Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 14:44, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 5, 7, 10, 15...7351, 6, 14, 16, 23...76, 13, 15, 23, 274, 74, 7, 26191115mitochondrial matrixThr-tRNA(Thr) MRPL27 GDP MRPS11 MRPL16 MRPS25 MRPS16 MRPL34 Ser-tRNA(Ser) MRPL20 MRPL41 tRNA(Lys) MRPS18C DAP3 MRPS24 MRPS18C MTIF3MRPL18 CHCHD1 MRPS17 MRPS35 MRPL39 MRPS36 MRPL3 MRPL28 tRNA(Thr) MRPL18 MRPS22 MRPL57 MRPL2 MRPS2 Val-tRNA(Val) MRPS24 MRPL36 DAP3 MRPL51 MRPS27 MRPL45 MRPL12 MTRF1L MRPS36 MRPS24 MRPS6 MRPL47 MRPL12 MRPS21 GFM1 MRPL40 MRPS18A MRPL34 MRPL43 MRPL41 MRPS18B MRPL18 MRPL1 PTCD3 MRPL4 MRPS5 MRPL35 MRPS21 MRPL23 MRPS30 MRPL17 mRNA MRPS33 MRPL53 Thr-tRNA(Thr) GADD45GIP1 MRPS23 MRPL1 MRPS23 MRPS35 MRPS27 MRPL13 DAP3 tRNA(Ala) MRPL53 MRPL40 DAP3 MRPL15 ERAL1 tRNA(Glu) MRPS26 MRPL38 MRPL34 Ser-tRNA(Ser) MRPS11 MRPL1 MRPL12 tRNA(Cys) MRPL50 MRPL54 MRPS25 MRPS2 MRPL33 CHCHD1 MRPL32 MRPS34 MRPL45 MRPL14 MRPL11 MRPL20 MRPS18B MRPL54 tRNA(Trp) MRPL9 MRPL37 MRPL51 MRPL16 MRPL46 Asn-tRNA(Asn) MRPL51 MRPL2 MRPS30 MRPS21 MRPS7 MRPL3 MRPS14 MRPS21 MRPL32 MRPS30 MRPL52 MRPS25 Tyr-tRNA(Tyr) MRPL36 TUFM MRPS15 MRPL48 MRPS21 MRPL54 MRPS17 MRPL39 MRPL48 MRPL18 MRPL18 MRPL11 ICT1 MRPS16 DAP3 tRNA(Ser) MRPS2 MRPL33 MRPS28 MRPL57 MRPL14 MRPL23 MRPL16 MRPS16 MRPL47 MRPL14 MRPS15 MRPS25 MRPL38 tRNA(Gly) MRPS22 MRPL52 MRPL49 PTCD3 MRPS5 MRPL27 GFM1:GTPMTIF3 MRPL13 MRPL34 MRPS18A MRPS7 AURKAIP1 MRPS26 55Sribosome:mRNA:fMet-tRNAMRPL35 MRPS2 MRPS15 tRNA(Met) tRNA(Arg) MRPS6 MRPS18B PiMRPL42 MRPL10 MRPS17 MRPS14 MRPS25 polypeptideMRPL47 MRPL16 MT-TV MRPL13 Trp-tRNA(Trp) MRPS31 MRPL20 Met-tRNA(Met)MRPL1 MRPS15 MRPL49 MRPS14 Phe-tRNA(Phe) GFM1:GDPMRPS28 MRPS30 MRPL18 MRPS23 MRPL22 MRPS28 MTRF1L MRPS17 Val-tRNA(Val) MRPS2 MRPS17 MRPL13 MRPL21 MRPL13 MRPS5 ICT1 MRPL50 MRPL9 Ser-tRNA(Ser) MRPS2 MRPL50 MRPL33 GTP MRPL27 MRPL40 tRNA(Met) Asp-tRNA(Asp) Pro-tRNA(Pro) Asp-tRNA(Asp) MRPS22 MRPL46 MRPL40 MRPS16 MRPS16 MRPS11 PiMRPL38 MRPL47 MRPL20 MRPL23 Met-tRNA(Met) Gly-tRNA(Gly) MRPL54 MRPL37 GTP MRPS30 MRPS28 MRPL4 MRPL45 ICT1 MRPL54 MRPS11 PiMitochondrial 16S rRNA MRPL37 MRPL27 MRPL11 MRPS23 MRPS18B Mitochondrial 12S rRNA MRPS18A MRPL38 aminoacyl-tRNAMRPS11 MRPS17 MRPL21 MRPL32 MRPL18 Tyr-tRNA(Tyr) CHCHD1 MRPL55 MRPL54 Pro-tRNA(Pro) ERAL1 MRPS24 GTP tRNA(His) MRPS9 MRPS31 GDPMRPL45 MRPL37 MRPL30 MRPL44 MRPS27 MRPS36 MRPS33 Mitochondrial 12S rRNA MRPS23 MRPS27 MRPL51 MRPS6 MRPL2 AURKAIP1 MRPL1 MRPS14 MRPS2 MRPS24 tRNA(Ile) MRPS5 MRPS7 MRPL2 MRPL47 MRPS10 Trp-tRNA(Trp) MRPS23 MRPL24 Arg-tRNA(Arg) ICT1 MRPL47 MT-TV Lys-tRNA(Lys) tRNA(Asp) MRPL9 DAP3 MRPS17 MRPL16 ERAL1 ICT1 Mitochondrial 12S rRNA MRPL11 MRPS25 Glu-tRNA(Glu) MRPL41 MRPL50 MRPL4 MRPL12 MRPL37 fMet-tRNA(fMet) MRPL41 MRPS36 MRPS16 MRPS24 MRPL53 MRPL48 MRPS10 MRPL55 MRPS23 MRPL4 MRPL4 MRPL21 MRPL52 MRPS31 MRPL24 MRPL22 MRPL16 MRPL43 MRPS14 MRPS12 MRPS14 tRNA(Phe) Mitochondrial 12S rRNA MRPL2 Lys-tRNA(Lys) MRPL36 MRPS6 MRPL2 MRPL21 MRPL57 tRNA(Val) ICT1 MRPL57 MRPS35 MRPL23 Glu-tRNA(Glu) MT-TV MRPS21 MRPS2 MRPL43 MRPS25 tRNA(Thr) CHCHD1 MRPS22 MRPS35 MRPS18A MRPL32 MRPL10 MRPS17 MRPS24 MRPS6 mRNA MRPS10 MRPS18C MRPS28 MRPL21 MRPS35 MRPL21 MRPS35 MRPL19 MRPL9 MRPS16 ERAL1 MRPS30 tRNA(Tyr) TSFMMRPS21 MRPL23 MRPS17 MRPL2 MRPL45 mRNA Asn-tRNA(Asn) Mitochondrial 12S rRNA MRPL27 Ala-tRNA(Ala) MRPL45 MRPS17 MRPL34 PTCD3 MRPL49 MRPL2 MRPL50 MRPS33 MRPS12 MRPL46 MRPS12 MRPL28 Lys-tRNA(Lys) TUFM MRPS9 MRPS12 MRPL38 MRPS33 MRPL43 TUFM:GTP:aminoacyl-tRNAMRPL35 MRPL57 AURKAIP1 MRPS34 MRPL34 MRPS26 AURKAIP1 GADD45GIP1 MRPL50 MRPL2 MRPL44 MRPL43 MRPL24 MRPL13 MRPL55 MRPL37 MRPL44 MRPL16 Asn-tRNA(Asn) MRPL17 MRPL50 GADD45GIP1 MRPS35 MRPL23 MRPL3 MRPS21 MRPS34 MRPS12 ERAL1 tRNA(Glu) MRPL22 MRPL44 MRPL14 GFM2:GDPMRPL28 GTP MRPS10 Glu-tRNA(Glu) MRPS23 MRPL39 tRNA(Ile) MRPS33 MRPS7 Gln-tRNA(Gln) Trp-tRNA(Trp) MRPS23 Gln-tRNA(Gln) MRPL55 MRPL42 MRPL28 MRPS36 MT-TV mRNA MRPS15 Arg-tRNA(Arg) MRPS2 MTIF2 MRPL36 MRPL9 GADD45GIP1 MRPS36 MRPS7 MRPS26 MRPL36 MRPS9 MRPL57 MRPL3 MRPS33 MRPS25 MRPL38 MRPS5 MRPL40 PiMRPL51 MRPL55 MRPL17 ERAL1 MRPS12 MRPL21 MRPS12 MRPS9 MTIF2MRPS22 MRPL49 MRPS7 MRPL28 MRPL17 CHCHD1 MRPS30 DAP3 THFmRNA MRPL9 MRPL28 MRPS36 MRPL30 MRPS26 tRNA(Thr) MRPL19 Ile-tRNA(Ile) GFM2 MRPL17 MRPL10 PTCD3 tRNA(Gly) tRNA(Gln) MRPS9 MRPS10 MRPS9 MRPS28 MRPL44 MRPS17 MRPL42 MRPL40 TSFM MRPS15 MRPL38 MRPL21 MRPL11 MRPL11 MRPS30 MRPL54 tRNA(Lys) Glu-tRNA(Glu) MRPL15 TUFM:GDPMRPS18B GADD45GIP1 MRPL46 MRPL17 MRPL22 GFM1 Gln-tRNA(Gln) MRPL52 MRPS22 MRPL28 MRPL3 PTCD3 MRPS26 MRPS12 MRPL15 MRPL3 MRPL10 MTRF1L, ICT1MRPS30 GTP MRPL33 MRPS25 MRPL22 MRPL46 MRPL12 tRNA(Pro) MRPL21 MRPS35 DAP3 tRNA(Trp) GADD45GIP1 MRPS18B MRPL11 MRPS6 MRPS7 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPS23 MRPL19 MRPS27 MRPL55 MRPS27 MRPS28 MRPL35 MRPL11 tRNA(Val) tRNA(His) MRPS35 55Sribosome:MRRF:GFM2:GTPERAL1 MRPS27 MRPS11 MRPL12 tRNA(Met) MRPS11 MRPS27 MRPS31 MRPS30 MRPL53 MRPL52 MRPS26 MRPL14 MRPL19 MRPS15 GTPCys-tRNA(Cys) MRPL51 Thr-tRNA(Thr) MRPL28 Gly-tRNA(Gly) TUFM:GTPMRPL9 MRPS27 Val-tRNA(Val) MRPL36 MRPL17 MRPL39 MRPL1 MRPL55 Ile-tRNA(Ile) MRPS6 MRPL15 MRPS6 MRPL36 MRPL14 Mitochondrial 12S rRNA MRPS34 MRPS33 MRPL11 MRPS31 mRNAMRPL40 MRPS2 MRPL30 MRPL39 GADD45GIP1 MTIF2 fMet-tRNA(fMet) MRPL4 MRPS26 MRPS21 MRPL42 MT-TV Gly-tRNA(Gly) MRPL52 tRNA(Asp) peptidyl-tRNA with elongated peptide MRPS36 MRPS18C DAP3 MRPL20 MRPL33 MRPS31 Tyr-tRNA(Tyr) MRPL30 MRPS12 PTCD3 Arg-tRNA(Arg) MRPL57 MRPS9 MRPL16 MRPL53 MRPS7 MRPL27 MRPL44 tRNA(Gln) MRPS12 MRPL41 MRPS15 MRPL10 MRPL33 MRPL36 GADD45GIP1 MRPS7 MRPS31 MRPS10 MRPS34 tRNA(Ala) MRPS16 MRPS36 MRPL19 MRPL33 MRPS35 MRPL20 tRNA(Leu) MRPL35 MRPS18A MRPL27 ERAL1 tRNA(Ile) MRPS11 MRPL36 MRPS11 AURKAIP1 MRPL3 MRPL39 MRPL35 Lys-tRNA(Lys) MRPL13 fMet-tRNA(fMet) MRPS16 GADD45GIP1 MRPS10 MRPS5 fMet-tRNA(fMet) MRPS11 DAP3 MRPS30 MRPL44 MTIF2:GTPMet-tRNA(Met) PTCD3 MRPL42 MRPL57 GADD45GIP1 MRPL42 MRPS25 MRPS5 MRPL24 GTP MRPS11 MRPL55 PTCD3 GFM2 MRPL40 MRPS31 AURKAIP1 MRPL46 MRPL35 tRNA(Trp) MRPS18C MRPL30 MRPS7 MRPL15 AURKAIP1 MRPS33 ERAL1 MRPS22 ICT1 MRPL53 MRPS10 MRPL35 MRPS18A GFM1 MRPL17 MRPL48 MRPL44 Ile-tRNA(Ile) MRPS33 MRPS18B MRPL49 MRPL1 Phe-tRNA(Phe) MRPL3 MRPL41 MRPS6 MRPL10 MRPL38 MRPL43 tRNA(Cys) Cys-tRNA(Cys) Mitochondrial 16S rRNA MRPL45 ICT1 Leu-tRNA(Leu) MRPL44 MRPS18A MRPL35 MRPL48 MRPS15 MRPL22 MRPL17 MRPL28 MRPS14 MRPL39 MRPL22 MRPL17 MRPL37 His-tRNA(His) MRPL42 MRPL34 Ile-tRNA(Ile) MRPL19 MRPL46 MRPL34 fMet-tRNA(fMet)Mitochondrial 16S rRNA MRPS34 MRPS15 MRPL28 PTCD3 MRPS17 MRPS14 AURKAIP1 MRPL24 MRPL32 MRPS24 MRPS14 MRPS34 MRPS18C tRNA(Gly) Leu-tRNA(Leu) MRPL33 MRPS15 MRPL10 MRPL14 MRPL12 MRPS18B MRPS18C His-tRNA(His) MRPS22 GTP Cys-tRNA(Cys) MRPS2 MRPS2 MT-TV Pro-tRNA(Pro) Mitochondrial 16S rRNA MRPL53 MRPL15 TUFM MRPS16 MRPS18B His-tRNA(His) MRPL51 MRPL37 MRPL52 Mitochondrial 12S rRNA Mitochondrial 12S rRNA MRPS34 MRPL23 tRNA(Asn) MRPL4 MRPL34 MRPS28 tRNA(Asp) MRPL51 MRPL57 PTCD3 MRPL40 MRPS18A MRPS35 Phe-tRNA(Phe) MT-TV MRPS24 MRPL24 MRPS36 MRPL40 MRPL41 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPS28 tRNA(Phe) MRPL19 MRPL48 MRPS36 MRPL15 MRPL10 MRPL27 mRNA MRPS31 GFM2 MRPL23 GDPMRPS10 peptidyl-tRNA with elongated peptide tRNA(Leu) MRPL20 MRPL30 MT-TV MRPL41 tRNA(Tyr) peptidyl-tRNA with elongated peptide MRPL45 Leu-tRNA(Leu) MRPL21 MRPS6 MRPL22 MRPS11 MRPS34 MRPL39 MRPS28 MRPL22 MRPS31 CHCHD1 tRNA(Asn) MRPL10 MRPS9 MRPL20 MRPS5 MRPS23 Val-tRNA(Val) MRPL53 MRPS18C tRNA(Ser) MRPS26 MRPL47 Tyr-tRNA(Tyr) MRPL51 MRPL54 55Sribosome:mRNA:tRNA:MRRFMRPL42 MRPS24 MRPL34 MRPL36 CHCHD1 MRPL15 GTP MRPL33 tRNA(Gln) MRPL53 tRNA(His) tRNA(Tyr) MRPS15 MRPL38 Gly-tRNA(Gly) MRPL30 tRNA(Arg) tRNA(Phe) Mitochondrial 16S rRNA MRPL46 MRPL1 MRPL47 MRPL27 MRPL24 MRPS34 MRPL44 MRPL30 PTCD3 MRPS10 MRPL10 MRPL44 55Sribosome:mRNA:tRNAMRPL1 Mitochondrial 12S rRNA MRPS33 MRPS5 MRRF MRPS9 GTPMRPL34 MRPL47 Mitochondrial 16S rRNA Met-tRNA(Met) AURKAIP1 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPtRNA(Val) MRPS34 tRNA(Lys) MRPS21 MRPL53 His-tRNA(His) CHCHD1 MRPS31 MRPL37 tRNA(Glu) MRPL43 MRPL42 MRPL14 MRPS26 tRNA(Met)MRPS28 MRPL43 Cys-tRNA(Cys) MRPL3 ERAL1 MRPS18C MRPL30 MRPL19 MRPS28 MRPL28 MRPL32 MRPL10 MRPL41 MRPS25 MRPL19 Asp-tRNA(Asp) MRPL47 MRPS31 MRPS6 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPS6 MRPS5 MRPL52 MRPS31 DAP3 MRPS22 MRPS14 MRPS18C MRPL24 MRPS18C MRPS10 MRPL46 MRPS7 MRPS12 MRPL43 MRPL49 MRPL41 tRNA(Cys) MRPS27 MRPL17 Ser-tRNA(Ser) MRPL50 MRPL48 MRPS36 MRPS5 fMet-tRNA(fMet) MRPL30 MRPL45 MRPS18B MRPS35 MRPS18B MRPL2 MRPL23 MRPL12 MRPL1 GTP MRPL24 MRRFMRPS16 MRPL37 mRNA MRPL20 MRPL15 MRPL2 Mitochondrial 12S rRNA MRPS27 MRPL35 ICT1 MRPS18C MRPS2 GDP MRPS26 Phe-tRNA(Phe) MRPS33 ERAL1 MRPL9 CHCHD1 MRPL4 GADD45GIP1 MRPS36 28S ribosomalsubunit:MTIF3MRPL32 MRPL19 MRPL37 MRPL22 MRPS11 CHCHD1 MRPS9 MRPL32 MRPS18B Mitochondrial 12S rRNA MRPL48 MRPL52 AURKAIP1 tRNA(Asn) MRPL3 MRPS18A MRPL52 MRPS33 MRPL16 MRPL20 MRPL39 MRPL24 MRPL50 MRPL46 MRPS9 DAP3 MRPL27 tRNA(Pro) MRPL14 MRPL38 MRPS23 MRPS24 MRPS14 MRPL14 MRPL55 mRNA Asn-tRNA(Asn) tRNA(Leu) MRPL18 peptidyl-tRNA with elongated peptide tRNA(Pro) mRNA MRPL15 MRPS23 MRPS22 MRPL49 MRPL32 MRPS25 MRPL51 MRPL12 tRNAMT-TV MRPL4 MRPL45 MRPS12 Pro-tRNA(Pro) tRNA(Ala) MRPL50 MRPL46 MT-TV MRPL49 MRPL41 Mitochondrial 12S rRNA MRPL20 MRPL53 MRPL13 MTFMTMRPS9 MRPS18A MRPS34 Mitochondrial 12S rRNA MRPS5 MRPL43 MRPS10 MRPS22 MRPL13 MRPL52 Mitochondrial 16S rRNA MRPL57 MRPL16 MRPS25 MRPS15 MRPS21 Met-tRNA(Met) MRPL4 GFM2:GTPGDP ICT1 MRPL12 Ala-tRNA(Ala) MRPS27 28S ribosomalsubunitfMet-tRNA(fMet) Mitochondrial 16S rRNA Asp-tRNA(Asp) MRPS18B AURKAIP1 MRPL42 MRPS16 10-formyl-THFMRPL42 MRPS16 CHCHD1 Mitochondrial 16S rRNA MRPS24 MRPL54 MRPL49 MRPL16 MRPS24 MRPS22 MRPL54 TUFM MRPL11 MRPL39 MRPL47 ICT1 MRPL33 MRPS10 MRPL55 MRPL23 Ala-tRNA(Ala) ERAL1 MRPL50 MRPS9 MRPS30 MRPL15 MRPS18A MRPL35 Mitochondrial 16S rRNA MRPL13 MRPL32 Thr-tRNA(Thr) tRNA(Arg) MRPS6 MRPS27 MRPS17 Trp-tRNA(Trp) MRPL36 MRPL48 ICT1 MRPL19 MRPL12 DAP3 MRPL22 MRPS26 MRPL23 MRPS14 TUFM MRPL40 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAMRPS7 MRPS28 MRPL11 MRPL39 MRPL57 ICT1 CHCHD1 MRRF MRPL33 MRPL9 tRNA(Ser) Arg-tRNA(Arg) PiMRPL48 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPL27 MRPL18 MRPL9 MRPS12 MRPL21 MRPL24 MRPS34 MRPL49 mRNA GDPGTP MRPL14 MTIF3 MRPL3 MRPS22 MRPS21 MRPL54 MRPS18C MRPL4 MRPL30 MRPS18A MRPL51 MRPL55 39S ribosomalsubunitMRPL13 ERAL1 PTCD3 MRPL45 CHCHD1 MRPL32 MRPL48 MRPS21 TUFM:TSFMMRPL43 Leu-tRNA(Leu) AURKAIP1 MRPS18A AURKAIP1 Ala-tRNA(Ala) MRPL1 MRPS14 Gln-tRNA(Gln) MRPL9 MRPS35 MRPL38 MRPS33 MRPS5 PTCD3 MRPS26 Mitochondrial 16S rRNA 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPL49 MRPS30 MRPL18 MT-TV MRPL18 MRPS7 8, 218, 218, 218, 218, 218, 218, 218, 218, 212, 9, 348, 218, 218, 218, 12, 21, 348, 2113, 14, 16


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools