Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 19:26, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1, 6-8, 14...2, 5, 9, 11, 15...3, 813282081, 2, 9, 31, 333, 4, 818mitochondrial matrixMRPS10 Glu-tRNA(Glu) MRPS24 MRPL2 Ser-tRNA(Ser) MRPS18C tRNA(Leu) MRPS5 MRPL11 MRPS33 MRPL48 MRPS18C MRPS18A MRPL14 MRPL57 MRPS5 CHCHD1 GFM1 MRPS25 His-tRNA(His) DAP3 MRPL19 MRPS33 MRPL3 MRPL14 MRPL51 MRPS18B MRPL14 peptidyl-tRNA with elongated peptide MRRFMRPS15 MRPS27 DAP3 MRPS27 MRPS7 GFM2:GTPMRPL47 MRPS23 MRPL24 MRPL15 MRPS23 MRPS36 Ala-tRNA(Ala) MRPL11 MRPL10 Mitochondrial 16S rRNA MRPS10 MTIF2MRPL9 MRPS35 MRPL15 tRNA(His) MRPL39 MRPS15 MRPS16 10-formyl-THFMRPS27 MRPL19 MRPL2 MRPS34 MRPL13 MRPL18 MRPL52 MRPL28 TSFMMRPS17 Thr-tRNA(Thr) MRPL53 MT-TV MRPS27 Leu-tRNA(Leu) MRPL12 MRPS18C MRPL13 MRPS30 MRPS2 MRPL41 MRPL9 MRPL18 GFM1:GDPMRPL2 MRPS24 MRPL34 MRPL47 Met-tRNA(Met) MRPL17 DAP3 fMet-tRNA(fMet)MRPL48 MRPL27 MRPS9 MRPS7 MRPS10 MRPS5 MRPS31 MRPL24 MRPS18C ERAL1 MTIF3 MRPL54 MRPL15 MRPL21 MRPL37 PTCD3 tRNA(Gln) Mitochondrial 12S rRNA MRPS7 MRPL18 MRPL42 MRPS12 CHCHD1 tRNA(Glu) MRPS23 MRPL24 55Sribosome:mRNA:tRNA:MRRFMRPL1 MRPS18B MRPS18B MRPS28 His-tRNA(His) MRPL15 MRPL10 MRPS30 MRPS26 MRPS18C MRPS26 Leu-tRNA(Leu) MRPL55 MRPS21 MRPL15 MRPS10 MRPS23 MRPL20 MRPL20 MRPL2 MRPL22 MRPS28 MRPL30 MRPS27 MRPS26 MRPL52 MRPL34 MRPS18C MRPS9 MRPL28 mRNA MRPS17 MRPS12 MRPL23 MRPL40 MRPL51 tRNA(His) MRPS30 Mitochondrial 16S rRNA MRPL47 MRPL17 tRNA(Thr) MRPS2 MRPS34 MRPS12 MRPL27 MRPS34 MRPL54 MRPS10 MRPS33 tRNA(Arg) tRNA(Val) MRPL32 MRPL28 MRPL20 tRNA(Trp) MRPL4 MRPL27 MRPS6 Asp-tRNA(Asp) MRPL45 MRPS25 GTP MRPL3 MRPL40 DAP3 ERAL1 MRPL24 MRPL42 MRPS35 MRPS14 tRNA(Cys) MRPL21 MRPL35 MRPS30 MRPL13 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPS33 MRPL27 MRPL28 MRPL37 MRPS34 Mitochondrial 12S rRNA MRPL38 MRPL53 MRPS9 MRPL24 Gly-tRNA(Gly) MRPL17 MRPS33 MRPL32 aminoacyl-tRNAMRPL52 MRPL23 MRPS25 MRPL19 MRPL23 peptidyl-tRNA with elongated peptide MRPL4 MRPS28 MRPS36 MRPS18B MRPL12 MRPL9 MRPL50 MRPL45 MRPS2 MRPL16 Asp-tRNA(Asp) MRPS28 MRPL41 MRPS28 Ser-tRNA(Ser) MRPL28 MRPS18B MRPS26 MRPS14 tRNA(Asn) MRPL11 MRPS6 MRPL12 MRPL41 DAP3 MRPL4 MRPL44 MRPS14 MRPS31 MRPS30 MRPL54 PTCD3 Trp-tRNA(Trp) MRPS22 MRPS12 Trp-tRNA(Trp) Phe-tRNA(Phe) MRPL37 MRPS27 MRPS14 MRPS2 MRPL53 MRPL20 AURKAIP1 MRPS36 MRPS24 MRPS35 ICT1 MRPS18C Mitochondrial 12S rRNA MRPS6 MRPL33 MRPL10 MRPL50 MTRF1L, ICT1tRNA(Cys) MRPL44 MRPL48 Mitochondrial 16S rRNA MRPS27 Ile-tRNA(Ile) MRPS14 tRNA(Lys) MRPL20 MRPL54 MRPL44 MRPS25 MRPS18C MRPS6 MRPL17 MRPS11 MRPS2 TSFM Mitochondrial 16S rRNA MRPL3 MRPS25 MRPL14 MRPS16 MRPL33 His-tRNA(His) MRPS24 MRPS11 MRPS21 mRNA 55Sribosome:MRRF:GFM2:GTPMRPL18 MRPL13 DAP3 MRPL38 MRPL41 MRPS25 MRPL13 MRPS28 MRPL34 tRNA(Thr) MRPL48 fMet-tRNA(fMet) Mitochondrial 12S rRNA fMet-tRNA(fMet) MRPL30 MRPL54 MRPL44 MRPL53 GADD45GIP1 tRNA(Gln) MRPL2 MRPL47 MRPS31 MRPL19 Mitochondrial 16S rRNA MRPL32 MRPS6 MRPS26 MRPL37 MRPL22 MRPS28 MT-TV MRPS15 MRPS31 MRPS21 MRPL17 MTRF1L MRPL43 MRPL43 MRPL16 MRPS30 MRPL24 MRPL57 GFM1 MRPL38 MRPL13 Ile-tRNA(Ile) MRPL9 MRPS9 MRPL18 MRPL15 MRPL41 AURKAIP1 Ala-tRNA(Ala) MRPL16 mRNA MRPL49 Lys-tRNA(Lys) MRPS24 MRPS7 MRPS12 MRPS23 CHCHD1 MTRF1L MRPS27 MRPS33 MRPL27 MRPS35 MRPL50 MRPL4 ERAL1 MRPL1 PTCD3 tRNA(Ala) MRPL38 MRPS25 MRPS14 MRPL19 AURKAIP1 MRPL37 MRPL54 MRPL17 MRPS24 GTP MRPL42 Asn-tRNA(Asn) MRPS10 MRPL22 Asp-tRNA(Asp) MRPL19 ICT1 MRPS36 MRPL40 MRPS2 MRPS18A MRPS30 tRNA(Leu) MRPS30 MRPL52 MRPL57 Pro-tRNA(Pro) tRNA(Arg) MRPL47 MRPL12 GADD45GIP1 55Sribosome:mRNA:fMet-tRNAMRPL20 MRPS26 MRPL45 MRPL43 MRPL23 MRPL53 MRPL4 MRPL33 MRPL43 MRPS22 MRPS23 MRPL46 GFM1 MRPL23 PTCD3 MRPS18C tRNA(Tyr) MRPL3 MRPS27 AURKAIP1 MRPS31 Tyr-tRNA(Tyr) Ser-tRNA(Ser) MRPS23 MRPS21 MRPL3 tRNA(Asp) MRPL18 MRPS15 MRPS34 MRPL57 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAMRPS10 MRPL24 MRPL33 GADD45GIP1 MRPL57 MRRF Mitochondrial 12S rRNA PiMRPS18C MRPL4 MRPL28 MRPS5 MRPL27 MRPS16 GFM2 tRNA(Asp) MRPS2 GFM1:GTPAla-tRNA(Ala) MRPS10 MRPS26 MRPS10 Pro-tRNA(Pro) Cys-tRNA(Cys) MRPL35 MRPS14 MRPL53 DAP3 MRPS15 MRPS35 MRPS11 GTP MRPS22 MRPL30 MRPL3 MRPL22 MRPS18B MRPS35 MRPS17 Mitochondrial 12S rRNA MRPS14 MRPL10 MRPL54 MRPS22 MRPL4 MRPL23 MRPL17 Mitochondrial 16S rRNA MRPS34 MRPS6 MRPL35 MRPL51 MRPS11 MRPS5 PTCD3 Met-tRNA(Met)tRNA(Trp) MRPS22 MRPL40 Mitochondrial 12S rRNA MRPS11 MRPL22 MRPS11 MRPS16 CHCHD1 MRPL36 MRPL14 MRPL47 Glu-tRNA(Glu) tRNA(Ile) MRPL53 MRPL19 ICT1 tRNA(Pro) MRPL49 MRPS18A CHCHD1 MRPS21 MRPS15 MRPL53 MRPL57 DAP3 Gln-tRNA(Gln) Mitochondrial 12S rRNA Met-tRNA(Met) MRPS16 MRPL20 MRPS31 MRPS2 MRPL36 MRPS28 tRNA(Ile) Gly-tRNA(Gly) MRPL9 MRPS11 MRPL12 MRPL46 MRPL15 MRPL42 MRPL51 Arg-tRNA(Arg) MRPL10 MRPL30 MRPL41 MRPS17 MRPS26 MRPS36 CHCHD1 MRPL36 MT-TV MRPS5 MRPS15 mRNAMRPS35 MRPL49 ICT1 MRPL49 MRPL12 MRPL48 MRPS28 MRPS12 GADD45GIP1 MRPL57 MRPL16 GADD45GIP1 ICT1 AURKAIP1 MTIF2 MRPS9 MRPS25 Mitochondrial 16S rRNA MRPL50 MRPS17 MRPL55 MRPS9 MRPS18B MRPS30 Cys-tRNA(Cys) MRPS21 MRPS33 MRPL37 MRPL21 MRPS27 MRPL14 MRPS35 MRPS18B MRPL42 MRPL3 MRPL9 MRPL14 MRPL9 MRPS21 MRPL46 MRPS17 MRPL4 MRPS36 MRPS17 MRPL48 AURKAIP1 PTCD3 TUFM Mitochondrial 16S rRNA Mitochondrial 12S rRNA tRNA(Tyr) Lys-tRNA(Lys) MRPS6 MRPL48 MRPS17 ERAL1 MRPL13 MRPL32 MRPL1 tRNA(Val) AURKAIP1 MTIF2 MRPL37 MRPS34 MRPL47 MRPL43 MRPL2 MRPS18A MRPL44 AURKAIP1 MRPL19 MRPS18A 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPtRNA(Ala) MRPL12 MRPS2 CHCHD1 Glu-tRNA(Glu) MRPS2 MRPL36 MRPL14 MRPL48 AURKAIP1 MRPL11 MRPL35 MRPL34 Val-tRNA(Val) MRPL55 tRNA(Phe) MRPS9 MRPL48 MRPS2 MRPL53 MRPL35 MRPS27 MRPS11 MRPL38 MRPL34 Val-tRNA(Val) MRPS14 MRPL43 MRPL28 MRPS33 MRPL50 MRPS14 MRPS5 GTP MRPL21 MRPL18 TUFM:GTPIle-tRNA(Ile) MRPL3 MRPS30 MRPS34 MRPL15 MRPL40 tRNA(Met) Trp-tRNA(Trp) MRPL39 Arg-tRNA(Arg) CHCHD1 MRPL22 ERAL1 MRPL39 MRPL10 GDPMRPL30 MRPL45 PiTrp-tRNA(Trp) MRPS18A ICT1 MRPS28 MRPS31 CHCHD1 MRPS6 MRPL33 MRPL45 MRPL40 PTCD3 MRPS17 MRPL49 CHCHD1 MRPL33 MRPL51 MRPL4 MRPL23 MRPL22 MRPS33 GADD45GIP1 MRPL1 mRNA MRPL51 MRPL49 MRPS25 TUFM MRPS11 MRPL33 MRPL23 MRPL34 MRPL41 MRPS6 MRPS21 MRPL14 Val-tRNA(Val) ICT1 MRPL46 MRPS15 tRNA(Thr) MRPS12 MRPS36 Gly-tRNA(Gly) MRPL11 MRPL28 MRPS6 MRPL37 MRPL41 MRPL46 MRPL20 MRPS9 MRPL51 MRPL18 mRNA MRPL33 MRPS34 MRPL1 MRPL33 fMet-tRNA(fMet) MRPS10 MRPL23 MRPS23 Phe-tRNA(Phe) mRNA MRPL38 MRPS22 MRPS7 MRPL2 TUFM:GTP:aminoacyl-tRNAMRPL16 Gly-tRNA(Gly) MRPL43 MRPL32 MRPL24 MRPL30 GTP MRPL21 MRPS36 MRPS36 MRPS22 MRPS26 MRPS12 MRPL50 MRPS23 MRPL49 MRPL34 MRPL15 MRPL14 Met-tRNA(Met) MRPL33 MRPL47 PTCD3 MRPL46 tRNA(Val) MRPL21 