Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 20:52, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1, 3, 8, 10, 14...172, 7, 12, 16, 19...33, 21, 343529153, 2137, 9, 11, 12, 17mitochondrial matrixMRPS34 MRPL38 MRPS35 MRPS27 Thr-tRNA(Thr) 55Sribosome:mRNA:tRNA:MRRFMRPL2 MRPL15 MT-TV MRPS24 MRPS14 MRPL24 MRPL4 tRNA(Met) MRPL55 MRPL27 MRPL37 MRPS16 MRPS11 MRPL21 MRPS10 MRPL36 GADD45GIP1 CHCHD1 MRPS25 MRPS24 MRRF MRPS12 MRPL43 MRPL23 AURKAIP1 MRPS28 MRPL45 MRPL45 MRPL32 MT-TV MRPL19 MRPL43 Ile-tRNA(Ile) Val-tRNA(Val) MRPS17 mRNA ICT1 MRPS33 MRPL15 MRPL12 MRPS6 MRPL32 MRPL51 TUFM:TSFMMRPL28 MRPL48 MRPS18B MRPL43 MRPL9 ERAL1 His-tRNA(His) PTCD3 MRPL11 MRPS36 MRPL22 MRPL39 MRPS18B MRPS18A MRPS36 GFM2 MRPS16 MRPL38 MTRF1L MRPS18B MRPL2 MRPL38 MRPL40 MRPL21 MRPL18 MRPL16 tRNA(Gln) MRPL44 MRPL1 MRPL41 MRPL18 MRPL4 tRNA(Leu) MRPL35 MRPL32 CHCHD1 MRPL20 mRNA MRPS15 MRPL22 MRPL45 MRPS17 MRPL36 ICT1 MRPL14 MRPL20 MRPL46 Gln-tRNA(Gln) MRPL35 MRPL46 MRPL39 MRPL45 Gly-tRNA(Gly) Mitochondrial 16S rRNA Ser-tRNA(Ser) MRPS18B MRPL50 MRPL36 ERAL1 MRPL43 MRPS7 MRPS26 MRPS30 MRPL40 MRPS26 MTIF3MRPS30 tRNA(Trp) MRPS34 MRPS9 Val-tRNA(Val) MRPL40 MRPL28 MRPS9 MRPS2 MRPS21 MRPL32 MTFMTMet-tRNA(Met) MRPL47 Mitochondrial 16S rRNA MRPL53 MRPS16 MRPS23 MRPS28 MRPL10 Pro-tRNA(Pro) MRPL30 MRPL15 MRPS18C MRPS17 MRPS12 MRPS11 MRPL46 MRPL9 MRPL41 MRPL16 MRPL28 Ile-tRNA(Ile) MRPL17 MRPS30 MRPL16 MRPL46 MRPL15 PTCD3 MRPS30 MRPS23 CHCHD1 MRPL13 MRPL19 Cys-tRNA(Cys) MRPS33 MRPL49 MRPS23 PiMRPS17 MRPS12 tRNA(Tyr) MRPS27 mRNA MRPL50 MRPL32 MRPL3 MRPS12 MRPS9 MRPS18A PTCD3 MRPL42 MRPL11 MRPL3 MRPS33 MRPL51 MRPL1 MRPS21 MRPL47 MRPL14 MRPS2 CHCHD1 MRPS14 GDPMRPL16 MRPS9 MRPS16 tRNA(Asp) MRPL48 MRPL9 DAP3 MRPL22 CHCHD1 MRPS31 MRPS31 PiMRPL47 MRPL2 MRPL42 Lys-tRNA(Lys) MRPL20 MT-TV MRPL47 Tyr-tRNA(Tyr) MRPL40 MRPS6 MRPS9 MRPL32 mRNA MRPL10 MRPL20 MRPS22 tRNA(Cys) MRPL55 MRPL18 MRPL39 MRPL40 MRPL42 MRPL35 MRPL44 MRPS30 MRPL33 MRPS36 MRPS27 tRNA(Phe) GADD45GIP1 Glu-tRNA(Glu) MRPS33 MRPL47 MRPL57 Asp-tRNA(Asp) MRPS28 MRPL11 MRPL16 MRPL14 MRPL4 MRPS28 OXA1L ERAL1 MRPL9 MRPL55 MRPS31 MRPL24 MRPL20 tRNA(Pro) Mitochondrial 16S rRNA MRPL9 fMet-tRNA(fMet)His-tRNA(His) MRPS24 MRPL39 MRPS28 Pro-tRNA(Pro) MRPS33 MRPS17 MRPS10 MRPL38 ICT1 MRPS30 MRPL28 MRPL50 MRPL51 MRPL13 MRPS18A MRPS15 MRPS34 AURKAIP1 Gly-tRNA(Gly) MRPL18 MRPS28 MRPL18 MRPS24 28S ribosomalsubunittRNA(Pro) MRPS22 MRPL15 MRPL37 GTP 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPS23 Asn-tRNA(Asn) mRNA MRPS11 GDP MRPL53 PiMRPS22 Mitochondrial 12S rRNA MRPS25 MRPL52 MRPL4 MRPS27 MRPL52 MRPL12 Ser-tRNA(Ser) MRPL41 tRNA(Thr) Mitochondrial 12S rRNA MRPS12 MRPL30 MRPS2 MRPS9 tRNA(Arg) MRPL4 tRNA(Gly) MRPL35 MRPL51 MRPL14 MRPL32 Met-tRNA(Met) MRPL9 tRNA(Gly) Lys-tRNA(Lys) MRPS26 Asp-tRNA(Asp) polypeptideMRPL36 MRPL34 MRPL38 MRPS30 MRPL44 MRPL55 MRPS6 Mitochondrial 12S rRNA MRPS15 MRPS18B MRPS22 MRPL23 MRPS18A tRNA(His) MRPL11 MRPL12 MRPS15 MRPL22 tRNA(Trp) MRPS15 MRPS7 tRNA(Lys) MRPS15 MRPL14 MRPS15 tRNA(Cys) MRPS25 MRPL42 MRPL14 MRPS30 GFM2:GTPMRPL57 MRPL39 MRPS6 tRNA(Met)MRPL44 MRPS25 MRPL47 55Sribosome:mRNA:fMet-tRNAMRPS16 MRPL3 MTIF2:GTPICT1 MRPL48 His-tRNA(His) MRPL37 MRPL43 MRPL20 MRPS17 MRPL11 MRPL38 MRPL21 28S ribosomalsubunit:MTIF3CHCHD1 MRPL41 MRPS18A MRPL17 tRNA(Thr) MRPL33 tRNA(Val) MRPL16 MRPL22 MRPS26 MRPL39 MRPL20 ERAL1 MRPL42 MRPS6 MRPL44 MRPL52 MTIF3 MRPL34 Phe-tRNA(Phe) OXA1L ICT1 MRPS36 MRPL45 MRPS23 MRPS14 MRPS9 MRPS12 MRPS18C Thr-tRNA(Thr) CHCHD1 Phe-tRNA(Phe) MRPL35 fMet-tRNA(fMet) PTCD3 MRPL30 MRPL33 MRPL53 MRPS18A MRPL36 MRPL37 MRPS2 MRPL46 MRPS5 ERAL1 MRPL15 MRPS11 MRPS21 MRPL45 tRNA(His) MRPL21 MRPS17 MRPL34 MRPL30 MRPS35 MRPL52 MRPL49 DAP3 Phe-tRNA(Phe) MRPL33 THFMRPS14 MRPS34 Gln-tRNA(Gln) MRPL23 MRPS18A ICT1 GTP MRPL22 GTP MRPS21 MRPL51 MRPS9 MRPL30 MRPS5 MRPS18B MRPS7 MRPS25 MRPS35 MRPS35 MRPS27 MRPL55 MRPL15 MRPS23 tRNA(Glu) MRPS15 MRPL55 MRPS22 PTCD3 MRPL21 MRPL24 MRPL16 MRPL36 MRPL23 MRPL39 Lys-tRNA(Lys) MRPS31 MRPL43 ERAL1 MRPS21 MRPS21 MRPL3 MRPS5 MRPL10 tRNA(Ala) MRPL4 MRPS5 MRPS25 MRPL13 MRPL21 MRPL2 MRPL37 MRPL33 MRPL43 MRPS35 MRPL27 MRPS5 MRPL43 MRPL19 mRNAMRPL32 MRPL48 ERAL1 MRRF fMet-tRNA(fMet) tRNA(Cys) MRPS33 MRPL54 MRPL13 MRPS7 10-formyl-THFMRPL10 MRPL41 Trp-tRNA(Trp) MRPL35 MRPL52 ICT1 tRNA(Lys) GFM2 MRPS31 DAP3 Glu-tRNA(Glu) Mitochondrial 16S rRNA MRPL35 MRPL38 MRPL49 MRPL41 MRPL57 MRPS7 GADD45GIP1 MRPL52 MRPS17 MRPL20 MRPS26 tRNA(Asp) MRPS34 MRPS36 mRNA GDP MRPL27 MRPS14 MRPL20 MRPL13 MRPS31 MRPS21 MRPL30 Met-tRNA(Met)MRPL52 GFM1:GDPtRNA(Gly) MRPL32 MRPL53 MRPS14 MRPL36 OXA1L MRPL17 MRPL1 Mitochondrial 12S rRNA MRPL54 MRPL48 MRPL45 MRPL4 MRPS18C tRNA(Arg) Ser-tRNA(Ser) MRPS36 MRPS25 MRPL1 MRPL38 Cys-tRNA(Cys) MRPL12 MRPL38 tRNA(Tyr) MRPL17 MRPL19 TSFMGADD45GIP1 MRPL46 MT-TV MRPS27 MRPL45 MRPL51 MRPL41 MRPS33 MRPS28 MRPS27 MRPL49 MRPL41 MRPL39 MRPL52 MRPS35 MRPL38 MRPS25 MRPS14 MRPL57 MRPL22 MRPL10 Leu-tRNA(Leu) peptidyl-tRNA with elongated peptide AURKAIP1 MRPS7 MRPS11 Leu-tRNA(Leu) MRPL1 MRPL12 MRPL19 MRPS17 MRPS24 MRPS11 MRPL17 MRPS11 MRPL53 DAP3 AURKAIP1 MRPL40 MRPS28 GFM1 MRPL12 MRPL3 GADD45GIP1 MRPS27 MT-TV MRPL1 MRPS18A OXA1L MRPS5 GTP Mitochondrial 12S rRNA Val-tRNA(Val) MRPL3 MRPL37 tRNA(Ile) MRPS21 MRPS12 GFM2 tRNA(Trp) CHCHD1 MRPL55 MRPS23 MRPL34 MRPL24 MRPS31 MRPL22 MRPL49 MRPS10 tRNA(Ala) aminoacyl-tRNAGlu-tRNA(Glu) MRPL21 GADD45GIP1 MRPS18C tRNA(Phe) MRPL22 MT-TV MRPS6 TUFM:GTPMRPL40 MRPL57 MRPS26 MRPL42 MRPL1 MRPL48 MRPS11 Mitochondrial 12S rRNA MRPL47 tRNA(Asn) MRPL57 MRPL18 MRPS10 MRPL54 MRPL23 MRPS35 Mitochondrial 12S rRNA MRPS26 AURKAIP1 Mitochondrial 16S rRNA Mitochondrial 12S rRNA MRPL3 Mitochondrial 16S rRNA MRPL50 MRPL4 MRPL52 MRPS30 GADD45GIP1 MRPL9 Ala-tRNA(Ala) MRPL28 tRNA(Asn) MRPL57 MRPL54 MRPS18C MRPL14 MRPS21 PTCD3 MRPL21 MRPL16 Mitochondrial 12S rRNA ERAL1 PTCD3 MRPL41 MRPS18C GFM2:GDPMRPS24 MRPS22 MRPS36 MRPL11 MRPS34 MT-TV MRPL16 MRPL50 MRPS30 MRPL2 Thr-tRNA(Thr) MRPS18B MRPL23 Arg-tRNA(Arg) MRPL36 MRPL42 ERAL1 MRPL27 MRPL9 Tyr-tRNA(Tyr) MRPL30 MRPL46 MRPS7 Arg-tRNA(Arg) MRPL54 DAP3 MRPL10 MRPL39 AURKAIP1 Pro-tRNA(Pro) MRPL10 tRNA(Phe) DAP3 MRPS22 MRPS2 MRPS36 MRPL9 ICT1 MRPL17 Mitochondrial 12S rRNA MRPS5 MRPS33 MRPL33 MRPL9 PTCD3 MRPS34 MRPS35 MRPL18 tRNA(Ile) MRPL9 AURKAIP1 MRPS9 MRPS35 MRPS7 MRPL48 MRPS21 MRPL44 MRPS16 Ile-tRNA(Ile) MRPL17 Gly-tRNA(Gly) TUFM:GTP:aminoacyl-tRNAMRPS22 CHCHD1 MRPL14 MRPL49 PTCD3 MRPS34 tRNA(Arg) MT-TV GFM1 MRPS10 Asp-tRNA(Asp) MRPL12 MRPS26 MRPS33 MRPS18C MT-TV MRPL40 MRPL53 Met-tRNA(Met) MRPS18C MRPL50 GDP MTRF1L MRPS36 CHCHD1 MRPL24 Gln-tRNA(Gln) MRPL22 MRPS35 MRPS34 MRPS25 MRPL42 Trp-tRNA(Trp) MRPL16 tRNA(Glu) MRPS24 MRPL50 MRPS30 MRPL54 MRPL21 Tyr-tRNA(Tyr) MRPS5 MRPS33 MRPS12 MRPL53 MRPS31 Trp-tRNA(Trp) MRPL43 MRPL44 MT-TV MRPS24 tRNA(Pro) MT-TV Phe-tRNA(Phe) MRPL36 GTP MRPL33 MRPL15 tRNA(Asn) MRPL54 MRPS18A MRPL1 MRPL10 MRPL42 MRPL11 His-tRNA(His) MRPL2 MRPL49 MRPL39 ERAL1 MRPL52 MRPL18 MRPS9 MRPS22 MRPS15 MRPL51 MRPL1 MRPS26 MRPL2 MRPS7 MRPL49 tRNA(Ser) MRPL28 MRPS5 MRPL55 Trp-tRNA(Trp) MRPL14 GDPMRPL24 MRPL11 Mitochondrial 12S rRNA MRPS18B MRPL35 MRPS21 MRPS2 MRPL33 MRPL54 MRPS6 MRPS35 Cys-tRNA(Cys) MRPL35 MRPL1 MRPS17 GDPMRPS28 MRPS25 tRNA(Asp) MRPL34 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAMRPL28 MRPL47 mRNA AURKAIP1 PTCD3 MRPS36 MRPL13 fMet-tRNA(fMet) MRPL41 MRPL43 GTP MRPL32 MRPS2 MRPL53 GFM1 MRPS2 MRPS9 MRPL11 tRNA(Val) MRPL21 MRPL17 MRPS26 OXA1L MRPL53 MRPS27 PTCD3 OXA1L MRPS34 MRPL39 MRPS11 MRPL13 OXA1L MRPL18 MRPL23 MRPS18A Met-tRNA(Met) MRPS18B tRNA(Met) MRPS31 MRPL50 MRPL27 MRPS16 MRPS14 MRPL13 MRPL47 MRPL19 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPS14 tRNA(Val) Asn-tRNA(Asn) 55Sribosome:mRNA:peptidyl-tRNA at P-siteCHCHD1 Pi55Sribosome:mRNA:tRNAtRNA(His) MRPL28 Ser-tRNA(Ser) peptidyl-tRNA with elongated peptide MRPL30 MRPL19 MRPS24 MRPL40 MRPL37 MRPL35 peptidyl-tRNA with elongated peptide MRPS17 MRPL3 GTP MRPS11 MRPL24 peptidyl-tRNA with elongated peptide MRPS30 MRPL16 tRNA(Ile) MRPS21 DAP3 MRPS31 MRPL55 MRPL42 MRPL46 MRPS2 MRPS28 DAP3 Ala-tRNA(Ala) GADD45GIP1 MRPL2 MRPL49 MRPS31 MRPL47 PiMRPS10 Ala-tRNA(Ala) MRPL45 MRPS18A CHCHD1 MRPL34 MRPL54 MRPL24 MRPL51 MRPS25 MRPS6 Mitochondrial 16S rRNA MRPS10 tRNA(Ser) MRPL33 MRPS35 tRNA(Thr) MRPS11 mRNA Thr-tRNA(Thr) MRPL19 Mitochondrial 16S rRNA MRPS34 MRPL1 MRPL19 MRPL34 MRPS27 MTIF2MRPS21 MRPL44 MRPL4 Tyr-tRNA(Tyr) DAP3 Asn-tRNA(Asn) TUFM:GDPMRPL13 TUFM MRPL2 MRPL20 MRPS15 MRPS12 GTP MRPS7 MRPS22 MRPL12 GADD45GIP1 MRPL4 MRPS18C MRPL14 tRNA(Glu) MRPS18B Leu-tRNA(Leu) MRPL2 MRPL57 MRPS33 MRPS27 MRPL48 MRPL44 AURKAIP1 tRNA(Gln) MTIF3 ICT1 MRPS31 MRPL47 MRPS10 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPS2 OXA1L MRPL37 TUFM MRPS15 GADD45GIP1 MRPS26 MRPS10 MRPS26 ICT1 MRPS11 MRPL10 MRPS34 MRPL45 MRPS36 MRPS10 MRPL36 MRPS24 Gly-tRNA(Gly) MRPL10 MRPL48 Cys-tRNA(Cys) MRPL21 MRPL27 MRPS33 MRPS16 tRNA(Gln) MRPL57 MRPL55 MRPS15 tRNA(Leu) fMet-tRNA(fMet) MRPL11 MRPL45 MRPL24 MRPL18 39S ribosomalsubunitMRPS7 tRNA(Met) MRPS23 tRNA(Ala) MRPL54 MRPL53 MRPL23 MRPS10 MRPL27 MRPS22 MRPS6 fMet-tRNA(fMet) MRPS23 MRPL57 MRPS35 MRPL51 MRPS14 MRPL3 tRNA(Lys) MRPS18C MRPL55 MRPL10 Mitochondrial 16S rRNA MRPL54 MRPS17 MRPL24 MRPS5 MRPS28 MRPL14 Ala-tRNA(Ala) MRPL41 tRNA(Leu) MRPS23 MRPL43 MRPL44 MRPL46 MRPL20 MRPL38 MRPL27 GTP MRPL23 Asn-tRNA(Asn) MRPL34 MRPL50 MRPS25 MRPS16 MRPS22 MRPS16 MTIF2 MRPL23 ICT1 MRPS23 tRNA(Ser) MRPS2 MRPS30 GTP MRPS27 MRPL48 MRPL33 MRPS31 MRPL28 MRPS16 Glu-tRNA(Glu) OXA1L MRPL3 MRPS7 MRPS2 MRPL19 55Sribosome:MRRF:GFM2:GTPMRPS12 MRPL12 MRPL12 MRPS23 MRPL36 MRPS9 MRPL28 OXA1L MRPL46 MRPS26 MRPL11 MRPS22 MRPL37 MRPS12 MRPS33 GFM1:GTPMRPL50 MRPS12 TUFM MRPS5 GTPMRPS10 Pro-tRNA(Pro) Arg-tRNA(Arg) MRPL40 mRNA MRPS24 MRPL50 MTRF1L, ICT1MRPL34 MRPL27 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPDAP3 MRPL13 DAP3 Ile-tRNA(Ile) MRPL19 MRPS14 MRPS23 MRPL52 MRPS16 MRPL53 MRPS11 OXA1L MRPL48 MRPL27 Asp-tRNA(Asp) TSFM AURKAIP1 PTCD3 MRPL30 MRPS25 MRPS27 Mitochondrial 16S rRNA MRPS14 MRPS24 MRPS24 MRPL40 MRPS14 MRPS7 MRPL51 MRPL35 MRPS6 Val-tRNA(Val) tRNA(Tyr) ERAL1 ERAL1 MRPL46 MRPS17 MRPL37 AURKAIP1 MRPS18C Gln-tRNA(Gln) MRPS18A MRPS9 MRPL49 MRPL44 MRPL37 MRPL15 MRPS18B MRPS6 MRPS2 DAP3 Lys-tRNA(Lys) MRPL15 MRPL30 MRPS15 MRPL22 MRPL33 PTCD3 MRPS36 MRPL17 MRPL34 MRPS6 GTPMRPL49 MRPL12 MRPL18 MRPS28 TUFM MRPS18A MRPL27 MRPS18C Mitochondrial 12S rRNA MRPL15 MRPL34 MRPL17 MRPL24 MRPS16 MRPS18C MRPL17 MRPS36 MTIF2 MRPL23 MRPL13 GADD45GIP1 MRPL4 mRNA AURKAIP1 MRPS6 tRNAICT1 TUFM Leu-tRNA(Leu) MRRFArg-tRNA(Arg) CHCHD1 MRPS12 MRPL2 MRPL51 MRPL42 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAAURKAIP1 MRPL28 fMet-tRNA(fMet) MRPS5 MRPS18B MRPL3 MRPL30 DAP3 MRPL57 ERAL1 Mitochondrial 12S rRNA ICT1 Mitochondrial 16S rRNA MRPS5 MRPL32 MRPS34 MRPS10 MRPS18B MRPS28 27, 3327, 335, 6, 27, 3327, 3327, 3327, 3327, 334, 5, 13, 3227, 3327, 3327, 3327, 3327, 3327, 3327, 3311, 19, 31


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 66
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
OXA1L ProteinQ15070 (Uniprot-TrEMBL)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools