SUMOylation of transcription factors (Homo sapiens)

From WikiPathways

Revision as of 13:47, 16 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
2, 5, 20, 28, 29, 3119, 273, 9, 11, 221612, 17, 21, 3423, 24, 351414261, 4, 8, 15, 19...7, 10, 15, 19, 32...6, 14, 18, 19nucleoplasmSUMO1:C93-UBE2ISUMO1-C93-UBE2I TFAP2C SUMO2,3-K386-TP53K423-MITF-G97-SUMO1 SUMO1-C93-UBE2I PIAS1 SUMO2-K551-SP3SUMO2-C93-UBE2I PIAS1 SUMO1-C93-UBE2I SUMO1:C93-UBE2Ip14-ARF:MDM2SUMO1-C93-UBE2I PIAS4 SUMO1-K10-TFAP2A-1 TFAP2A-1-G97-SUMO1 UBE2I-G97-SUMO1 SUMO1:C93-UBE2ISUMO1-C93-UBE2I MTA1PIAS1,2-1SUMO1-C93-UBE2I UBE2IK25-FOXL2-G97-SUMO1 SUMO1:C93-UBE2ISUMO1-K-TP53BP1 UBE2I-G97-SUMO1 TP53BP1-G97-SUMO1 SUMO1-C93-UBE2I PIAS2-1 UBE2I-G92-SUMO3 SUMO2-C93-UBE2I FOXL2UBE2ISUMO3-C93-UBE2I UBE2I-G97-SUMO1 TFAP2A-1 PIAS3 UBE2I-G97-SUMO1 UBE2ISUMO1-C93-UBE2I UBE2I-G93-SUMO2 UBE2IMDM2 UBE2I-G97-SUMO1 UBE2I-G97-SUMO1 SUMO1:HIC1SUMO3-C93-UBE2I HIC1SUMO1:C93-UBE2ISUMO1-K333-HIC1 SUMO1-K25,K114,K150-FOXL2 SUMO1-K551-SP3 K289-MITF-G97-SUMO1 UBE2I-G97-SUMO1 UBE2I-G97-SUMO1 SUMO1-K10-TFAP2C UBE2I2SUMO1:MITFUBE2IUBE2I-G97-SUMO1 SUMO2:UBE2IUBE2ISUMO2-C93-UBE2I TFAP2B-G97-SUMO1 TP53BP1PIAS4TP53UBE2I-G93-SUMO2 3SUMO1:FOXL2UBE2I-G93-SUMO2 UBE2ISUMO1:TFAP2ChomodimerUBE2I:SUMO2,UBE2I:SUMO3UBE2I,PIAS1TFAP2B UBE2I-G92-SUMO3 K150-FOXL2-G97-SUMO1 SUMO1:C93-UBE2ITFAP2C homodimerUBE2ISUMO1-K289,423-MITF TFAP2C-G97-SUMO1 SUMO1:C93-UBE2ISUMO2,3-K509-MTA1PIAS1,3,4SP3-G97-SUMO1 SUMO1:C93-UBE2Ip14-ARF SUMO1:TFAP2A-1homodimerPIAS1 SUMO1:TFAP2BhomodimerSUMO1-K21-TFAP2B MITFSUMO1:TP53BP1SUMO1-C93-UBE2I UBE2ISUMO1:SP3SP3PIAS1TFAP2A-1 homodimerK114-FOXL2-G97-SUMO1 UBE2IPIAS3UBE2I:SUMO2,UBE2I:SUMO3HIC1-G97-SUMO1 TFAP2B homodimer179, 1114251913, 252523, 24, 3527191713, 2513, 251714, 18


Description

Proteins classified as transcription factors constitute a disproportionate number of SUMOylation targets. In most cases SUMOylation inhibits transcriptional activation, however in some cases such as TP53 (p53) SUMOylation can enhance activation. Inhibition of transcription by SUMOylation may be due to interference with DNA binding, re-localization to inactive nuclear bodies, or recruitment of repressive cofactors such as histone deacetylases (reviewed in Girdwood et al. 2004, Gill 2005). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 3232118
Reactome-version 
Reactome version: 61
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Su HL, Li SS.; ''Molecular features of human ubiquitin-like SUMO genes and their encoded proteins.''; PubMed Europe PMC Scholia
  2. Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH.; ''MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity.''; PubMed Europe PMC Scholia
  3. Garcia-Dominguez M, Reyes JC.; ''SUMO association with repressor complexes, emerging routes for transcriptional control.''; PubMed Europe PMC Scholia
  4. Dehennaut V, Loison I, Dubuissez M, Nassour J, Abbadie C, Leprince D.; ''DNA double-strand breaks lead to activation of hypermethylated in cancer 1 (HIC1) by SUMOylation to regulate DNA repair.''; PubMed Europe PMC Scholia
  5. Kim JH, Kim YH, Kim HM, Park HO, Ha NC, Kim TH, Park M, Lee K, Bae J.; ''FOXL2 posttranslational modifications mediated by GSK3β determine the growth of granulosa cell tumours.''; PubMed Europe PMC Scholia
  6. Paget S, Dubuissez M, Dehennaut V, Nassour J, Harmon BT, Spruyt N, Loison I, Abbadie C, Rood BR, Leprince D.; ''HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs).''; PubMed Europe PMC Scholia
  7. Lyst MJ, Stancheva I.; ''A role for SUMO modification in transcriptional repression and activation.''; PubMed Europe PMC Scholia
  8. Spengler ML, Kennett SB, Moorefield KS, Simmons SO, Brattain MG, Horowitz JM.; ''Sumoylation of internally initiated Sp3 isoforms regulates transcriptional repression via a Trichostatin A-insensitive mechanism.''; PubMed Europe PMC Scholia
  9. Eloranta JJ, Hurst HC.; ''Transcription factor AP-2 interacts with the SUMO-conjugating enzyme UBC9 and is sumolated in vivo.''; PubMed Europe PMC Scholia
  10. Bogachek MV, Chen Y, Kulak MV, Woodfield GW, Cyr AR, Park JM, Spanheimer PM, Li Y, Li T, Weigel RJ.; ''Sumoylation pathway is required to maintain the basal breast cancer subtype.''; PubMed Europe PMC Scholia
  11. Lomelí H, Vázquez M.; ''Emerging roles of the SUMO pathway in development.''; PubMed Europe PMC Scholia
  12. Impens F, Radoshevich L, Cossart P, Ribet D.; ''Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli.''; PubMed Europe PMC Scholia
  13. Stankovic-Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guérardel C, Dejean A, Leprince D.; ''An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity.''; PubMed Europe PMC Scholia
  14. Sapetschnig A, Rischitor G, Braun H, Doll A, Schergaut M, Melchior F, Suske G.; ''Transcription factor Sp3 is silenced through SUMO modification by PIAS1.''; PubMed Europe PMC Scholia
  15. Sapetschnig A, Koch F, Rischitor G, Mennenga T, Suske G.; ''Complexity of translationally controlled transcription factor Sp3 isoform expression.''; PubMed Europe PMC Scholia
  16. Ouyang J, Valin A, Gill G.; ''Regulation of transcription factor activity by SUMO modification.''; PubMed Europe PMC Scholia
  17. Girdwood DW, Tatham MH, Hay RT.; ''SUMO and transcriptional regulation.''; PubMed Europe PMC Scholia
  18. Marongiu M, Deiana M, Meloni A, Marcia L, Puddu A, Cao A, Schlessinger D, Crisponi L.; ''The forkhead transcription factor Foxl2 is sumoylated in both human and mouse: sumoylation affects its stability, localization, and activity.''; PubMed Europe PMC Scholia
  19. Berlato C, Chan KV, Price AM, Canosa M, Scibetta AG, Hurst HC.; ''Alternative TFAP2A isoforms have distinct activities in breast cancer.''; PubMed Europe PMC Scholia
  20. Stielow B, Sapetschnig A, Wink C, Krüger I, Suske G.; ''SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing.''; PubMed Europe PMC Scholia
  21. Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET.; ''Characterization of a second member of the sentrin family of ubiquitin-like proteins.''; PubMed Europe PMC Scholia
  22. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP.; ''Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks.''; PubMed Europe PMC Scholia
  23. Hendriks IA, D'Souza RC, Chang JG, Mann M, Vertegaal AC.; ''System-wide identification of wild-type SUMO-2 conjugation sites.''; PubMed Europe PMC Scholia
  24. Kuo FT, Bentsi-Barnes IK, Barlow GM, Bae J, Pisarska MD.; ''Sumoylation of forkhead L2 by Ubc9 is required for its activity as a transcriptional repressor of the Steroidogenic Acute Regulatory gene.''; PubMed Europe PMC Scholia
  25. Gill G.; ''Something about SUMO inhibits transcription.''; PubMed Europe PMC Scholia
  26. Galisson F, Mahrouche L, Courcelles M, Bonneil E, Meloche S, Chelbi-Alix MK, Thibault P.; ''A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells.''; PubMed Europe PMC Scholia
  27. Cong L, Pakala SB, Ohshiro K, Li DQ, Kumar R.; ''SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function.''; PubMed Europe PMC Scholia
  28. Stielow B, Sapetschnig A, Krüger I, Kunert N, Brehm A, Boutros M, Suske G.; ''Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen.''; PubMed Europe PMC Scholia
  29. Van Rechem C, Boulay G, Pinte S, Stankovic-Valentin N, Guérardel C, Leprince D.; ''Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells.''; PubMed Europe PMC Scholia
  30. Ellis DJ, Dehm SM, Bonham K.; ''The modification of Sp3 isoforms by SUMOylation has differential effects on the SRC1A promoter.''; PubMed Europe PMC Scholia
  31. Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC.; ''Uncovering global SUMOylation signaling networks in a site-specific manner.''; PubMed Europe PMC Scholia
  32. Miller AJ, Levy C, Davis IJ, Razin E, Fisher DE.; ''Sumoylation of MITF and its related family members TFE3 and TFEB.''; PubMed Europe PMC Scholia
  33. Georges A, Benayoun BA, Marongiu M, Dipietromaria A, L'Hôte D, Todeschini AL, Auer J, Crisponi L, Veitia RA.; ''SUMOylation of the Forkhead transcription factor FOXL2 promotes its stabilization/activation through transient recruitment to PML bodies.''; PubMed Europe PMC Scholia
  34. Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT.; ''Proteome-wide identification of SUMO2 modification sites.''; PubMed Europe PMC Scholia
  35. Ross S, Best JL, Zon LI, Gill G.; ''SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114895view16:40, 25 January 2021ReactomeTeamReactome version 75
113341view11:41, 2 November 2020ReactomeTeamReactome version 74
112551view15:51, 9 October 2020ReactomeTeamReactome version 73
101465view11:33, 1 November 2018ReactomeTeamreactome version 66
101003view21:12, 31 October 2018ReactomeTeamreactome version 65
100539view19:46, 31 October 2018ReactomeTeamreactome version 64
100086view16:31, 31 October 2018ReactomeTeamreactome version 63
99637view15:02, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93954view13:47, 16 August 2017ReactomeTeamreactome version 61
93550view11:26, 9 August 2017ReactomeTeamreactome version 61
88422view11:54, 5 August 2016FehrhartOntology Term : 'sumoylation pathway' added !
86652view09:23, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
2SUMO1:MITFComplexR-HSA-3730749 (Reactome)
3SUMO1:FOXL2ComplexR-HSA-3968416 (Reactome)
FOXL2ProteinP58012 (Uniprot-TrEMBL)
HIC1-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
HIC1ProteinQ14526 (Uniprot-TrEMBL)
K114-FOXL2-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
K150-FOXL2-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
K25-FOXL2-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
K289-MITF-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
K423-MITF-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
MDM2 ProteinQ00987 (Uniprot-TrEMBL)
MITFProteinO75030 (Uniprot-TrEMBL)
MTA1ProteinQ13330 (Uniprot-TrEMBL)
PIAS1 ProteinO75925 (Uniprot-TrEMBL)
PIAS1,2-1ComplexR-HSA-4090382 (Reactome)
PIAS1,3,4ComplexR-HSA-3465556 (Reactome)
PIAS1ProteinO75925 (Uniprot-TrEMBL)
PIAS2-1 ProteinO75928-1 (Uniprot-TrEMBL)
PIAS3 ProteinQ9Y6X2 (Uniprot-TrEMBL)
PIAS3ProteinQ9Y6X2 (Uniprot-TrEMBL)
PIAS4 ProteinQ8N2W9 (Uniprot-TrEMBL)
PIAS4ProteinQ8N2W9 (Uniprot-TrEMBL)
SP3-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
SP3ProteinQ02447 (Uniprot-TrEMBL)
SUMO1-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO1-K-TP53BP1 ProteinQ12888 (Uniprot-TrEMBL)
SUMO1-K10-TFAP2A-1 ProteinP05549-1 (Uniprot-TrEMBL)
SUMO1-K10-TFAP2C ProteinQ92754 (Uniprot-TrEMBL)
SUMO1-K21-TFAP2B ProteinQ92481 (Uniprot-TrEMBL)
SUMO1-K25,K114,K150-FOXL2 ProteinP58012 (Uniprot-TrEMBL)
SUMO1-K289,423-MITF ProteinO75030 (Uniprot-TrEMBL)
SUMO1-K333-HIC1 ProteinQ14526 (Uniprot-TrEMBL)
SUMO1-K551-SP3 ProteinQ02447 (Uniprot-TrEMBL)
SUMO1:C93-UBE2IComplexR-HSA-2993783 (Reactome)
SUMO1:HIC1ComplexR-HSA-4570476 (Reactome)
SUMO1:SP3ComplexR-HSA-3730656 (Reactome)
SUMO1:TFAP2A-1 homodimerComplexR-HSA-8865819 (Reactome)
SUMO1:TFAP2B homodimerComplexR-HSA-8865823 (Reactome)
SUMO1:TFAP2C homodimerComplexR-HSA-8865822 (Reactome)
SUMO1:TP53BP1ComplexR-HSA-3730720 (Reactome)
SUMO2,3-K386-TP53ProteinP04637 (Uniprot-TrEMBL)
SUMO2,3-K509-MTA1ProteinQ13330 (Uniprot-TrEMBL)
SUMO2-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO2-K551-SP3ProteinQ02447 (Uniprot-TrEMBL)
SUMO2:UBE2IComplexR-HSA-2993778 (Reactome)
SUMO3-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
TFAP2A-1 ProteinP05549-1 (Uniprot-TrEMBL)
TFAP2A-1 homodimerComplexR-HSA-8865818 (Reactome)
TFAP2A-1-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
TFAP2B ProteinQ92481 (Uniprot-TrEMBL)
TFAP2B homodimerComplexR-HSA-8864596 (Reactome)
TFAP2B-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
TFAP2C ProteinQ92754 (Uniprot-TrEMBL)
TFAP2C homodimerComplexR-HSA-8864386 (Reactome)
TFAP2C-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
TP53BP1-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
TP53BP1ProteinQ12888 (Uniprot-TrEMBL)
TP53ProteinP04637 (Uniprot-TrEMBL)
UBE2I,PIAS1ComplexR-HSA-3968388 (Reactome)
UBE2I-G92-SUMO3 ProteinP55854 (Uniprot-TrEMBL)
UBE2I-G93-SUMO2 ProteinP61956 (Uniprot-TrEMBL)
UBE2I-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
UBE2I:SUMO2,UBE2I:SUMO3ComplexR-HSA-3899312 (Reactome)
UBE2IProteinP63279 (Uniprot-TrEMBL)
p14-ARF ProteinQ8N726 (Uniprot-TrEMBL)
p14-ARF:MDM2ComplexR-HSA-3209192 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
2SUMO1:MITFArrowR-HSA-3232162 (Reactome)
3SUMO1:FOXL2ArrowR-HSA-3968414 (Reactome)
FOXL2R-HSA-3968414 (Reactome)
HIC1R-HSA-4090281 (Reactome)
MITFR-HSA-3232162 (Reactome)
MTA1R-HSA-3465545 (Reactome)
PIAS1,2-1mim-catalysisR-HSA-4090281 (Reactome)
PIAS1,3,4mim-catalysisR-HSA-3465545 (Reactome)
PIAS1mim-catalysisR-HSA-3247493 (Reactome)
PIAS1mim-catalysisR-HSA-6804468 (Reactome)
PIAS3mim-catalysisR-HSA-3232162 (Reactome)
PIAS4mim-catalysisR-HSA-2997723 (Reactome)
R-HSA-2997706 (Reactome) MDM2 in a complex with CDKN2A (p14-ARF) SUMOylates TP53 (p53) with SUMO2,3 at lysine-386 (Stindt et al. 2011, Hendriks et al. 2014, Tammsalu et al. 2014). SUMOylation decreases transcriptional activation by TP53 at some genes and decreases repression by TP53 at other genes (Stindt et al. 2011).
R-HSA-2997723 (Reactome) PIAS4 SUMOylates TP53BP1 with SUMO1 in response to double-strand breaks in DNA (Galanty et al. 2009, Impens et al. 2014). Overall, like TP53BP1, SUMO1,2,3, UBE2I, PIAS1 and PIAS4 are all observed to accumulate at double-strand breaks.
R-HSA-3232162 (Reactome) PIAS3 SUMOylates MITF with SUMO1 at lysine-289 and lysine-423 (lysine-182 and lysine-316 of the M2 isoform, Miller et al. 2005). SUMOylation reduces transcriptional activation by MITF at promoters containing multiple binding sites for MITF.
R-HSA-3234081 (Reactome) UBE2I (UBC9) interacts with TFAP2A, TFAP2B and TFAP2C, and the interaction site has been mapped to the C terminal region of TFAP2C; SUMOylation occurs on lysine-10 (Eloranta and Hurst 2002). As lysine-10 is conserved in TFAP2A and TFAP2B, SUMOylation of these factors is assumed to be on lysine-10 (Eloranta and Hurst 2002; Impens et al. 2014). SUMOylation causes a reduction in AP-2 transcriptional activation function but is required for its repressive function. A dominant negative mutant of UBC9 led to increased activation and reduced repressor function of TFAP2A and C, supporting the role of UBC9 in SUMOylation (Eloranta and Hurst 2002; Berlato et al. 2011). Isoform 1a of TFAP2A is SUMOylated, isoforms 1b and 1c lack lysine 10 and are not SUMOylated (Berlato et al. 2011). TFAP2D and TFAP2E lack lysine-10 and are thus assumed not to be SUMOylated. SUMOylation of TFAP2A blocked its ability to induce the expression of luminal genes and repression of basal genes (Bogachek et al. 2014). Disruption of the sumoylation pathway by knockdown of sumoylation enzymes, mutation of the SUMO-target lysine of TFAP2A, or treatment with sumoylation inhibitors induced MET in basal breast cancers, which was dependent on TFAP2A(Bogachek et al. 2014).
R-HSA-3234084 (Reactome) UBE2I (UBC9) interacts with the C terminal region of TFAP2B (Eloranta and Hurst 2002). As inferred from TFAP2C, SUMOylation of TFAP2B occurs at lysine in the VKYE motif and. therefore UBC9 is assumed to catalyze the ligation of SUMO1 to TFAP2B.
R-HSA-3234094 (Reactome) UBE2I (UBC9) interacts with the C-terminal region of TFAP2C (Eloranta and Hurst 2002). SUMOylation of TFAP2C occurs at lysine-10 and causes a reduction in its transcriptional activation activity. A dominant negative mutant of UBC9 led to increased activity of TFAP2C therefore UBC9 is assumed to catalyze the ligation of SUMO1 to TFAP2C.
R-HSA-3247493 (Reactome) PIAS1 SUMOylates SP3 with SUMO1 at lysine-551 (Ross et al. 2002, Sapetschnig et al. 2002, Sapetschnig et al. 2004, Spengler et al. 2005, Ellis et al. 2006, Impens et al. 2014). A minor amount of SUMOylation is also observed at lysine-120 (Ross et al. 2002). The effects of SUMOylation on the activities of isoforms of SP3 are promoter-dependent (Sapetschnig et al. 2004). Generally SUMOylation reduces the transcription activation capacity of the long and the short isoforms of Sp3 (Ross et al. 2002, Sapetschnig et al 2004, Ellis et al 2006). Mechanistically, SUMO attachment to Sp3 serves as a molecular beacon for the recruitment of chromatin-modifying machineries that impose epigenetic silencing (inferred from Drosophila homologs in Stielow et al. 2008a, inferred from mouse homologs in Stielow et al. 2008b).
R-HSA-3465545 (Reactome) PIAS1,3,4 SUMOylate MTA1 with SUMO2,3 at lysine-509 (Cong et al. 2011). SUMOylation increases the repressor activity of MTA1 at the PS2 promoter (Cong et al. 2011).
R-HSA-3968414 (Reactome) UBC9 and PIAS1 SUMOylate FOXL2 with SUMO1 (Kuo et al. 2009, Marongiu et al 2010, Georges et al. 2011). This modification changes its cellular localization, stability and transcriptional activity (Marongiu et al, 2010). SUMOylation localizes FOXL2 to PML bodies in the nucleus. SUMOylation is required for repression of transcription by FOXL2 at the StAR promoter and reduces transactivation by FOXL2 at the PER2 promoter. Hypophosphorylation of serine-33 correlates with SUMOylation and stablization of FOXL2, leading to enhanced transcriptional activation of TNF-R1, FAS, caspase 8, p21, and aromatase (Kim et al. 2014).
R-HSA-4090281 (Reactome) PIAS1,2-1 SUMOylate deacetylated HIC1 at lysine-333 (lysine 314 of HIC1 isoform 2) with SUMO1 (Stankovic-Valentin et al. 2007). Acetylation of HIC1 at lysine-333 inhibits SUMOylation. SUMOylation increases transcription repression by HIC1 (Stankovic-Valentin et al. 2007) and favors the interaction of HIC1 with MTA1 (Van Rechem et al., Mol Cell Biol, 2010) and MTA3 (Paget et al. 2016) notably during the DNA damage response (DDR) to non-repairable double strand breaks (DSBs).(Dehennaut et al. 2013). This increase of HIC1 SUMOylation during the DDR to DSBs is strictly dependent on the ATM kinase (Paget et al. 2016). SUMOylation of HIC1 is dispensable for DNA repair since the non-SUMOylatable point mutant E316A is as efficient as wt HIC1 in Comet assays which measure the repair of DSBs (Paget et al. 2016).
R-HSA-6804468 (Reactome) PIAS1 SUMOylates SP3 with SUMO2 at lysine-551 (Sapetschnig et al. 2002, Galisson et al. 2011, Tammsalu et al. 2014, Hendriks et al. 2015). SUMOylation reduces the transcription activation capacity of the long and the short isoforms of Sp3 (Sapetschnig et al 2004). Mechanistically, SUMO attachment to Sp3 serves as a molecular beacon for the recruitment of chromatin-modifying machineries that impose epigenetic silencing (inferred from Drosophila homologs in Stielow et al. 2008a, inferred from mouse homologs in Stielow et al. 2008b).
SP3R-HSA-3247493 (Reactome)
SP3R-HSA-6804468 (Reactome)
SUMO1:C93-UBE2IR-HSA-2997723 (Reactome)
SUMO1:C93-UBE2IR-HSA-3232162 (Reactome)
SUMO1:C93-UBE2IR-HSA-3234081 (Reactome)
SUMO1:C93-UBE2IR-HSA-3234084 (Reactome)
SUMO1:C93-UBE2IR-HSA-3234094 (Reactome)
SUMO1:C93-UBE2IR-HSA-3247493 (Reactome)
SUMO1:C93-UBE2IR-HSA-3968414 (Reactome)
SUMO1:C93-UBE2IR-HSA-4090281 (Reactome)
SUMO1:C93-UBE2Imim-catalysisR-HSA-3234081 (Reactome)
SUMO1:C93-UBE2Imim-catalysisR-HSA-3234084 (Reactome)
SUMO1:C93-UBE2Imim-catalysisR-HSA-3234094 (Reactome)
SUMO1:HIC1ArrowR-HSA-4090281 (Reactome)
SUMO1:SP3ArrowR-HSA-3247493 (Reactome)
SUMO1:TFAP2A-1 homodimerArrowR-HSA-3234081 (Reactome)
SUMO1:TFAP2B homodimerArrowR-HSA-3234084 (Reactome)
SUMO1:TFAP2C homodimerArrowR-HSA-3234094 (Reactome)
SUMO1:TP53BP1ArrowR-HSA-2997723 (Reactome)
SUMO2,3-K386-TP53ArrowR-HSA-2997706 (Reactome)
SUMO2,3-K509-MTA1ArrowR-HSA-3465545 (Reactome)
SUMO2-K551-SP3ArrowR-HSA-6804468 (Reactome)
SUMO2:UBE2IR-HSA-6804468 (Reactome)
TFAP2A-1 homodimerR-HSA-3234081 (Reactome)
TFAP2B homodimerR-HSA-3234084 (Reactome)
TFAP2C homodimerR-HSA-3234094 (Reactome)
TP53BP1R-HSA-2997723 (Reactome)
TP53R-HSA-2997706 (Reactome)
UBE2I,PIAS1mim-catalysisR-HSA-3968414 (Reactome)
UBE2I:SUMO2,UBE2I:SUMO3R-HSA-2997706 (Reactome)
UBE2I:SUMO2,UBE2I:SUMO3R-HSA-3465545 (Reactome)
UBE2IArrowR-HSA-2997706 (Reactome)
UBE2IArrowR-HSA-2997723 (Reactome)
UBE2IArrowR-HSA-3232162 (Reactome)
UBE2IArrowR-HSA-3234081 (Reactome)
UBE2IArrowR-HSA-3234084 (Reactome)
UBE2IArrowR-HSA-3234094 (Reactome)
UBE2IArrowR-HSA-3247493 (Reactome)
UBE2IArrowR-HSA-3465545 (Reactome)
UBE2IArrowR-HSA-3968414 (Reactome)
UBE2IArrowR-HSA-4090281 (Reactome)
UBE2IArrowR-HSA-6804468 (Reactome)
p14-ARF:MDM2mim-catalysisR-HSA-2997706 (Reactome)
Personal tools