MRPS18A MRPL52 MRPL43 MRPS14 CHCHD1 MT-TV MRPL18 GFM2 MRPS22 MRPL39 Thr-tRNA(Thr) MRPS2 DAP3 MRPL14 MRPS12 MRPL54 TUFM MRPL27 MRPS31 MRPS11 MRPS21 MRPL53 tRNA(Pro) Mitochondrial 12S rRNA MRPL51 His-tRNA(His) GDP MRPL32 MRPS7 Mitochondrial 16S rRNA GADD45GIP1 MRPS25 mRNA PTCD3 MRPL32 tRNA(Phe) MRPL47 MRPL54 MRPL39 MRPS7 MRPS18A MRPS15 GADD45GIP1 MRPS9 MRPS7 GFM2:GDPMRPL12 MRPS25 Phe-tRNA(Phe) MRPL49 tRNA(Tyr) MRPS18A MRPS24 MRPS15 Phe-tRNA(Phe) MRPL16 MRPL52 MRPL11 tRNA(Ile) MRPL39 MRPL22 MRPL38 MRPS12 MRPL41 GTP MRPL50 Tyr-tRNA(Tyr) MRPL3 fMet-tRNA(fMet) MRPL51 MRPL9 MRPS18C MRPL13 MRPL45 Ser-tRNA(Ser) DAP3 MRPL12 MRPS12 MRPL51 MRPL47 Ile-tRNA(Ile) MRPL55 MRPL40 ICT1 MRPS30 Cys-tRNA(Cys) MT-TV tRNA(Lys) Tyr-tRNA(Tyr) MRPL9 Tyr-tRNA(Tyr) MRPL10 ERAL1 PiMRPS26 MRPL44 MRPL19 MRPS18B MRPL9 ICT1 tRNA(His) MRPS31 MRPS18C MRPS31 MRPL3 MRPL12 MRPL38 tRNA(Ser) tRNA(Ser) MRPS23 MRPL16 MRPS9 MRPL52 MRPL45 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPL36 MRPS22 MRPL53 MRPS33 MRPL55 MRPS22 mRNA MRPS18B MRPL3 MRPL35 MRPL28 fMet-tRNA(fMet) MRPL23 MRPL34 MRPS11 MRPL55 tRNA(Leu) GTP MRPS28 MRPL46 MRPL2 MRPL40 MRPL41 MRPL22 mRNA MRPL38 MRPL40 MRPL35 MRPS5 MRPL32 MRPS10 MRPL30 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPS35 MRPL1 MRPL45 MRPL55 MRPS25 MRPS15 MRPL22 MRPS15 MRPS24 ERAL1 TUFM MRPL27 MTFMTMRPS7 MRPL46 MRPS33 MRPS2 ERAL1 MRPL15 MRPS18A tRNALeu-tRNA(Leu) MRPL37 MRPS7 MRPL1 MRPL21 MRPS6 MRPL45 peptidyl-tRNA with elongated peptide MRPS18B Cys-tRNA(Cys) MTIF3MRPS34 MRPS5 MRPL34 MT-TV MRPS31 MRPL42 MRPL49 MT-TV MRPS24 MRPL17 MRPL43 55Sribosome:mRNA:tRNAMRPL13 PiMRPL9 MRPL54 MRPL36 MRPL2 MRPL52 MRPL36 AURKAIP1 tRNA(Met) MRPS18B MRPS14 39S ribosomalsubunitArg-tRNA(Arg) tRNA(Gln) Mitochondrial 12S rRNA MRPS35 PTCD3 MRPS26 MRPL11 MRPL39 MRPL37 tRNA(Glu) PTCD3 tRNA(Lys) MRPL44 MRPL43 MRPL35 MRPS18B MRPL51 MTIF2:GTPMRPL4 MRPL50 MRPS17 MRPS16 MRPS17 MRPS33 Thr-tRNA(Thr) MRRF GTP DAP3 MRPL10 MRPL30 MRPL34 MRPS12 MRPS27 MRPL55 MRPL45 MRPS31 tRNA(Trp) MRPL39 MRPL16 MRPS9 MRPL40 MRPS28 MRPS15 MRPS17 MRPS6 ERAL1 Gln-tRNA(Gln) MRPS24 tRNA(Pro) THFtRNA(Gly) tRNA(Gly) MRPL42 tRNA(Asp) MRPS16 MRPL1 polypeptideMRPL50 MRPL41 MRPL40 Met-tRNA(Met) MRPL35 Asn-tRNA(Asn) AURKAIP1 tRNA(Phe) MRPL13 MRPS5 28S ribosomalsubunit:MTIF3MRPS18A Leu-tRNA(Leu) MRPS17 MRPL54 MRPS16 MRPS34 MRPL43 MRPL19 MRPL10 MRPL27 tRNA(Met)MRPL39 AURKAIP1 MRPL18 MRPL37 MRPS21 MRPL24 MRPS16 Asn-tRNA(Asn) ERAL1 MRPS36 GDPPro-tRNA(Pro) MRPS18A MRPS7 PTCD3 MRPL11 MT-TV GFM2 MRPL4 MRPL38 MRPL32 MRPS36 GDP ERAL1 MRPL44 MRPL2 MRPS31 Val-tRNA(Val) MRPS16 MRPL11 MRPL55 MRPS23 MRPL17 ICT1 tRNA(Ala) MRPL55 MRPL44 MRPL46 MRPS10 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAICT1 MRPL46 fMet-tRNA(fMet) MRPL13 tRNA(Gly) MRPL11 Lys-tRNA(Lys) MRPL46 GADD45GIP1 MRPL57 MRPS16 MRPL39 MRPS7 MRPL24 MRPL21 MRPL47 MRPS9 MRPL12 TUFM:TSFMMRPS30 MRPL28 MRPS35 MRPL49 MRPL38 Ala-tRNA(Ala) MRPL20 MRPS23 GDP MRPL36 MRPL30 Gln-tRNA(Gln) MT-TV MRPL1 MRPL27 MRPL52 MRPS14 Mitochondrial 12S rRNA MRPL16 tRNA(Asn) MRPL18 MRPL2 MRPL44 MRPL45 MRPS24 MRPL42 MRPL35 TUFM MRPL10 MRPL30 MRPS35 PiMRPS22 MRPS16 MRPS28 MRPS34 MRPL32 GDPMRPL36 GTP MRPL1 Mitochondrial 16S rRNA MRPL50 tRNA(Ser) Asn-tRNA(Asn) MRPL28 tRNA(Met) GTP Mitochondrial 12S rRNA MRPL17 MTIF3 MRPL49 MRPL39 MRPL36 tRNA(Arg) MRPL16 MRPS22 MRPL44 MRPL15 MRPL16 MRPL48 MRPL24 MRPL33 Arg-tRNA(Arg) DAP3 ERAL1 Mitochondrial 16S rRNA GTPMRPS7 Glu-tRNA(Glu) GTPCHCHD1 MRPL17 MRPL57 MRPL42 tRNA(Asn) MRPL52 MRPS9 MRPL35 MRPL50 MT-TV MRPS36 MRPS27 MRPL52 MT-TV Thr-tRNA(Thr) MRPS5 MRPL11 MRPS16 MRPS21 ICT1 DAP3 MRPL10 MRPL1 MRPL20 GADD45GIP1 AURKAIP1 MRPL30 ICT1 MRPL19 MRPS34 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL42 CHCHD1 MRPS23 tRNA(Glu) MRPS11 Pro-tRNA(Pro) MRPL36 Asp-tRNA(Asp) MRPL32 tRNA(Cys) PTCD3 MRPL21 MRPL23 Lys-tRNA(Lys) MRPL34 TUFM:GDPMRPS18A MRPS6 MRPL21 MRPL21 ERAL1 MRPS36 MRPS35 MRPS10 MRPS21 MRPS21 MRPL57 MRPL27 MRPS26 MRPS24 MRPS5 Gln-tRNA(Gln) MRPS22 MRPL55 mRNA 28S ribosomalsubunitMRPL22 MRPS11 MRPL42 MRPS33 MRPS25 MRPS26 MRPS18C peptidyl-tRNA with elongated peptide MRPL57 MRPL48 MRPS12 GADD45GIP1 MRPS24 MRPL20 MRPS30 MRPS5 13, 1713, 1713, 1711, 15, 3113, 1710, 12, 2313, 1713, 1712, 13, 17, 2113, 1713, 1713, 1713, 1713, 1713, 1713, 17


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 63
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools