Transcriptional regulation by RUNX3 (Homo sapiens)
From WikiPathways
Description
The transcription factor RUNX3 is a RUNX family member. All RUNX family members, RUNX1, RUNX2 and RUNX3, possess a highly conserved Runt domain, involved in DNA binding. For a more detailed description of the structure of RUNX proteins, please refer to the pathway 'Transcriptional regulation by RUNX1'. Similar to RUNX1 and RUNX2, RUNX3 forms a transcriptionally active heterodimer with CBFB (CBF-beta). Studies in mice have shown that RUNX3 plays a role in neurogenesis and development of T lymphocytes. RUNX3 is implicated as a tumor suppressor gene in various human malignancies.
During nervous system formation, the Cbfb:Runx3 complex is involved in development of mouse proprioceptive dorsal root ganglion neurons by regulating expression of Ntrk3 (Neurotrophic tyrosine kinase receptor type 3) and possibly other genes (Inoue et al. 2002, Kramer et al. 2006, Nakamura et al. 2008, Dykes et al. 2011, Ogihara et al. 2016). It is not yet known whether RUNX3 is involved in human neuronal development and neuronal disorders.
RUNX3 plays a major role in immune response. RUNX3 regulates development of T lymphocytes. In mouse hematopoietic stem cells, expression of Runx3 is regulated by the transcription factor TAL1 (Landry et al. 2008). RUNX3 promotes the CD8+ lineage fate in developing thymocytes. In the CD4+ thymocyte lineage in mice, the transcription factor ThPOK induces transcription of SOCS family members, which repress Runx3 expression (Luckey et al. 2014). RUNX3, along with RUNX1 and ETS1, is implicated in regulation of transcription of the CD6 gene, encoding a lymphocyte surface receptor expressed on developing and mature T cells (Arman et al. 2009). RUNX3 and ThPOK regulate intestinal CD4+ T cell immunity in a TGF-beta and retinoic acid-dependent manner, which is important for cellular defense against intestinal pathogens (Reis et al. 2013). Besides T lymphocytes, RUNX3 is a key transcription factor in the commitment of innate lymphoid cells ILC1 and ILC3 (Ebihara et al. 2015). RUNX3 regulates expression of CD11A and CD49D integrin genes, involved in immune and inflammatory responses (Dominguez-Soto et al. 2005). RUNX3 is involved in mouse TGF-beta-mediated dendritic cell function and its deficiency is linked to airway inflammation (Fainaru et al. 2004).
In addition to its developmental role, RUNX3 is implicated as a tumor suppressor. The loss of RUNX3 expression and function was first causally linked to the genesis and progression of human gastric cancer (Li et al. 2002). Expression of RUNX3 increases in human pancreatic islet of Langerhans cells but not in pancreatic adenocarcinoma cells in response to differentiation stimulus (serum withdrawal) (Levkovitz et al. 2010). Hypermethylation of the RUNX3 gene is associated with an increased risk for progression of Barrett's esophagus to esophageal adenocarcinoma (Schulmann et al. 2005). Hypermethylation-mediated silencing of the RUNX3 gene expression is also frequent in granulosa cell tumors (Dhillon et al. 2004) and has also been reported in colon cancer (Weisenberger et al. 2006), breast cancer (Lau et al. 2006, Huang et al. 2012), bladder cancer (Wolff et al. 2008) and gastric cancer (Li et al. 2002). In colorectal cancer, RUNX3 is one of the five markers in a gene panel used to classify CpG island methylator phenotype (CIMP+) (Weisenberger et al. 2006).
RUNX3 and CBFB are frequently downregulated in gastric cancer. RUNX3 cooperates with TGF-beta to maintain homeostasis in the stomach and is involved in TGF-beta-induced cell cycle arrest of stomach epithelial cells. Runx3 knockout mice exhibit decreased sensitivity to TGF-beta and develop gastric epithelial hyperplasia (Li et al. 2002, Chi et al. 2005). RUNX3-mediated inhibition of binding of TEADs:YAP1 complexes to target promoters is also implicated in gastric cancer suppression (Qiao et al. 2016).
RUNX3 is a negative regulator of NOTCH signaling and RUNX3-mediated inhibition of NOTCH activity may play a tumor suppressor role in hepatocellular carcinoma (Gao et al. 2010, Nishina et al. 2011).
In addition to RUNX3 silencing through promoter hypermethylation in breast cancer (Lau et al. 2006), Runx3+/- mice are predisposed to breast cancer development. RUNX3 downregulates estrogen receptor alpha (ESR1) protein levels in a proteasome-dependent manner (Huang et al. 2012).
Besides its tumor suppressor role, mainly manifested through its negative effect on cell proliferation, RUNX3 can promote cancer cell invasion by stimulating expression of genes involved in metastasis, such as osteopontin (SPP1) (Whittle et al. 2015). View original pathway at:Reactome.
During nervous system formation, the Cbfb:Runx3 complex is involved in development of mouse proprioceptive dorsal root ganglion neurons by regulating expression of Ntrk3 (Neurotrophic tyrosine kinase receptor type 3) and possibly other genes (Inoue et al. 2002, Kramer et al. 2006, Nakamura et al. 2008, Dykes et al. 2011, Ogihara et al. 2016). It is not yet known whether RUNX3 is involved in human neuronal development and neuronal disorders.
RUNX3 plays a major role in immune response. RUNX3 regulates development of T lymphocytes. In mouse hematopoietic stem cells, expression of Runx3 is regulated by the transcription factor TAL1 (Landry et al. 2008). RUNX3 promotes the CD8+ lineage fate in developing thymocytes. In the CD4+ thymocyte lineage in mice, the transcription factor ThPOK induces transcription of SOCS family members, which repress Runx3 expression (Luckey et al. 2014). RUNX3, along with RUNX1 and ETS1, is implicated in regulation of transcription of the CD6 gene, encoding a lymphocyte surface receptor expressed on developing and mature T cells (Arman et al. 2009). RUNX3 and ThPOK regulate intestinal CD4+ T cell immunity in a TGF-beta and retinoic acid-dependent manner, which is important for cellular defense against intestinal pathogens (Reis et al. 2013). Besides T lymphocytes, RUNX3 is a key transcription factor in the commitment of innate lymphoid cells ILC1 and ILC3 (Ebihara et al. 2015). RUNX3 regulates expression of CD11A and CD49D integrin genes, involved in immune and inflammatory responses (Dominguez-Soto et al. 2005). RUNX3 is involved in mouse TGF-beta-mediated dendritic cell function and its deficiency is linked to airway inflammation (Fainaru et al. 2004).
In addition to its developmental role, RUNX3 is implicated as a tumor suppressor. The loss of RUNX3 expression and function was first causally linked to the genesis and progression of human gastric cancer (Li et al. 2002). Expression of RUNX3 increases in human pancreatic islet of Langerhans cells but not in pancreatic adenocarcinoma cells in response to differentiation stimulus (serum withdrawal) (Levkovitz et al. 2010). Hypermethylation of the RUNX3 gene is associated with an increased risk for progression of Barrett's esophagus to esophageal adenocarcinoma (Schulmann et al. 2005). Hypermethylation-mediated silencing of the RUNX3 gene expression is also frequent in granulosa cell tumors (Dhillon et al. 2004) and has also been reported in colon cancer (Weisenberger et al. 2006), breast cancer (Lau et al. 2006, Huang et al. 2012), bladder cancer (Wolff et al. 2008) and gastric cancer (Li et al. 2002). In colorectal cancer, RUNX3 is one of the five markers in a gene panel used to classify CpG island methylator phenotype (CIMP+) (Weisenberger et al. 2006).
RUNX3 and CBFB are frequently downregulated in gastric cancer. RUNX3 cooperates with TGF-beta to maintain homeostasis in the stomach and is involved in TGF-beta-induced cell cycle arrest of stomach epithelial cells. Runx3 knockout mice exhibit decreased sensitivity to TGF-beta and develop gastric epithelial hyperplasia (Li et al. 2002, Chi et al. 2005). RUNX3-mediated inhibition of binding of TEADs:YAP1 complexes to target promoters is also implicated in gastric cancer suppression (Qiao et al. 2016).
RUNX3 is a negative regulator of NOTCH signaling and RUNX3-mediated inhibition of NOTCH activity may play a tumor suppressor role in hepatocellular carcinoma (Gao et al. 2010, Nishina et al. 2011).
In addition to RUNX3 silencing through promoter hypermethylation in breast cancer (Lau et al. 2006), Runx3+/- mice are predisposed to breast cancer development. RUNX3 downregulates estrogen receptor alpha (ESR1) protein levels in a proteasome-dependent manner (Huang et al. 2012).
Besides its tumor suppressor role, mainly manifested through its negative effect on cell proliferation, RUNX3 can promote cancer cell invasion by stimulating expression of genes involved in metastasis, such as osteopontin (SPP1) (Whittle et al. 2015). View original pathway at:Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
coactivator
complex:HES1 geneTGF-beta Receptor
ComplexTGF beta (TGFB1) is secreted as a homodimer, and as such it binds to TGF beta receptor II (TGFBR2), inducing its dimerization. Binding of TGF beta enables TGFBR2 to form a stable hetero-tetrameric complex with TGF beta receptor I homodimer (TGFBR1). TGFBR2 acts as a serine/threonine kinase and phosphorylates serine and threonine residues within the short GS domain (glycine-serine rich domain) of TGFBR1.
The phosphorylated heterotetrameric TGF beta receptor complex (TGFBR) internalizes into clathrin coated endocytic vesicles where it associates with the endosomal membrane protein SARA. SARA facilitates the recruitment of cytosolic SMAD2 and SMAD3, which act as R-SMADs for TGF beta receptor complex. TGFBR1 phosphorylates recruited SMAD2 and SMAD3, inducing a conformational change that promotes formation of R-SMAD trimers and dissociation of R-SMADs from the TGF beta receptor complex.
In the cytosol, phosphorylated SMAD2 and SMAD3 associate with SMAD4 (known as Co-SMAD), forming a heterotrimer which is more stable than the R-SMAD homotrimers. R-SMAD:Co-SMAD heterotrimer translocates to the nucleus where it directly binds DNA and, in cooperation with other transcription factors, regulates expression of genes involved in cell differentiation, in a context-dependent manner.
The intracellular level of SMAD2 and SMAD3 is regulated by SMURF ubiquitin ligases, which target R-SMADs for degradation. In addition, nuclear R-SMAD:Co-SMAD heterotrimer stimulates transcription of inhibitory SMADs (I-SMADs), forming a negative feedback loop. I-SMADs bind the phosphorylated TGF beta receptor complexes on caveolin coated vesicles, derived from the lipid rafts, and recruit SMURF ubiquitin ligases to TGF beta receptors, leading to ubiquitination and degradation of TGFBR1. Nuclear R-SMAD:Co-SMAD heterotrimers are targets of nuclear ubiquitin ligases which ubiquitinate SMAD2/3 and SMAD4, causing heterotrimer dissociation, translocation of ubiquitinated SMADs to the cytosol and their proteasome-mediated degradation. For a recent review of TGF-beta receptor signaling, please refer to Kang et al. 2009.
NOTCH1 receptor presented on the plasma membrane is activated by a membrane bound ligand expressed in trans on the surface of a neighboring cell. In trans, ligand binding triggers proteolytic cleavage of NOTCH1 and results in release of the NOTCH1 intracellular domain, NICD1, into the cytosol.
NICD1 translocates to the nucleus where it associates with RBPJ (also known as CSL or CBF) and mastermind-like (MAML) proteins (MAML1, MAML2 or MAML3; possibly also MAMLD1) to form NOTCH1 coactivator complex. NOTCH1 coactivator complex activates transcription of genes that possess RBPJ binding sites in their promoters.
Annotated Interactions
Binding of RUNX3 to the CTNNB1:TCF7L2 and possibly to the CTNNB1:LEF1 and TCF7L1 complexes, prevents binding of CTNNB1 complexes to the MYC promoter, thus negatively regulating MYC transcription (Ito et al. 2008).
Binding of RUNX3 to the CTNNB1:TCF7L2 and possibly to the CTNNB1:LEF1 and TCF7L1 complexes, prevents binding of CTNNB1 complexes to the MYC promoter, thus negatively regulating MYC transcription (Ito et al. 2008).
coactivator
complex:HES1 genecoactivator
complex:HES1 gene