Chromosomal and microsatellite instability in colorectal cancer (Homo sapiens)
From WikiPathways
Description
CRC arises from the colorectal epithelium as a result of the accumulation of genetic alterations in defined oncogenes and tumour suppressor genes (TSG). Two major mechanisms of genomic instability have been identified in sporadic CRC progression. The first, known as chromosomal instability (CIN), results from a series of genetic changes that involve the activation of oncogenes such as K-ras and inactivation of TSG such as p53, DCC/Smad4, and APC. The second, known as microsatellite instability (MSI), results from inactivation of the DNA mismatch repair genes MLH1 and/or MSH2 by hypermethylation of their promoter, and secondary mutation of genes with coding microsatellites, such as transforming growth factor receptor II (TGF-RII) and BAX. Hereditary syndromes have germline mutations in specific genes (mutation in the tumour suppressor gene APC on chromosome 5q in FAP, mutated DNA mismatch repair genes in HNPCC).
This pathway is based on information from KEGG
Quality Tags
Ontology Terms
Bibliography
View all... |
- Miyaki M, Kuroki T; ''Role of Smad4 (DPC4) inactivation in human cancer.''; Biochem Biophys Res Commun, 2003 PubMed Europe PMC Scholia
- Pino MS, Chung DC; ''The chromosomal instability pathway in colon cancer.''; Gastroenterology, 2010 PubMed Europe PMC Scholia
- de Miranda NF, van Dinther M, van den Akker BE, van Wezel T, ten Dijke P, Morreau H; ''Transforming Growth Factor β Signaling in Colorectal Cancer Cells With Microsatellite Instability Despite Biallelic Mutations in TGFBR2.''; Gastroenterology, 2015 PubMed Europe PMC Scholia
- Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E; ''PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.''; Nucleic Acids Res, 2015 PubMed Europe PMC Scholia
- Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K, Saji S; ''Somatic alterations of the DPC4 gene in human colorectal cancers in vivo.''; Gastroenterology, 1996 PubMed Europe PMC Scholia
- De Bosscher K, Hill CS, Nicolás FJ; ''Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells.''; Biochem J, 2004 PubMed Europe PMC Scholia
- Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD; ''Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer.''; J Clin Oncol, 2008 PubMed Europe PMC Scholia
- Koyama M, Ito M, Nagai H, Emi M, Moriyama Y; ''Inactivation of both alleles of the DPC4/SMAD4 gene in advanced colorectal cancers: identification of seven novel somatic mutations in tumors from Japanese patients.''; Mutat Res, 1999 PubMed Europe PMC Scholia
- Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD; ''Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer.''; J Clin Oncol, 2008 PubMed Europe PMC Scholia
- Neumann J, Zeindl-Eberhart E, Kirchner T, Jung A; ''Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer.''; Pathol Res Pract, 2009 PubMed Europe PMC Scholia
- Mazzoni SM, Fearon ER; ''AXIN1 and AXIN2 variants in gastrointestinal cancers.''; Cancer Lett, 2014 PubMed Europe PMC Scholia
- Neumann J, Zeindl-Eberhart E, Kirchner T, Jung A; ''Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer.''; Pathol Res Pract, 2009 PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Annotated Interactions
No annotated interactions