberg J, Björkholm M.; ''Hodgkin Reed-Sternberg cells express 15-lipoxygenase-1 and are putative producers of eoxins in vivo: novel insight into the inflammatory features of classical Hodgkin lymphoma.''; PubMed Europe PMC Scholia
  58. Yokomizo T, Ogawa Y, Uozumi N, Kume K, Izumi T, Shimizu T.; ''cDNA cloning, expression, and mutagenesis study of leukotriene B4 12-hydroxydehydrogenase.''; PubMed Europe PMC Scholia
  59. Raulf M, König W, Köller M, Stüning M.; ''Release and functional characterization of the leukotriene D4-metabolizing enzyme (dipeptidase) from human polymorphonuclear leucocytes.''; PubMed Europe PMC Scholia
  60. Sutherland M, Shankaranarayanan P, Schewe T, Nigam S.; ''Evidence for the presence of phospholipid hydroperoxide glutathione peroxidase in human platelets: implications for its involvement in the regulatory network of the 12-lipoxygenase pathway of arachidonic acid metabolism.''; PubMed Europe PMC Scholia
  61. Gomez GA, Morisseau C, Hammock BD, Christianson DW.; ''Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis.''; PubMed Europe PMC Scholia
  62. Pace-Asciak CR, Lee WS.; ''Purification of hepoxilin epoxide hydrolase from rat liver.''; PubMed Europe PMC Scholia
  63. Izumi T, Rådmark O, Jörnvall H, Samuelsson B.; ''Purification of two forms of arachidonate 15-lipoxygenase from human leukocytes.''; PubMed Europe PMC Scholia
  64. Wecksler AT, Kenyon V, Deschamps JD, Holman TR.; ''Substrate specificity changes for human reticulocyte and epithelial 15-lipoxygenases reveal allosteric product regulation.''; PubMed Europe PMC Scholia
  65. Yokomizo T, Izumi T, Takahashi T, Kasama T, Kobayashi Y, Sato F, Taketani Y, Shimizu T.; ''Enzymatic inactivation of leukotriene B4 by a novel enzyme found in the porcine kidney. Purification and properties of leukotriene B4 12-hydroxydehydrogenase.''; PubMed Europe PMC Scholia
  66. Werz O, Szellas D, Steinhilber D, Rådmark O.; ''Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2).''; PubMed Europe PMC Scholia
  67. Sigal E, Grunberger D, Highland E, Gross C, Dixon RA, Craik CS.; ''Expression of cloned human reticulocyte 15-lipoxygenase and immunological evidence that 15-lipoxygenases of different cell types are related.''; PubMed Europe PMC Scholia
  68. Rouzer CA, Rands E, Kargman S, Jones RE, Register RB, Dixon RA.; ''Characterization of cloned human leukocyte 5-lipoxygenase expressed in mammalian cells.''; PubMed Europe PMC Scholia
  69. Jin R, Koop DR, Raucy JL, Lasker JM.; ''Role of human CYP4F2 in hepatic catabolism of the proinflammatory agent leukotriene B4.''; PubMed Europe PMC Scholia
  70. Strid T, Svartz J, Franck N, Hallin E, Ingelsson B, Söderström M, Hammarström S.; ''Distinct parts of leukotriene C(4) synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein.''; PubMed Europe PMC Scholia
  71. Lee CW, Lewis RA, Corey EJ, Austen KF.; ''Conversion of leukotriene D4 to leukotriene E4 by a dipeptidase released from the specific granule of human polymorphonuclear leucocytes.''; PubMed Europe PMC Scholia
  72. Adachi H, Kubota I, Okamura N, Iwata H, Tsujimoto M, Nakazato H, Nishihara T, Noguchi T.; ''Purification and characterization of human microsomal dipeptidase.''; PubMed Europe PMC Scholia
  73. Dong L, Vecchio AJ, Sharma NP, Jurban BJ, Malkowski MG, Smith WL.; ''Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer.''; PubMed Europe PMC Scholia
  74. Nigam S, Patabhiraman S, Ciccoli R, Ishdorj G, Schwarz K, Petrucev B, Kühn H, Haeggström JZ.; ''The rat leukocyte-type 12-lipoxygenase exhibits an intrinsic hepoxilin A3 synthase activity.''; PubMed Europe PMC Scholia
  75. Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR, Brash AR.; ''Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope.''; PubMed Europe PMC Scholia
  76. Sutyak J, Austen KF, Soberman RJ.; ''Identification of an aldehyde dehydrogenase in the microsomes of human polymorphonuclear leukocytes that metabolizes 20-aldehyde leukotriene B4.''; PubMed Europe PMC Scholia
  77. Bylund J, Kunz T, Valmsen K, Oliw EH.; ''Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes.''; PubMed Europe PMC Scholia
  78. Rifkind AB, Lee C, Chang TK, Waxman DJ.; ''Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes.''; PubMed Europe PMC Scholia
  79. Turkish AR, Henneberry AL, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano AM, Billheimer JT, Sturley SL.; ''Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114781view16:27, 25 January 2021ReactomeTeamReactome version 75
113226view11:29, 2 November 2020ReactomeTeamReactome version 74
112447view15:39, 9 October 2020ReactomeTeamReactome version 73
101354view11:23, 1 November 2018ReactomeTeamreactome version 66
100892view20:58, 31 October 2018ReactomeTeamreactome version 65
100433view19:32, 31 October 2018ReactomeTeamreactome version 64
99982view16:16, 31 October 2018ReactomeTeamreactome version 63
99536view14:52, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99172view12:42, 31 October 2018ReactomeTeamreactome version 62
93953view13:47, 16 August 2017ReactomeTeamreactome version 61
93734view13:24, 16 August 2017ReactomeTeamreactome version 61
93548view11:26, 9 August 2017ReactomeTeamreactome version 61
87085view14:25, 18 July 2016MkutmonOntology Term : 'arachidonic acid metabolic pathway' added !
86648view09:23, 11 July 2016ReactomeTeamreactome version 56
83044view09:46, 18 November 2015ReactomeTeamVersion54
81342view12:52, 21 August 2015ReactomeTeamVersion53
76814view08:03, 17 July 2014ReactomeTeamFixed remaining interactions
76518view11:44, 16 July 2014ReactomeTeamFixed remaining interactions
75851view09:50, 11 June 2014ReactomeTeamRe-fixing comment source
75551view10:34, 10 June 2014ReactomeTeamReactome 48 Update
74906view13:43, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74550view08:35, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
11,12-DHET MetaboliteCHEBI:63969 (ChEBI)
11,12-EET MetaboliteCHEBI:34130 (ChEBI)
11dh-TXB2MetaboliteCHEBI:28667 (ChEBI)
11epi-PGF2aMetaboliteCHEBI:27595 (ChEBI)
12-oxoETEMetaboliteCHEBI:34151 (ChEBI)
12-oxoLTB4MetaboliteCHEBI:27814 (ChEBI)
12R-HETEMetaboliteCHEBI:34144 (ChEBI)
12R-HpETEMetaboliteCHEBI:34145 (ChEBI)
12S-HETEMetaboliteCHEBI:34146 (ChEBI)
12S-HHTMetaboliteCHEBI:63977 (ChEBI)
12S-HpETEMetaboliteCHEBI:15626 (ChEBI)
14,15-DHET MetaboliteCHEBI:63966 (ChEBI)
14,15-EET MetaboliteCHEBI:34157 (ChEBI)
15-HEDHR-HSA-2161674 (Reactome)
15-oxoETEMetaboliteCHEBI:15559 (ChEBI)
15R-HETEMetaboliteCHEBI:63989 (ChEBI)
15S-HETEMetaboliteCHEBI:15558 (ChEBI)
15S-HpETEMetaboliteCHEBI:15628 (ChEBI)
15d-PGA2MetaboliteCHEBI:63975 (ChEBI)
15d-PGD2MetaboliteCHEBI:63999 (ChEBI)
15d-PGJ2MetaboliteCHEBI:34159 (ChEBI)
15epi-LXA4 MetaboliteCHEBI:63990 (ChEBI)
15epi-LXA4/B4ComplexR-ALL-2161609 (Reactome)
15epi-LXB4 MetaboliteCHEBI:63991 (ChEBI)
15k-LXA4MetaboliteCHEBI:63992 (ChEBI)
15k-PGD2 MetaboliteCHEBI:15557 (ChEBI)
15k-PGD2/E2/F2aComplexR-ALL-2161597 (Reactome)
15k-PGE2 MetaboliteCHEBI:15547 (ChEBI)
15k-PGE2/F2aComplexR-ALL-2161650 (Reactome)
15k-PGF2a MetaboliteCHEBI:28442 (ChEBI)
16-HETE MetaboliteCHEBI:63994 (ChEBI)
16/17/18-HETEComplexR-ALL-2161639 (Reactome)
17-HETE MetaboliteCHEBI:63995 (ChEBI)
18-HETE MetaboliteCHEBI:63579 (ChEBI)
18cooh-LTB4MetaboliteCHEBI:63980 (ChEBI)
19-HETEMetaboliteCHEBI:63998 (ChEBI)
2-LysophosphatidylcholineMetaboliteCHEBI:17504 (ChEBI)
20-HETEMetaboliteCHEBI:34306 (ChEBI)
20OH-LTB4MetaboliteCHEBI:15646 (ChEBI)
20cho-LTB4MetaboliteCHEBI:63979 (ChEBI)
20cooh-LTB4MetaboliteCHEBI:27562 (ChEBI)
5,6-DHET MetaboliteCHEBI:63974 (ChEBI)
5,6-EET MetaboliteCHEBI:34450 (ChEBI)
5,6-EETMetaboliteCHEBI:34450 (ChEBI)
5-HEDHR-HSA-2161764 (Reactome)
5-HETEMetaboliteCHEBI:60943 (ChEBI)
5-HETELMetaboliteCHEBI:132873 (ChEBI)
5-oxoETEMetaboliteCHEBI:52449 (ChEBI)
5S-HETEMetaboliteCHEBI:28209 (ChEBI)
5S-HpETEMetaboliteCHEBI:15632 (ChEBI)
6k-PGF1aMetaboliteCHEBI:28158 (ChEBI)
6t,12epi-LTB4 MetaboliteCHEBI:63982 (ChEBI)
6t-LTB4 MetaboliteCHEBI:63981 (ChEBI)
6t/6t,12epi-LTB4ComplexR-ALL-2161801 (Reactome)
8,9-DHET MetaboliteCHEBI:63970 (ChEBI)
8,9-EET MetaboliteCHEBI:34490 (ChEBI)
8,9/11,12/14,15-EETComplexR-ALL-2161753 (Reactome)
AAMetaboliteCHEBI:15843 (ChEBI)
ABCC1ProteinP33527 (Uniprot-TrEMBL)
AEAMetaboliteCHEBI:2700 (ChEBI)
AKR1C3ProteinP42330 (Uniprot-TrEMBL)
ALDHR-HSA-2161598 (Reactome)
ALOX12 ProteinP18054 (Uniprot-TrEMBL)
ALOX12/15ComplexR-HSA-2161958 (Reactome)
ALOX12:Fe2+ComplexR-HSA-2142793 (Reactome)
ALOX12B ProteinO75342 (Uniprot-TrEMBL)
ALOX12B:Fe2+ComplexR-HSA-2142822 (Reactome)
ALOX15 ProteinP16050 (Uniprot-TrEMBL)
ALOX15/15BComplexR-HSA-2161783 (Reactome)
ALOX15:Fe2+ComplexR-HSA-2142744 (Reactome)
ALOX15B ProteinO15296 (Uniprot-TrEMBL)
ALOX5 ProteinP09917 (Uniprot-TrEMBL)
ALOX5:ALOX5AP:LTC4SComplexR-HSA-2318764 (Reactome)
ALOX5:Ca2+:Fe2+ComplexR-HSA-2237880 (Reactome)
ALOX5AP ProteinP20292 (Uniprot-TrEMBL)
ALOXE3ProteinQ9BYJ1 (Uniprot-TrEMBL)
ARAMetaboliteCHEBI:15843 (ChEBI)
ARACOHMetaboliteCHEBI:75627 (ChEBI)
AWAT1ProteinQ58HT5 (Uniprot-TrEMBL)
Ac-PTGS1 dimerComplexR-HSA-2314695 (Reactome)
Ac-PTGS2 dimerComplexR-HSA-2314687 (Reactome)
Active PLA2:phosphatidylcholineComplexR-HSA-111860 (Reactome)
Acyl-CoAMetaboliteCHEBI:17984 (ChEBI)
CBR1ProteinP16152 (Uniprot-TrEMBL)
CYP(1)ComplexR-HSA-2162028 (Reactome)
CYP(2)ComplexR-HSA-2161767 (Reactome)
CYP(3)ComplexR-HSA-2161816 (Reactome)
CYP(4)ComplexR-HSA-2161805 (Reactome)
CYP(5)ComplexR-HSA-2161990 (Reactome)
CYP1A1 ProteinP04798 (Uniprot-TrEMBL)
CYP1A2 ProteinP05177 (Uniprot-TrEMBL)
CYP1B1 ProteinQ16678 (Uniprot-TrEMBL)
CYP2C19 ProteinP33261 (Uniprot-TrEMBL)
CYP2C8 ProteinP10632 (Uniprot-TrEMBL)
CYP2C9 ProteinP11712 (Uniprot-TrEMBL)
CYP2J2 ProteinP51589 (Uniprot-TrEMBL)
CYP2U1 ProteinQ7Z449 (Uniprot-TrEMBL)
CYP4A11 ProteinQ02928 (Uniprot-TrEMBL)
CYP4A22 ProteinQ5TCH4 (Uniprot-TrEMBL)
CYP4B1 ProteinP13584 (Uniprot-TrEMBL)
CYP4F11 ProteinQ9HBI6 (Uniprot-TrEMBL)
CYP4F2 ProteinP78329 (Uniprot-TrEMBL)
CYP4F22 ProteinQ6NT55 (Uniprot-TrEMBL)
CYP4F3 ProteinQ08477 (Uniprot-TrEMBL)
CYP4F8 ProteinP98187 (Uniprot-TrEMBL)
CYP8B1 ProteinQ9UNU6 (Uniprot-TrEMBL)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
CoA-SHMetaboliteCHEBI:15346 (ChEBI)
Cytochrome P450 (CYP4F2/4F3 based)ComplexR-HSA-2161611 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
DHET(1)ComplexR-ALL-2161883 (Reactome)
DPEP1 ProteinP16444 (Uniprot-TrEMBL)
DPEP1,2,3 dimersComplexR-HSA-2162149 (Reactome)
DPEP2 ProteinQ9H4A9 (Uniprot-TrEMBL)
DPEP3 ProteinQ9H4B8 (Uniprot-TrEMBL)
DPEPR-HSA-2161751 (Reactome)
EET(1)ComplexR-ALL-2161818 (Reactome)
EPHX2 ProteinP34913 (Uniprot-TrEMBL)
EPHX2 dimerComplexR-HSA-2142777 (Reactome)
ETAMetaboliteCHEBI:16000 (ChEBI)
EXA4MetaboliteCHEBI:63983 (ChEBI)
EXC4MetaboliteCHEBI:63984 (ChEBI)
EXD4MetaboliteCHEBI:63985 (ChEBI)
EXE4MetaboliteCHEBI:63986 (ChEBI)
FAAH2ProteinQ6GMR7 (Uniprot-TrEMBL)
FAAHProteinO00519 (Uniprot-TrEMBL)
FAM213BProteinQ8TBF2 (Uniprot-TrEMBL)
Fe2+ MetaboliteCHEBI:18248 (ChEBI)
GGT1(1-380) ProteinP19440 (Uniprot-TrEMBL)
GGT1(381-569) ProteinP19440 (Uniprot-TrEMBL)
GGT1, 5 dimersComplexR-HSA-2162130 (Reactome)
GGT5(1-387) ProteinP36269 (Uniprot-TrEMBL)
GGT5(388-586) ProteinP36269 (Uniprot-TrEMBL)
GGTR-HSA-2161915 (Reactome)
GPX1/2/4ComplexR-HSA-2161766 (Reactome)
GPX1/2/4ComplexR-HSA-2161954 (Reactome)
GPX2 ProteinP18283 (Uniprot-TrEMBL)
GPX4(?-197) ProteinP36969 (Uniprot-TrEMBL)
GSH MetaboliteCHEBI:16856 (ChEBI)
GSHMetaboliteCHEBI:16856 (ChEBI)
GSSGMetaboliteCHEBI:17858 (ChEBI)
GlyMetaboliteCHEBI:57305 (ChEBI)
H+MetaboliteCHEBI:15378 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HPGD ProteinP15428 (Uniprot-TrEMBL)
HPGD dimerComplexR-HSA-2142778 (Reactome)
HPGDS ProteinO60760 (Uniprot-TrEMBL)
HPGDS dimerComplexR-HSA-2142683 (Reactome)
HXA3 MetaboliteCHEBI:36190 (ChEBI)
HXA3/B3ComplexR-ALL-2162031 (Reactome)
HXA3MetaboliteCHEBI:36190 (ChEBI)
HXB3 MetaboliteCHEBI:34784 (ChEBI)
HXEHR-HSA-2161957 (Reactome)
L-GluMetaboliteCHEBI:29985 (ChEBI)
L-selenocysteine residue-GPX1 ProteinP07203 (Uniprot-TrEMBL)
LTA4MetaboliteCHEBI:15651 (ChEBI)
LTA4H ProteinP09960 (Uniprot-TrEMBL)
LTA4H:Zn2+ComplexR-HSA-266038 (Reactome)
LTB4MetaboliteCHEBI:15647 (ChEBI)
LTC4MetaboliteCHEBI:16978 (ChEBI)
LTC4S ProteinQ16873 (Uniprot-TrEMBL)
LTD4MetaboliteCHEBI:28666 (ChEBI)
LTE4MetaboliteCHEBI:15650 (ChEBI)
LXA4 MetaboliteCHEBI:6498 (ChEBI)
LXA4/B4ComplexR-ALL-2161856 (Reactome)
LXA4MetaboliteCHEBI:6498 (ChEBI)
LXB4 MetaboliteCHEBI:6499 (ChEBI)
MDAMetaboliteCHEBI:566274 (ChEBI)
MNAMetaboliteCHEBI:16797 (ChEBI)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
NAD(P)+ComplexR-ALL-428218 (Reactome)
NAD(P)HComplexR-ALL-428206 (Reactome)
NAD+ MetaboliteCHEBI:15846 (ChEBI)
NAD+MetaboliteCHEBI:15846 (ChEBI)
NADH MetaboliteCHEBI:16908 (ChEBI)
NADHMetaboliteCHEBI:16908 (ChEBI)
NADP+ MetaboliteCHEBI:18009 (ChEBI)
NADP+MetaboliteCHEBI:18009 (ChEBI)
NADPH MetaboliteCHEBI:16474 (ChEBI)
NADPHMetaboliteCHEBI:16474 (ChEBI)
O-acetyl-L-serine-PTGS1 ProteinP23219 (Uniprot-TrEMBL)
O-acetyl-L-serine-PTGS2 ProteinP35354 (Uniprot-TrEMBL)
O2MetaboliteCHEBI:15379 (ChEBI)
PC MetaboliteCHEBI:16110 (ChEBI)
PCMetaboliteCHEBI:16110 (ChEBI)
PGA2MetaboliteCHEBI:27820 (ChEBI)
PGB2MetaboliteCHEBI:28099 (ChEBI)
PGC2MetaboliteCHEBI:27555 (ChEBI)
PGD2 MetaboliteCHEBI:15555 (ChEBI)
PGD2/E2/F2aComplexR-ALL-2161661 (Reactome)
PGD2MetaboliteCHEBI:15555 (ChEBI)
PGE2 MetaboliteCHEBI:15551 (ChEBI)
PGE2MetaboliteCHEBI:15551 (ChEBI)
PGF2a MetaboliteCHEBI:15553 (ChEBI)
PGF2aMetaboliteCHEBI:15553 (ChEBI)
PGG2MetaboliteCHEBI:27647 (ChEBI)
PGH2MetaboliteCHEBI:15554 (ChEBI)
PGI2MetaboliteCHEBI:15552 (ChEBI)
PGJ2MetaboliteCHEBI:27485 (ChEBI)
PON1 ProteinP27169 (Uniprot-TrEMBL)
PON1,2,3:2xCa2+ dimersComplexR-HSA-8932645 (Reactome)
PON2 ProteinQ15165 (Uniprot-TrEMBL)
PON3 ProteinQ15166 (Uniprot-TrEMBL)
PTGDSProteinP41222 (Uniprot-TrEMBL)
PTGES ProteinO14684 (Uniprot-TrEMBL)
PTGES trimerComplexR-HSA-2142686 (Reactome)
PTGES2(88-377) ProteinQ9H7Z7 (Uniprot-TrEMBL)
PTGES2(88-377), PTGES3ComplexR-HSA-8864254 (Reactome)
PTGES3 ProteinQ15185 (Uniprot-TrEMBL)
PTGIS ProteinQ16647 (Uniprot-TrEMBL)
PTGIS,CYP8B1ComplexR-HSA-3222410 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
PTGR1ProteinQ14914 (Uniprot-TrEMBL)
PTGR2ProteinQ8N8N7 (Uniprot-TrEMBL)
PTGS1 ProteinP23219 (Uniprot-TrEMBL)
PTGS1 dimerComplexR-HSA-428986 (Reactome)
PTGS2 ProteinP35354 (Uniprot-TrEMBL)
PTGS2 dimerComplexR-HSA-140491 (Reactome)
PTGS2:celecoxibComplexR-HSA-2309778 (Reactome)
TBXAS1ProteinP24557 (Uniprot-TrEMBL)
TXA2MetaboliteCHEBI:15627 (ChEBI)
TXB2MetaboliteCHEBI:28728 (ChEBI)
TXDHR-HSA-2161595 (Reactome)
TXN-S2MetaboliteCHEBI:18191 (ChEBI)
TXN-S2H2MetaboliteCHEBI:15967 (ChEBI)
TrXA3 MetaboliteCHEBI:15630 (ChEBI)
TrXA3/B3ComplexR-ALL-2161985 (Reactome)
TrXB3 MetaboliteCHEBI:35032 (ChEBI)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
acetylsalicylateMetaboliteCHEBI:13719 (ChEBI)
arachidyl esterMetaboliteCHEBI:10036 (ChEBI)
celecoxib MetaboliteCHEBI:41423 (ChEBI)
celecoxibMetaboliteCHEBI:41423 (ChEBI)
delta12-PGJ2MetaboliteCHEBI:28130 (ChEBI)
dhk-LXA4MetaboliteCHEBI:63993 (ChEBI)
dhk-PGE2 MetaboliteCHEBI:15550 (ChEBI)
dhk-PGE2/F2aComplexR-ALL-2161684 (Reactome)
dhk-PGF2a MetaboliteCHEBI:63976 (ChEBI)
e-MetaboliteCHEBI:10545 (ChEBI)
heme b MetaboliteCHEBI:26355 (ChEBI)
p-S272-ALOX5 ProteinP09917 (Uniprot-TrEMBL)
p-S272-ALOX5:Ca2+:Fe2+ComplexR-HSA-265277 (Reactome)
p-S505,S727-PLA2G4A ProteinP47712 (Uniprot-TrEMBL)
p-T222,S272,T334-MAPKAPK2ProteinP49137 (Uniprot-TrEMBL)
salicylateMetaboliteCHEBI:30762 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
11dh-TXB2ArrowR-HSA-2161732 (Reactome)
11epi-PGF2aArrowR-HSA-2161614 (Reactome)
12-oxoETEArrowR-HSA-2161948 (Reactome)
12-oxoLTB4ArrowR-HSA-2161567 (Reactome)
12R-HETEArrowR-HSA-2161959 (Reactome)
12R-HpETEArrowR-HSA-2161950 (Reactome)
12R-HpETER-HSA-2161959 (Reactome)
12R-HpETER-HSA-8942208 (Reactome)
12S-HETEArrowR-HSA-2161999 (Reactome)
12S-HHTArrowR-HSA-2161613 (Reactome)
12S-HpETEArrowR-HSA-2161964 (Reactome)
12S-HpETER-HSA-2161999 (Reactome)
15-HEDHmim-catalysisR-HSA-2161789 (Reactome)
15-oxoETEArrowR-HSA-2161789 (Reactome)
15R-HETEArrowR-HSA-2161951 (Reactome)
15R-HETER-HSA-2161907 (Reactome)
15S-HETEArrowR-HSA-2161791 (Reactome)
15S-HETER-HSA-2161789 (Reactome)
15S-HpETEArrowR-HSA-2162002 (Reactome)
15S-HpETER-HSA-2161791 (Reactome)
15S-HpETER-HSA-2161917 (Reactome)
15d-PGA2ArrowR-HSA-2161668 (Reactome)
15d-PGD2ArrowR-HSA-2161673 (Reactome)
15d-PGJ2ArrowR-HSA-2161588 (Reactome)
15epi-LXA4/B4ArrowR-HSA-2161907 (Reactome)
15k-LXA4ArrowR-HSA-2161779 (Reactome)
15k-LXA4R-HSA-2161844 (Reactome)
15k-PGD2/E2/F2aArrowR-HSA-2161662 (Reactome)
15k-PGE2/F2aR-HSA-2161692 (Reactome)
16/17/18-HETEArrowR-HSA-2161795 (Reactome)
18cooh-LTB4ArrowR-HSA-2161790 (Reactome)
19-HETEArrowR-HSA-2161814 (Reactome)
2-LysophosphatidylcholineArrowR-HSA-111883 (Reactome)
20-HETEArrowR-HSA-2161940 (Reactome)
20OH-LTB4ArrowR-HSA-211873 (Reactome)
20OH-LTB4R-HSA-2161745 (Reactome)
20cho-LTB4ArrowR-HSA-2161745 (Reactome)
20cho-LTB4R-HSA-2161792 (Reactome)
20cho-LTB4R-HSA-2161979 (Reactome)
20cooh-LTB4ArrowR-HSA-2161792 (Reactome)
20cooh-LTB4ArrowR-HSA-2161979 (Reactome)
20cooh-LTB4R-HSA-2161790 (Reactome)
5,6-EETArrowR-HSA-2161890 (Reactome)
5-HEDHmim-catalysisR-HSA-2161776 (Reactome)
5-HETEArrowR-HSA-8932633 (Reactome)
5-HETELR-HSA-8932633 (Reactome)
5-oxoETEArrowR-HSA-2161776 (Reactome)
5S-HETEArrowR-HSA-2161946 (Reactome)
5S-HETER-HSA-2161776 (Reactome)
5S-HpETEArrowR-HSA-265296 (Reactome)
5S-HpETER-HSA-2161946 (Reactome)
5S-HpETER-HSA-266051 (Reactome)
6k-PGF1aArrowR-HSA-2161619 (Reactome)
6t/6t,12epi-LTB4ArrowR-HSA-2161962 (Reactome)
8,9/11,12/14,15-EETArrowR-HSA-2161899 (Reactome)
AAArrowR-HSA-428990 (Reactome)
AAArrowR-HSA-5693742 (Reactome)
AAArrowR-HSA-5693751 (Reactome)
AAR-HSA-2161794 (Reactome)
AAR-HSA-2161890 (Reactome)
AAR-HSA-2161899 (Reactome)
AAR-HSA-2161948 (Reactome)
AAR-HSA-2161950 (Reactome)
AAR-HSA-2161951 (Reactome)
AAR-HSA-2161964 (Reactome)
AAR-HSA-2162002 (Reactome)
AAR-HSA-265296 (Reactome)
ABCC1mim-catalysisR-HSA-266070 (Reactome)
AEAR-HSA-5693742 (Reactome)
AEAR-HSA-5693751 (Reactome)
AKR1C3mim-catalysisR-HSA-2161549 (Reactome)
AKR1C3mim-catalysisR-HSA-2161614 (Reactome)
ALDHmim-catalysisR-HSA-2161979 (Reactome)
ALOX12/15mim-catalysisR-HSA-2161964 (Reactome)
ALOX12:Fe2+mim-catalysisR-HSA-2161775 (Reactome)
ALOX12:Fe2+mim-catalysisR-HSA-2161794 (Reactome)
ALOX12:Fe2+mim-catalysisR-HSA-2161948 (Reactome)
ALOX12B:Fe2+mim-catalysisR-HSA-2161950 (Reactome)
ALOX15/15Bmim-catalysisR-HSA-2162002 (Reactome)
ALOX15:Fe2+mim-catalysisR-HSA-2162019 (Reactome)
ALOX5:ALOX5AP:LTC4Smim-catalysisR-HSA-2161768 (Reactome)
ALOX5:ALOX5AP:LTC4Smim-catalysisR-HSA-2161907 (Reactome)
ALOX5:ALOX5AP:LTC4Smim-catalysisR-HSA-2161917 (Reactome)
ALOX5:ALOX5AP:LTC4Smim-catalysisR-HSA-265296 (Reactome)
ALOX5:ALOX5AP:LTC4Smim-catalysisR-HSA-266050 (Reactome)
ALOX5:ALOX5AP:LTC4Smim-catalysisR-HSA-266051 (Reactome)
ALOX5:Ca2+:Fe2+R-HSA-429016 (Reactome)
ALOXE3mim-catalysisR-HSA-8942208 (Reactome)
ARAArrowR-HSA-111883 (Reactome)
ARACOHR-HSA-5696424 (Reactome)
ARAR-HSA-140355 (Reactome)
ARAR-HSA-2161795 (Reactome)
ARAR-HSA-2161814 (Reactome)
ARAR-HSA-2161940 (Reactome)
ARAR-HSA-2309787 (Reactome)
ARAR-HSA-428990 (Reactome)
AWAT1mim-catalysisR-HSA-5696424 (Reactome)
Ac-PTGS1 dimerArrowR-HSA-2314678 (Reactome)
Ac-PTGS2 dimerArrowR-HSA-2314686 (Reactome)
Ac-PTGS2 dimermim-catalysisR-HSA-2161951 (Reactome)
Active PLA2:phosphatidylcholinemim-catalysisR-HSA-111883 (Reactome)
Acyl-CoAR-HSA-5696424 (Reactome)
CBR1mim-catalysisR-HSA-2161651 (Reactome)
CYP(1)mim-catalysisR-HSA-2161795 (Reactome)
CYP(2)mim-catalysisR-HSA-2161814 (Reactome)
CYP(3)mim-catalysisR-HSA-2161940 (Reactome)
CYP(4)mim-catalysisR-HSA-2161890 (Reactome)
CYP(5)mim-catalysisR-HSA-2161899 (Reactome)
CoA-SHArrowR-HSA-5696424 (Reactome)
Cytochrome P450 (CYP4F2/4F3 based)mim-catalysisR-HSA-211873 (Reactome)
Cytochrome P450 (CYP4F2/4F3 based)mim-catalysisR-HSA-2161745 (Reactome)
Cytochrome P450 (CYP4F2/4F3 based)mim-catalysisR-HSA-2161792 (Reactome)
DHET(1)ArrowR-HSA-2161961 (Reactome)
DPEP1,2,3 dimersmim-catalysisR-HSA-266012 (Reactome)
DPEPmim-catalysisR-HSA-2161868 (Reactome)
EET(1)R-HSA-2161961 (Reactome)
EPHX2 dimermim-catalysisR-HSA-2161961 (Reactome)
ETAArrowR-HSA-5693742 (Reactome)
ETAArrowR-HSA-5693751 (Reactome)
EXA4ArrowR-HSA-2162019 (Reactome)
EXA4R-HSA-2161768 (Reactome)
EXC4ArrowR-HSA-2161768 (Reactome)
EXC4R-HSA-2161945 (Reactome)
EXD4ArrowR-HSA-2161945 (Reactome)
EXD4R-HSA-2161868 (Reactome)
EXE4ArrowR-HSA-2161868 (Reactome)
FAAH2mim-catalysisR-HSA-5693751 (Reactome)
FAAHmim-catalysisR-HSA-5693742 (Reactome)
FAM213Bmim-catalysisR-HSA-2161612 (Reactome)
GGT1, 5 dimersmim-catalysisR-HSA-266046 (Reactome)
GGTmim-catalysisR-HSA-2161945 (Reactome)
GPX1/2/4mim-catalysisR-HSA-2161791 (Reactome)
GPX1/2/4mim-catalysisR-HSA-2161946 (Reactome)
GPX1/2/4mim-catalysisR-HSA-2161959 (Reactome)
GPX1/2/4mim-catalysisR-HSA-2161999 (Reactome)
GSHR-HSA-2161768 (Reactome)
GSHR-HSA-2161791 (Reactome)
GSHR-HSA-2161946 (Reactome)
GSHR-HSA-2161959 (Reactome)
GSHR-HSA-2161999 (Reactome)
GSHR-HSA-266050 (Reactome)
GSSGArrowR-HSA-2161791 (Reactome)
GSSGArrowR-HSA-2161946 (Reactome)
GSSGArrowR-HSA-2161959 (Reactome)
GSSGArrowR-HSA-2161999 (Reactome)
GlyArrowR-HSA-2161868 (Reactome)
GlyArrowR-HSA-266012 (Reactome)
H+ArrowR-HSA-2161567 (Reactome)
H+ArrowR-HSA-2161662 (Reactome)
H+ArrowR-HSA-2161732 (Reactome)
H+ArrowR-HSA-2161776 (Reactome)
H+ArrowR-HSA-2161779 (Reactome)
H+ArrowR-HSA-2161789 (Reactome)
H+R-HSA-140359 (Reactome)
H+R-HSA-211873 (Reactome)
H+R-HSA-2161549 (Reactome)
H+R-HSA-2161614 (Reactome)
H+R-HSA-2161651 (Reactome)
H+R-HSA-2161692 (Reactome)
H+R-HSA-2161745 (Reactome)
H+R-HSA-2161792 (Reactome)
H+R-HSA-2161795 (Reactome)
H+R-HSA-2161814 (Reactome)
H+R-HSA-2161844 (Reactome)
H+R-HSA-2161890 (Reactome)
H+R-HSA-2161899 (Reactome)
H+R-HSA-2161940 (Reactome)
H+R-HSA-2161951 (Reactome)
H+R-HSA-2161979 (Reactome)
H+R-HSA-2309773 (Reactome)
H2OArrowR-HSA-140359 (Reactome)
H2OArrowR-HSA-211873 (Reactome)
H2OArrowR-HSA-2161588 (Reactome)
H2OArrowR-HSA-2161659 (Reactome)
H2OArrowR-HSA-2161668 (Reactome)
H2OArrowR-HSA-2161673 (Reactome)
H2OArrowR-HSA-2161733 (Reactome)
H2OArrowR-HSA-2161745 (Reactome)
H2OArrowR-HSA-2161791 (Reactome)
H2OArrowR-HSA-2161792 (Reactome)
H2OArrowR-HSA-2161795 (Reactome)
H2OArrowR-HSA-2161814 (Reactome)
H2OArrowR-HSA-2161890 (Reactome)
H2OArrowR-HSA-2161899 (Reactome)
H2OArrowR-HSA-2161940 (Reactome)
H2OArrowR-HSA-2161946 (Reactome)
H2OArrowR-HSA-2161951 (Reactome)
H2OArrowR-HSA-2161959 (Reactome)
H2OArrowR-HSA-2161979 (Reactome)
H2OArrowR-HSA-2161999 (Reactome)
H2OArrowR-HSA-2309773 (Reactome)
H2OArrowR-HSA-266051 (Reactome)
H2OR-HSA-111883 (Reactome)
H2OR-HSA-2161619 (Reactome)
H2OR-HSA-2161868 (Reactome)
H2OR-HSA-2161949 (Reactome)
H2OR-HSA-2161961 (Reactome)
H2OR-HSA-2161962 (Reactome)
H2OR-HSA-266012 (Reactome)
H2OR-HSA-266046 (Reactome)
H2OR-HSA-266072 (Reactome)
H2OR-HSA-443894 (Reactome)
H2OR-HSA-5693742 (Reactome)
H2OR-HSA-5693751 (Reactome)
H2OR-HSA-8932633 (Reactome)
HPGD dimermim-catalysisR-HSA-2161662 (Reactome)
HPGD dimermim-catalysisR-HSA-2161779 (Reactome)
HPGDS dimermim-catalysisR-HSA-2161701 (Reactome)
HXA3/B3ArrowR-HSA-2161794 (Reactome)
HXA3/B3R-HSA-2161949 (Reactome)
HXA3ArrowR-HSA-8942208 (Reactome)
HXEHmim-catalysisR-HSA-2161949 (Reactome)
L-GluArrowR-HSA-2161945 (Reactome)
L-GluArrowR-HSA-266046 (Reactome)
LTA4ArrowR-HSA-266051 (Reactome)
LTA4H:Zn2+mim-catalysisR-HSA-266072 (Reactome)
LTA4R-HSA-2161775 (Reactome)
LTA4R-HSA-2161962 (Reactome)
LTA4R-HSA-2162019 (Reactome)
LTA4R-HSA-266050 (Reactome)
LTA4R-HSA-266072 (Reactome)
LTB4ArrowR-HSA-266072 (Reactome)
LTB4R-HSA-211873 (Reactome)
LTB4R-HSA-2161567 (Reactome)
LTC4ArrowR-HSA-266050 (Reactome)
LTC4ArrowR-HSA-266070 (Reactome)
LTC4R-HSA-266046 (Reactome)
LTC4R-HSA-266070 (Reactome)
LTD4ArrowR-HSA-266046 (Reactome)
LTD4R-HSA-266012 (Reactome)
LTE4ArrowR-HSA-266012 (Reactome)
LXA4/B4ArrowR-HSA-2161775 (Reactome)
LXA4/B4ArrowR-HSA-2161917 (Reactome)
LXA4R-HSA-2161779 (Reactome)
MDAArrowR-HSA-2161613 (Reactome)
MNAArrowR-HSA-2309773 (Reactome)
NAD(P)+R-HSA-2161789 (Reactome)
NAD(P)HArrowR-HSA-2161789 (Reactome)
NAD+R-HSA-2161662 (Reactome)
NAD+R-HSA-2161732 (Reactome)
NAD+R-HSA-2161779 (Reactome)
NADHArrowR-HSA-2161662 (Reactome)
NADHArrowR-HSA-2161732 (Reactome)
NADHArrowR-HSA-2161779 (Reactome)
NADP+ArrowR-HSA-211873 (Reactome)
NADP+ArrowR-HSA-2161549 (Reactome)
NADP+ArrowR-HSA-2161614 (Reactome)
NADP+ArrowR-HSA-2161651 (Reactome)
NADP+ArrowR-HSA-2161692 (Reactome)
NADP+ArrowR-HSA-2161745 (Reactome)
NADP+ArrowR-HSA-2161792 (Reactome)
NADP+ArrowR-HSA-2161795 (Reactome)
NADP+ArrowR-HSA-2161814 (Reactome)
NADP+ArrowR-HSA-2161844 (Reactome)
NADP+ArrowR-HSA-2161890 (Reactome)
NADP+ArrowR-HSA-2161899 (Reactome)
NADP+ArrowR-HSA-2161940 (Reactome)
NADP+ArrowR-HSA-2161951 (Reactome)
NADP+ArrowR-HSA-2161979 (Reactome)
NADP+R-HSA-2161567 (Reactome)
NADP+R-HSA-2161776 (Reactome)
NADPHArrowR-HSA-2161567 (Reactome)
NADPHArrowR-HSA-2161776 (Reactome)
NADPHR-HSA-211873 (Reactome)
NADPHR-HSA-2161549 (Reactome)
NADPHR-HSA-2161614 (Reactome)
NADPHR-HSA-2161651 (Reactome)
NADPHR-HSA-2161692 (Reactome)
NADPHR-HSA-2161745 (Reactome)
NADPHR-HSA-2161792 (Reactome)
NADPHR-HSA-2161795 (Reactome)
NADPHR-HSA-2161814 (Reactome)
NADPHR-HSA-2161844 (Reactome)
NADPHR-HSA-2161890 (Reactome)
NADPHR-HSA-2161899 (Reactome)
NADPHR-HSA-2161940 (Reactome)
NADPHR-HSA-2161951 (Reactome)
NADPHR-HSA-2161979 (Reactome)
O2R-HSA-140355 (Reactome)
O2R-HSA-211873 (Reactome)
O2R-HSA-2161745 (Reactome)
O2R-HSA-2161792 (Reactome)
O2R-HSA-2161794 (Reactome)
O2R-HSA-2161795 (Reactome)
O2R-HSA-2161814 (Reactome)
O2R-HSA-2161890 (Reactome)
O2R-HSA-2161899 (Reactome)
O2R-HSA-2161940 (Reactome)
O2R-HSA-2161950 (Reactome)
O2R-HSA-2161951 (Reactome)
O2R-HSA-2161964 (Reactome)
O2R-HSA-2161979 (Reactome)
O2R-HSA-2162002 (Reactome)
O2R-HSA-2309787 (Reactome)
O2R-HSA-265296 (Reactome)
PCR-HSA-111883 (Reactome)
PGA2ArrowR-HSA-2161659 (Reactome)
PGA2R-HSA-2161666 (Reactome)
PGA2R-HSA-2161668 (Reactome)
PGB2ArrowR-HSA-2161735 (Reactome)
PGC2ArrowR-HSA-2161666 (Reactome)
PGC2R-HSA-2161735 (Reactome)
PGD2/E2/F2aR-HSA-2161662 (Reactome)
PGD2ArrowR-HSA-2161620 (Reactome)
PGD2ArrowR-HSA-2161701 (Reactome)
PGD2R-HSA-2161614 (Reactome)
PGD2R-HSA-2161673 (Reactome)
PGD2R-HSA-2161733 (Reactome)
PGE2ArrowR-HSA-2161660 (Reactome)
PGE2ArrowR-HSA-265295 (Reactome)
PGE2R-HSA-2161651 (Reactome)
PGE2R-HSA-2161659 (Reactome)
PGF2aArrowR-HSA-2161549 (Reactome)
PGF2aArrowR-HSA-2161612 (Reactome)
PGF2aArrowR-HSA-2161651 (Reactome)
PGG2ArrowR-HSA-140355 (Reactome)
PGG2ArrowR-HSA-2309787 (Reactome)
PGG2R-HSA-140359 (Reactome)
PGG2R-HSA-2309773 (Reactome)
PGH2ArrowR-HSA-140359 (Reactome)
PGH2ArrowR-HSA-2299725 (Reactome)
PGH2ArrowR-HSA-2309773 (Reactome)
PGH2R-HSA-2161549 (Reactome)
PGH2R-HSA-2161612 (Reactome)
PGH2R-HSA-2161613 (Reactome)
PGH2R-HSA-2161620 (Reactome)
PGH2R-HSA-2161660 (Reactome)
PGH2R-HSA-2161701 (Reactome)
PGH2R-HSA-2299725 (Reactome)
PGH2R-HSA-265295 (Reactome)
PGH2R-HSA-76496 (Reactome)
PGH2R-HSA-76500 (Reactome)
PGI2ArrowR-HSA-76496 (Reactome)
PGI2R-HSA-2161619 (Reactome)
PGJ2ArrowR-HSA-2161733 (Reactome)
PGJ2R-HSA-2161563 (Reactome)
PON1,2,3:2xCa2+ dimersmim-catalysisR-HSA-8932633 (Reactome)
PTGDSmim-catalysisR-HSA-2161620 (Reactome)
PTGES trimermim-catalysisR-HSA-2161660 (Reactome)
PTGES2(88-377), PTGES3mim-catalysisR-HSA-265295 (Reactome)
PTGIS,CYP8B1mim-catalysisR-HSA-76496 (Reactome)
PTGR1mim-catalysisR-HSA-2161567 (Reactome)
PTGR1mim-catalysisR-HSA-2161844 (Reactome)
PTGR2mim-catalysisR-HSA-2161692 (Reactome)
PTGS1 dimerR-HSA-2314678 (Reactome)
PTGS1 dimermim-catalysisR-HSA-140355 (Reactome)
PTGS1 dimermim-catalysisR-HSA-140359 (Reactome)
PTGS2 dimerR-HSA-2309779 (Reactome)
PTGS2 dimerR-HSA-2314686 (Reactome)
PTGS2 dimermim-catalysisR-HSA-2309773 (Reactome)
PTGS2 dimermim-catalysisR-HSA-2309787 (Reactome)
PTGS2:celecoxibArrowR-HSA-2309779 (Reactome)
R-HSA-111883 (Reactome) Once bound to the membrane, cPLA2 hydrolyzes phosphatidylcholine to produce arachidonic acid (AA), a precursor to inflammatory mediators. While several phospholipases can catalyze this reaction in cells overexpressing the enzymes, PLA2G4A is the major enzyme that catalyzes this reaction in vivo (Reed et al. 2011). At the same time, possible physiological roles have been described for soluble phospholipases (sPLA) in the mobilization of arachidonic acid in some cell types or under some physiological conditions (Murakami et al. 2011). Here, the major role of PLA2G4A has been annotated.
R-HSA-140355 (Reactome) Prostaglandin G/H synthase PTGS1 exhibits a dual catalytic activity, a cyclooxygenase and a peroxidase. The cyclooxygenase function catalyzes the initial conversion of arachidonic acid to an intermediate, prostaglandin G2 (PGG2) (Hamberg et al. 1974, Nugteren 1973).
R-HSA-140359 (Reactome) Prostaglandin G/H synthase 1 (PTGS1) exhibits a dual catalytic activity, a cyclooxygenase and a peroxidase. The peroxidase function converts prostaglandin G2 (PGG2) to prostaglandin H2 (PGH2) via a two-electron reduction (Hamberg et al. 1973, Hla & Neilson 1992, Swinney et al. 1997, Barnett et al. 1994).
R-HSA-211873 (Reactome) Leukotriene B4 (LTB4) is formed from arachidonic acid and is a potent inflammatory mediator. LTB4's activity is terminated by formation of its omega hydroxylated metabolite, 20-hydroxyleukotriene B4 (20OH-LTB4), catalysed by CYP4F2 primarily in human liver (Jin et al. 1998) and also by CYP4F3 (Kikuta et al. 1998).
R-HSA-2161549 (Reactome) Aldo-keto reductase family 1 member C3 (AKR1C3) aka PGFS is responsible for the reduction of prostaglandin H2 (PGH2) to prostaglandin F2alpha (PGF2a) (Suzuki-Yamamoto et al. 1999, Komoto et al. 2004, Komoto et al. 2006). There is an additional way of achieving this reaction involving the prostamide/prostaglandin F synthase, FAM213B and thioredoxin (TRX).
R-HSA-2161563 (Reactome) Delta-12-prostaglandin J2 (delta12-PGJ2) is an isomerisation product of prostaglandin J2 (PGJ2) (Monneret et al. 2002).
R-HSA-2161567 (Reactome) Prostaglandin reductase 1 (PTGR1) aka LTB4DH metabolizes eicosanoids by catalysing the oxidation of leukotriene B4 (LTB4) to form 12-oxo-Leukotriene B4 (12-oxoLTB4) aka 12-Keto-LTB4. The gene was originally cloned as leukotriene B4 12-hydroxydehydrogenase (LTB4DH) but was later discovered to have dual functionality as a prostaglandin reductase (Yokomizo et al. 1996). This reaction has been inferred from a reaction in pigs (Yokomizo et al. 1993, Ensor et al. 1998).
R-HSA-2161588 (Reactome) 15-Deoxy-delta(12,14)-PDJ2 (15d-PGJ2) is a dehydration product of delta-12-prostaglandin J2 (delta12-PGJ2) (Monneret et al. 2002).
R-HSA-2161612 (Reactome) Prostamide/prostaglandin F synthase, FAM213B and thioredoxin (TXN) are the proteins involved in the reduction of prostaglandin H2 (PGH2) to prostaglandin F2alpha (PGF2a) (Moriuchi et al. 2008, Yoshikawa et al. 2011). This reaction has been inferred from an event in mice. An additional way of achieving this reaction involves the protein aldo-keto reductase family 1 member C3 (AKR1C3) aka PGFS.
R-HSA-2161613 (Reactome) Thromboxane synthase (TBXAS1) aka CYP5A1 facilitates rearrangement of the PGH2 endoperoxide bridge by a complementary mechanism to prostacyclin synthase, interacting with the C-9 oxygen to promote endoperoxide bond cleavage. The C-11 oxygen radical initiates intramolecular rearrangement, resulting in either the formation of thromboxane A2 (TXA2) or 12-hydroxyheptadecatrienoic acid (12S-HHT) and malonaldehyde (MDA) (Wang et al. 2001).
R-HSA-2161614 (Reactome) Aldo-keto reductase family 1 member C3 (AKR1C3) aka PGFS is the enzyme involved in NADPH-dependent prostaglandin D2 11-keto reductase activity of reducing prostaglandin D2 (PGD2) to 11-epi-Prostaglandin F2alpha (11-epi-PGF2a) (Liston & Roberts 1985, Koda et al. 2004).
R-HSA-2161619 (Reactome) The ring in prostaglandin I2 (PGI2) aka prostacyclin is highly labile and rapidly hydolyses to form the stable but biologically inactive 6-keto-prostaglandin F1alpha (6k-PGF1a) (Wada et al. 2004). PGI2 and 6k-PGF1a are often used interchangeably in the literature.
R-HSA-2161620 (Reactome) Prostaglandin D2 (PGD2) is a structural isomer of prostaglandin E2 (PGE2). There is a 9-keto and 11-hydroxy group on PGE2 with these substituents reversed on PGD2. PGD2 is formed by two evolutionarily distinct, but functionally convergent, prostaglandin D synthases: lipocalin-type prostaglandin-D synthase aka Prostaglandin-H2 D-isomerase (PTDGS) and hematopoietic prostaglandin D synthase (HPGDS). One of the main differences between these two proteins is that HPGDS requires glutathione (GSH) for catalysis while PTDGS can function without this cofactor. Here, PTDGS promotes the isomerisation of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2) (Zhou et al. 2010).
R-HSA-2161651 (Reactome) Carbonyl reductase (CBR1) aka prostaglandin 9-keto reductase inactivates prostaglandin E2 (PGE2) by converting it to prostaglandin F2alpha (PGF2a) (Wermuth 1981, Miura et al. 2008).
R-HSA-2161659 (Reactome) Cyclopentenone prostaglandins comprise a family of molecules that are formed by dehydration of hydroxyl moieties in prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). Dehydration of PGE2 leads to prostaglandin A2 (PGA2) (Hamberg & Samuelsson B 1966, Amin 1989).
R-HSA-2161660 (Reactome) Prostaglandin E synthase (PTGES) requires glutathione (GSH) as an essential cofactor for its enzymatic activity, and together they isomerise prostaglandin H2 (PGH2) to prostaglandin E2 (PGE2) (Jegerschold et al. 2008). After PGH2 has been produced by the prostaglandin G/H synthases (PTGS1 and 2) on the lumenal side of the endoplasmic reticulum, it diffuses through the membrane to the active site of PTGES located on the cytoplasmic side.
R-HSA-2161662 (Reactome) 15-Hydroxyprostaglandin dehydrogenase (HPGD) oxidises prostaglandins D2 (PGD2), E2 (PGE2), and F2alpha (PGF2a) to 15-keto-prostaglandin D2 (15k-PGD2), E2 (15k-PGE2), and F2alpha (15k-PGF2a) respectively (Cho et al. 2006). This reaction is inferred from rabbits (Bergholte & Okita 1986).
R-HSA-2161666 (Reactome) Dehydration in the cyclopentane ring of prostaglandin E2 (PGE2) yields prostaglandin A2 (PGA2) followed by isomerization of the double bond to yield the unstable compound prostaglandin C2 (PGC2) (Straus & Glass, 2001).
R-HSA-2161668 (Reactome) The non-enzymatic dehydration of prostaglandin A2 (PGA2) into 15-deoxy prostaglandin A2 (15d-PGA2) which occurs in mice (Petrova et al. 1999) is inferred in humans.
R-HSA-2161673 (Reactome) 15-Deoxy-delta 12,14-prostaglandins D2 (15d-PGD2) is a dehydrated form of prostaglandin D2 (PGD2) (Monneret et al. 2002).
R-HSA-2161692 (Reactome) Prostaglandin reductase 2 (PTGR2) is a 13-prostaglandin reductase which metabolises eicosanoids by catalysing NADH/NADPH-dependant double bond reduction in 15-keto-prostaglandin E2 (15k-PGE2) and F2alpha (15k-PGF2a) to produce 13,14-dihydro-15-keto-prostaglandin E2 (dhk-PGE2) and F2alpha (dhk-PGF2a) respectively (Wu et al. 2008). This has been inferred from the reaction event in mice involving prostaglandin reductase 2 (Ptgr2) (Chou et al. 2007).
R-HSA-2161701 (Reactome) Prostaglandin D2 (PGD2) is a structural isomer of prostaglandin E2 (PGE2). There is a 9-keto and 11-hydroxy group on PGE2 with these substituents reversed on PGD2. PGD2 is formed by two evolutionarily distinct, but functionally convergent, prostaglandin D synthases: lipocalin-type prostaglandin-D synthase aka Prostaglandin-H2 D-isomerase (PTDGS) and hematopoietic prostaglandin D synthase (HPGDS). One of the main differences between these two proteins is that HPGDS requires glutathione (GSH) for catalysis while PTDGS can function without this cofactor. Here, HPGDS with GSH promotes the isomerisation of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2) (Jowsey et al. 2001, Inoue et al. 2003).
R-HSA-2161732 (Reactome) Thromboxane B2 (TXB2) undergoes dehydrogenation at C-11 to form 11-dehydro-thromboxane B2 (11dh-TXB2). The enzyme responsible for catalysis has been termed 11-dehydroxythromboxane B2 dehydrogenase (TXDH) (Kumlin & Granström 1986, Catella et al. 1986, Westlund et al. 1994). The human TXDH isoform has not been cloned but 11dh-TXB2 has been detected in various experiments.
R-HSA-2161733 (Reactome) Analogous to prostaglandin E2 (PGE2), dehydration of the prostaglandin D2 (PGD2) prostane ring forms prostaglandin J2 (PGJ2) (Monneret et al. 2002).
R-HSA-2161735 (Reactome) Isomerization of the double bond in prostaglandin A2 (PGA2) forms prostaglandin C2 (PGC2). This is an unstable compound which undergoes a second isomerization to yield prostaglandin B2 (PGB2) (Straus & Glass, 2001).
R-HSA-2161745 (Reactome) The cytochrome P450s 4F2 (CYP4F2) and F3 (CYP4F3) oxidise the omega hydroxylated metabolite, 20-hydroxyleukotriene B4 (20oh-LTB4) to form 20-aldehyde leukotriene B4 (20cho-LTB4) (Soberman et al. 1988).
R-HSA-2161768 (Reactome) In addition to its role converting leukotriene A4 (LTA4) into leukotriene C4 (LTC4), the enzyme leukotriene C4 synthase (LTC4S) analogously converts eoxin A4 (EXA4), with reduced glutathione (GSH), to eoxin C4 (EXC4) (Feltenmark et al. 2008, Claesson et al. 2008).
R-HSA-2161775 (Reactome) Arachidonate 12-lipoxygenase, 12S-type (ALOX12) catalyses the conversion of leukotriene A4 (LTA4) into the lipoxins LXA4, which has its third hydroxyl positioned at C-6 and LXB4, which has it positioned at C-14 (Romano et al. 1993, Serhan & Sheppard 1990). One of the reaction intermediates of this process might be 5S,6S-epoxy-15S-hydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (5,6-Ep-15S-HETE) (Puustinen et al. 1986). However, its generation from LTA4 is unclear but it can be hydrolysed to form the lipoxins.
R-HSA-2161776 (Reactome) Current literature suggests that 5S-hydroxy-eicosatetraenoic acid (5S-HETE) itself does not appear to play a significant role in biological signalling. However, it can be further oxidised by a 5-hydroxy-eicosatetraenoic acid dehydrogenase (5-HEDH) to form the bioactive 5-oxo-eicosatetraenoic acid (5-oxoETE, also known as 5-KETE. While the gene has not yet been cloned, the biophysical properties of the human enzyme have been well characterised (Powell et al. 1992).
R-HSA-2161779 (Reactome) 15-hydroxyprostaglandin dehydrogenase (HPGD) converted lipoxin A4 (LXA4) to 15-oxo lipoxin A4 aka 15-keto-LXA4 (15k-LXA4) (Clish et al. 2000).
R-HSA-2161789 (Reactome) A 15-hydroxy-eicosatetraenoic acid dehydrogenase (15-HEDH) oxidises 15S-hydroxyeicosatetraenoic acid (15S-HETE) to 15-oxo-eicosatetraenoic acid (15-oxoETE) (Gulliksson et al. 2007). The actual human 15-HEDH has yet to be cloned.
R-HSA-2161790 (Reactome) Once omega-oxidation has occurred, 20-carboxy leukotriene B4 (20cooh-LTB4) can be further metabolized by beta-oxidation at its omega end into 18-carboxy-LTB4 (18cooh-LTB4) (Berry et al. 2003, Wheelan et al. 1999). The actual human enzyme or enzymes involved have yet to be identified.
R-HSA-2161791 (Reactome) Glutathione peroxidases (GPXs) in human platelets (either GPX1, GPX2, or GPX4 are present in the cytosol) are involved in reducing 15S-hydroperoxyeicosatetraenoic acid (15S-HpETE) to 15S-hydroxyeicosatetraenoic acid (15S-HETE) (Hill et al. 1989).
R-HSA-2161792 (Reactome) The cytochrome P450s 4F2 (CYP4F2) and F3 (CYP4F3) oxidise 20-aldehyde leukotriene B4 (20cho-LTB4) to form 20-carboxy leukotriene B4 (20cooh-LTB4) (Soberman et al. 1988).
R-HSA-2161794 (Reactome) Arachidonate 12-lipoxygenase, 12S-type (ALOX12) converts arachidonic acid to both hepoxilin A3 (HXA3) and B3 (HXB3). They both incorporate an epoxide across the C-11 and C-12 double bond, as well as an additional hydroxyl moiety with HXA3 having a C-8 hydroxyl, whereas the HXB3 hydroxyl occurs at C-10 (Sutherland et al. 2001, Nigam et al. 2004).
R-HSA-2161795 (Reactome) Cytochrome P450s 1A1 (CYP1A1), 1A2 (CYP1A2), and 1B1 (CYP1B1) convert arachidonic acid to 16-, 17-, and 18-hydroxyeicosatetraenoic acids (16-, 17-, and 18-HETEs) (Choudhary et al. 2004).
R-HSA-2161814 (Reactome) Several cytochrome P450s (CYPs) convert arachidonic acid to 19-hydroxyeicosatetraenoic acid (19-HETE). The CYPs and their references are as follows: CYP2C8 (Bylund et al. 1998); CYP2C9 (Bylund et al. 1998); CYP2C19 (Bylund et al. 1998); CYP4A11 (Gainer et al. 2005); CYP2U1 (Chuang et al. 2004); CYP1A1, CYP1A2, CYP1B1 (Choudhary et al. 2004).
R-HSA-2161844 (Reactome) Prostaglandin reductase 1 (PTGR1) aka LTB4DH, a 15-oxoprostaglandin 13-reductase (Yokomizo et al. 1996), metabolises 15-oxo lipoxin A4 aka 15-keto-LXA4 (15k-LXA4) to produce 13,14-dihydro-15-keto-Lipoxin A4 (dhk-LXA4). This reaction has been inferred from a reaction in pig (Clish et al. 2000).
R-HSA-2161868 (Reactome) In an analogous reaction to the formation of leukotriene E4 (LTE4), eoxin D4 (EXD4) is converted to eoxin E4 (EXE4) by a dipeptidase (DPEP) (Feltenmark et al. 2008, Claesson et al. 2008) which has not yet been identified.
R-HSA-2161890 (Reactome) Several cytochrome P450s (CYPs) convert arachidonic acid to 5,6-epoxyeicosatrienoic acid (5,6-EET). The CYPs and their references are as follows: CYP1A1, CYP1A2, CYP1B1 (Choudhary et al. 2004); CYP2J2 (Wu et al. 1996).
R-HSA-2161899 (Reactome) Several cytochrome P450s (CYPs) convert arachidonic acid to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (8,9-, 11,12-, 14,15-EETs). The CYPs and their references are as follows: CYP1A1, CYP1A2, CYP1B1 (Choudhary et al. 2004); CYP2C8, CYP2C9 (Rifkind et al. 1995); CYP2C19 (Bylund et al. 1998, Rifkind et al. 1995); CYP2J2 (Wu et al. 1996).
R-HSA-2161907 (Reactome) Arachidonate 5-lipoxygenase (ALOX5) converts 15R-hydro-eicosatetraenoic acid (15R-HETE) to the epi-lipoxins, 15epi-lipoxin A4 (15epi-LXA4) and 15epi-lipoxin B4 (15epi-LXB4) (Claria & Serhan 1995). These epi-lipoxins have altered stereochemistry at the C-15 hydroxyl but similar biological potency.
R-HSA-2161917 (Reactome) Arachidonate 5-lipoxygenase (ALOX5) (Ueda et al. 1987) converts 15S-hydroperoxy-eicosatetraenoic acid (15S-HpETE) into lipoxin A4 (LXA4) and B4 (LXB4) (Serhan et al. 1984A, Serhan et al. 1984B). One of the reaction intermediates of this process might be 5S,6S-epoxy-15S-hydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (5,6-Ep-15S-HETE) (Puustinen et al. 1986). However, its generation from LTA4 is unclear but it can be hydrolysed to form the lipoxins.
R-HSA-2161940 (Reactome) Several cytochrome P450s (CYPs) convert arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). The CYPs and their references are as follows: CYP4A11 (Gainer et al. 2005, Powell 1998); CYP4F2 (Powell et al. 1998, Kikuta et al. 2002); CYP2U1 (Chuang et al. 2004); CYP1A1, CYP1A2, CYP1B1 (Choudhary et al. 2004).
R-HSA-2161945 (Reactome) In an analogous reaction to the formation of leukotriene D4 (LTD4), eoxin C4 (EXC4) is converted to eoxin D4 (EXD4) by a class of gamma-glutamyltransferase (GGT) (Feltenmark et al. 2008, Claesson et al. 2008) which has not yet been identified.
R-HSA-2161946 (Reactome) Glutathione peroxidase 1 (GPX1) (Bryant et al. 1982, Sutherland et al. 2001), 2 (GPX2) (Chu et al. 1993), and 4 (Bryant et al. 1982, Sutherland et al. 2001) reduce 5-hydroperoxyeicosatetraenoic acid (5-HpETE) to 5-hydroxyeicosatetraenoic acid (5-HETE) in the presence of glutathione (GSH). This reaction is inferred from the event in rabbit involving the protein GPX1 (Chiba et al. 1999).
R-HSA-2161948 (Reactome) Arachidonate 12-lipoxygenase, 12S-type (ALOX12) catalyses the formation of 12-oxo-eicosatetraenoic acid (12-oxoETE) from arachidonic acid. This conversion has been observed when normal human epidermis is exposed to arachidonic acid and with the purified recombinant enzyme in vitro (Anton & Vila 2000).
R-HSA-2161949 (Reactome) The epoxy moiety of hepoxilin A3 (HXA3) and B3 (HXB3) is labile and can be hydrolysed either by a hepoxilin specific epoxide hydrolase (HXEH) or in acidic aqueous solution to form the corresponding diol metabolites trioxilin A3 (TrXA3) and B3 (TrXB3) (Anton et al. 1995, Anton et al. 1998, Pace-Asciak et al. 1983, Pace-Asciak & Lee 1989).
R-HSA-2161950 (Reactome) The arachidonate 12-lipoxygenase, 12R-type (ALOX12B) oxidises arachidonic acid to 12R-hydroperoxy-eicosatetraenoic acid (12R-HpETE) (Boeglin et al. 1998).
R-HSA-2161951 (Reactome) Aspirin acetylates the cyclooxygenase, prostaglandin G/H synthase 2 (PTGS2) aka COX2. The acetylated PTGS2 triggers the formation of 15R-hydroxyeicosatetraenoic acid (15R-HETE) from arachidonic acid (Claria & Serhan 1995).
R-HSA-2161959 (Reactome) Glutathione peroxidase 1 (GPX1) (Bryant et al. 1982, Sutherland et al. 2001), 2 (GPX2) (Chu et al. 1993), and 4 (Bryant et al. 1982, Sutherland et al. 2001) are involved in converting 12R-hydroperoxy-eicosatetraenoic acid (12R-HpETE) to 12R-hydro-eicosatetraenoic acid (12R-HETE).
R-HSA-2161961 (Reactome) Epoxide hydrolase 2 (EPHX2) hydrolyses 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids ("EET(1)") to their corresponding dihydroxyeicosatrienoic acids ("DHET(1)") (Werner et al. 2002; Gomez et al. 2004). The majority of the EET biological activities are diminished by this hydrolysis.
R-HSA-2161962 (Reactome) Non-enzymatic hydrolysis of the leukotriene A4 (LTA4) epoxide bond creates 6-trans leukotriene B4 (6t-LTB4) and 6-trans,12-epi leukotriene B4 (6t,12epi-LTB4) stereoisomers (Mansour & Agha 1999, Sirois et al. 1985).
R-HSA-2161964 (Reactome) Arachidonate 12-lipoxygenase, 12S-type (ALOX12) (Funk et al. 1990, Izumi et al. 1990) and arachidonate 15-lipoxygenase (ALOX15) (Kuhn et al. 1993, Sigal et al. 1990) convert arachidonic acid into 12S-hydroperoxy-eicosatetraenoic acid (12S-HpETE).
R-HSA-2161979 (Reactome) An aldehyde dehydrogenase (ALDH) yet to be cloned in humans has been observed to oxidise 20-aldehyde leukotriene B4 (20cho-LTB4) to form 20-carboxy leukotriene B4 (20cooh-LTB4) (Sutyak et al. 1989).
R-HSA-2161999 (Reactome) Glutathione peroxidase 1 (GPX1) (Bryant et al. 1982, Sutherland et al. 2001), 2 (GPX2) (Chu et al. 1993), and 4 (Bryant et al. 1982, Sutherland et al. 2001) are involved in converting 12S-hydroperoxy-eicosatetraenoic acid (12S-HpETE) to 12S-hydro-eicosatetraenoic acid (12S-HETE). GPXs are selenoenzymes that are responsible for reducing the cellular peroxide. Cellular GPXs compete with hepoxilins A3 (HXA3) synthase for 12S-HpETE as substrate either to produce 12S-HETE or to convert to HXA3, respectively.
R-HSA-2162002 (Reactome) Arachidonate 15-lipoxygenase (ALOX15) (Gulliksson et al. 2007, Kuhn et al. 1993, Izumi et al. 1991) and arachidonate 15-lipoxygenase B (ALOX15B) (Tang et al. 2002, Wecksler et al. 2008) are lipid peroxidising enzymes mainly expressed in airway epithelial cells, eosinophils, reticulocytes and in macrophages. They insert molecular oxygen at C-6 from the omega-end of arachidonic acid with formation of the unstable intermediate 15S-hydroperoxyeicosatetraenoic acid (15S-HpETE) which can be further converted, enzymatically or non-enzymatically, to 15S-hydroxyeicosatetraenoic acid (15S-HETE).
R-HSA-2162019 (Reactome) Analogous to arachidonate 5-lipoxygenase (ALOX5) biosynthesis of leukotriene A4 (LTA4), arachidonate 15-lipoxygenase (ALOX15) can form an epoxide across C-14 and C-15 to form 14,15-LTA4 aka eoxin A4 (EXA4) (Feltenmark et al. 2008, Claesson et al. 2008).
R-HSA-2299725 (Reactome) PGH2 moves from the endoplasmic reticulum to the cytosol. The mechanism of this movement has not been determined and could could simply be diffusion through the ER membrane.
R-HSA-2309773 (Reactome) Prostaglandin G/H synthase 2 (PTGS2) exhibits a dual catalytic activity, a cyclooxygenase and a peroxidase. The peroxidase function converts prostaglandin G2 (PGG2) to prostaglandin H2 (PGH2) via a two-electron reduction (Hamberg et al. 1973, Hla & Neilson 1992, Swinney et al. 1997, Barnett et al. 1994).
R-HSA-2309779 (Reactome) While closely similar, PTGS1 and 2 differ sufficiently in the structures of their active sites so that the latter enzyme selectively binds and is inhibited by celecoxib (Luong et al. 1996; Smith et al. 2000; Dong et al. 2011).
R-HSA-2309787 (Reactome) Prostaglandin G/H synthase PTGS2 exhibits a dual catalytic activity, a cyclooxygenase and a peroxidase. The cyclooxygenase function catalyzes the initial conversion of arachidonic acid to an intermediate, prostaglandin G2 (PGG2) (Hamberg et al. 1974, Nugteren 1973).
R-HSA-2314678 (Reactome) Aspirin (acetylsalicylate) reacts spontaneously with one subunit of PTGS1 dimer to acetylate serine residue 516. The modified enzyme is no longer capable of catalyzing the conversion of arachidonic acid to PGH2. The identity of the acetylated residue is inferred from data for the humann PTGS2 enzyme (Lecomte et al. 1994) and the ovine PGHS1 enzyme (Loll et al. 1995).
R-HSA-2314686 (Reactome) Aspirin (acetylsalicylate) reacts spontaneously with one subunit of PTGS2 dimer (Dong et al. 2011) to acetylate serine residue 516 (Lecomte et al. 1994). The modified enzyme is no longer capable of catalyzing the conversion of arachidonic acid to PGH2, but acquires the ability to convert it to 15R-HETE.
R-HSA-265295 (Reactome) Prostaglandin E2 (PGE2) is the most abundant prostanoid in the body and is a major mediator of inflammation in diseases such as osteoarthritis and rheumatoid arthritis. The product of arachidonic acid, prostaglandin H2 (PGH2) serves as the substrate for the isomerization to PGE2. The conversion is carried out by prostaglandin E synthases. Of the three forms, two are predominanly cytosolic. Prostaglandin E synthase 3 (PTGES3) is also called cytosolic prostaglandin E2 synthase (cPGES). Prostaglandin E synthase 2 (mPGES-2, PTGES2) is synthesized as a Golgi membrane-associated protein which undergoes a spontaneous cleavage of the N-terminal hydrophobic domain leading to a truncated mature cytosolic protein.
R-HSA-265296 (Reactome) Arachidonate 5-lipoxygenase (ALOX5) catalyzes the formation of leukotriene A4 (LTA4) from arachidonic acid in a two-step process. First, arachidonic acid AA is oxidized to form 5S-hydroperoxyeicosatetranoic acid (5S-HpETE) (Rouzer et al. 1988, Rouzer & Samuelsson 1987, Rouzer et al. 1986).
R-HSA-266012 (Reactome) Another outer surface membrane-bound, homodimeric enzyme, dipeptidase, existing in two forms DPEP1 (Adachi et al. 1989) and DPEP2 (Lee et al. 1983, Raulf et al. 1987), further hydrolyses leukotriene D4 (LTD4) to leukotriene E4 (LTE4), cleaving a glycine residue in the process.
R-HSA-266046 (Reactome) The reversible conversion of leukotriene C4 (LTC4) to leukotriene D4 (LTD4) is catalysed by gamma-glutamyl transferases 1 (GGT1) and 5 (GGT5). GGTs are present on the outer surface of plasma membranes and are a heterodimer of a heavy and a light chain. Its action involves the hydrolysis of the gamma-glutamyl peptide bond of glutathione and glutathione conjugates, releasing glutamate. In this example, LTC4 is a glutathione conjugate that is hydrolysed to LTD4 (Anderson et al. 1982, Wickham et al. 2011).
R-HSA-266050 (Reactome) Leukotriene A4 conjugates with reduced glutathione (GSH) to produce leukotriene C4 (LTC4). This conjugation is mediated by the homodimeric, perinuclear membrane-bound enzyme leukotriene C4 synthase (LTC4S) (Lam et al. 1994, Welsch et al. 1994). LTC4S differs from cytosolic and microsomal GSH-S-transferases by having a very narrow substrate specificity and the inability to conjugate xenobiotics.
R-HSA-266051 (Reactome) In the second step of the formation of leukotriene A4 (LTA4) from arachidonic acid, arachidonate 5-lipoxygenase (ALOX5) converts 5S-hydroperoxyeicosatetranoic acid (5S-HpETE) to an allylic epoxide, leukotriene A4 (LTA4) (Rouzer et al. 1988, Rouzer & Samuelsson 1987, Rouzer et al. 1986).
R-HSA-266070 (Reactome) On formation, leukotriene C4 (LTC4) is exported to the extracellular region by the ABCC1 transporter (Sjolinder et al. 1999, Lam et al. 1989) and processed further by cleavage reactions.
R-HSA-266072 (Reactome) Leukotriene A4 hydrolase (LTA4H) is a monomeric, soluble enzyme that catalyzes the hydrolysis of the allylic epoxide leukotriene A4 (LTA4) to the dihydroxy acid leukotriene B4 (LTB4) (Radmark et al. 1984, McGee & Fitzpatrick 1985).
R-HSA-428990 (Reactome) Arachidonate released by phospholipases diffuses within the membrane and out of the membrane into the ER lumen and cytosol. The relatively low level of arachidonate in the cytoplasm is probably due to reesterification into complex lipids by acyl transferases.
R-HSA-429016 (Reactome) Arachidonate 5-lipoxygenase (ALOX5) catalyzes the first step in leukotriene biosynthesis and has a key role in inflammatory processes. ALOX5 is phosphorylated by MAPKAPK2; MAPKAPK2 is stimulated by arachidonic acid.
R-HSA-443894 (Reactome) Thromboxane A2 (TXA2) contains an unstable ether linkage that is rapidly hydrolysed under aqueous conditions to form the biologically inert thromboxane B2 (TXB2) (Wang et al. 2001, Hamberg et al. 1975), which is excreted.
R-HSA-5693742 (Reactome) Fatty acid amides are a class of lipid transmitters that include the endogenous cannabinoid anandamide (AEA) and the sleep-inducing chemical oleamide. The magnitude and duration of their signalling are controlled by enzymatic hydrolysis mediated by fatty-acid amide hydrolases 1 and 2 (FAAH, H2). Hydrolysis of AEA is described here (Wei et al. 2006). FAAH is localised to the ER membrane whereas FAAH2 is localised to lipid droplets (Kaczocha et al. 2010).
R-HSA-5693751 (Reactome) Fatty acid amides are a class of lipid transmitters that include the endogenous cannabinoid anandamide (AEA) and the sleep-inducing chemical oleamide. The magnitude and duration of their signalling are controlled by enzymatic hydrolysis mediated by fatty-acid amide hydrolases 1 and 2 (FAAH, H2). Hydrolysis of AEA is described here (Wei et al. 2006). FAAH is localised to the ER membrane whereas FAAH2 is localised to lipid droplets (Kaczocha et al. 2010).
R-HSA-5696424 (Reactome) Arachidyl alcohol (ARACOH) is straight-chain fatty alcohol of C20 length used as an emollient in cosmetics. Esterification of alcohols with fatty acids represents the formation of both storage and cytoprotective molecules in the body. Overproduction of these esters is associated with several disease pathologies, including atherosclerosis and obesity. The ER membrane-associated acyl-CoA wax alcohol acyltransferase 1 (AWAT1) mediates the esterification of its preferred substrate ARACOH (Turkish et al. 2005).
R-HSA-76496 (Reactome) Prostacyclin synthase (PTGIS) aka CYP8A1 mediates the isomerisation of prostaglandin H2 (PGH2) to prostaglandin I2 (PGI2) aka prostacyclin (Wada et al. 2004). This reaction is not coupled with any P450 reductase proteins nor consumes NADPH. Experiments on rats with thrombolytic models suggest endogenous MNA could be a stimulator of the COX2/PGI2 pathway and thus regulate an anti-thrombotic effect (Chlopicki et al. 2007).
R-HSA-76500 (Reactome) Thromboxane synthase (TBXAS1) aka CYP5A1 mediates the isomerisation of prostaglandin H2 (PGH2) to thromboxane A2 (TXA2) (Miyata et al. 2001, Chevalier et al. 2001). This reaction is not coupled with any P450 reductase proteins nor consumes NADPH.
R-HSA-8932633 (Reactome) Serum paraoxonase/arylesterases 1, 2 and 3 (PON1,2 and 3) are extracellular lactonases/lactonysing enzymes with overlapping, but also distinct substrate specificity. PONs are homodimeric proteins which bind 2 Ca2+ ions per subunit, necessary for enzyme stability and enzymatic activity. All three PONs can efficiently metabolise 5-hydroxy-eicosatetraenoic acid 1,5-lactone (5-HETEL), a product of both enzymatic and nonenzymatic oxidation of arachidonic acid and may represent one of the PONs' endogenous substrates (Draganov et al. 2005).
R-HSA-8942208 (Reactome) Hydroperoxide isomerase (ALOXE3, e-LOX-3) is a non-heme iron-containing lipoxygenase which is atypical in that it displays a prominent hydroperoxide isomerase activity and a reduced dioxygenase activity compared to other lipoxygenases. The hydroperoxide isomerase activity catalyses the isomerisation of hydroperoxides, derived from arachidonic and linoleic acid by ALOX12B, into epoxyalcohols (Yu et al. 2003).
In the skin, ALOXE3 acts downstream of ALOX12B on the linoleate moiety of esterified omega-hydroxyacyl-sphingosine (EOS) ceramides to produce an epoxy-ketone derivative, a crucial step in the conjugation of omega-hydroxyceramide to membrane proteins, important for the maintenance of the skin permeability barrier and protection against water loss. Loss-of-function mutations in ALOX12B and ALOXE3 represent the second most common cause of autosomal recessive congenital ichthyosis, a hereditary disorder of keratinization (Yu et al. 2005, Wang et al. 2015). Targeted disruption of these genes in mice resulted in neonatal death due to a severely impaired permeability barrier function (Zheng et al. 2011).
TBXAS1mim-catalysisR-HSA-2161613 (Reactome)
TBXAS1mim-catalysisR-HSA-76500 (Reactome)
TXA2ArrowR-HSA-76500 (Reactome)
TXA2R-HSA-443894 (Reactome)
TXB2ArrowR-HSA-443894 (Reactome)
TXB2R-HSA-2161732 (Reactome)
TXDHmim-catalysisR-HSA-2161732 (Reactome)
TXN-S2ArrowR-HSA-2161612 (Reactome)
TXN-S2H2R-HSA-2161612 (Reactome)
TrXA3/B3ArrowR-HSA-2161949 (Reactome)
acetylsalicylateR-HSA-2314678 (Reactome)
acetylsalicylateR-HSA-2314686 (Reactome)
arachidyl esterArrowR-HSA-5696424 (Reactome)
celecoxibR-HSA-2309779 (Reactome)
delta12-PGJ2ArrowR-HSA-2161563 (Reactome)
delta12-PGJ2R-HSA-2161588 (Reactome)
dhk-LXA4ArrowR-HSA-2161844 (Reactome)
dhk-PGE2/F2aArrowR-HSA-2161692 (Reactome)
e-R-HSA-140359 (Reactome)
e-R-HSA-2309773 (Reactome)
p-S272-ALOX5:Ca2+:Fe2+ArrowR-HSA-429016 (Reactome)
p-T222,S272,T334-MAPKAPK2mim-catalysisR-HSA-429016 (Reactome)
salicylateArrowR-HSA-2314678 (Reactome)
salicylateArrowR-HSA-2314686 (Reactome)
Personal tools