Proteoglycan biosynthesis (Homo sapiens)
From WikiPathways
Description
PG synthesis is a complex mechanism that can be divided in four main steps. Core protein synthesis occurs in the rough endoplasmic reticulum (RER). Once PG core protein has been synthesized, it moves from the RER to the Golgi apparatus where the first sugar of glycosaminoalycan (GAG) chain is added on Ser residues. GAG synthesis continues by glycosyltransferases that transfer sugar moieties from UDP-sugars to GAG chains. UDP-sugars are synthesized in the cytoplasm and are translocated in the Golgi apparatus by an antiporter with UMP. Then UDP, the by-product of glycosyltransferase reactions, is hydrolyzed to UMP and phosphate by calcium activated nucleotidase 1 (CANT1). Chondroitin, dermatan and heparan sulfate synthesis starts on a Ser residue of the PG core protein with the formation of a tetrasaccharide linkage region composed of a xylose (Xyl), two galactoses (Gal) and a glucuronic acid (GlcUA). After tetrasaccharide synthesis, GAG chain elongation continues through the binding of specific saccharides defining chondroitin sulfate, dermatan sulfate and heparan sulfate. Specific enzymes are involved in this process and mutations in their gene cause different types of skeletal dysplasia (indicated in red boxes). The third step is GAG sulfation. Sulfate enters in cells through the SLC26A2 transporter and it is activated to 30-phosphoadenosine 50-phosphosulfate (PAPS) by PAPS synthase (PAPSS) in the cytosol. Through a PAPS transporter (PAPST), PAPS moves to Golgi apparatus where it is used as sulfate donor by sulfotransferases to sulfate GAGs. This reaction also produces phosphoadenosine phosphate (PAP), that is hydrolyzed into AMP and phosphate by a Golgi resident phosphoadenosine phosphate phosphatase (gPAPP). Once synthesized, PGs are secreted in extracellular space.
Sulfation of GAGs is an important step in PG synthesis determining PG properties. Inorganic sulfate enters in cells through a sulfate/chloride antiporter named SLC26A2, but a small amount of sulfate could be derived from sulfur-containing amino acid metabolism. To be used by Golgi sulfotransferases, sulfate is activated to 30-phosphoadenosine 50-phosphosulfate (PAPS), the universal sulfate donor, by PAPS synthase (PAPSS2). The by-product of sulfotransferase reactions, phosphoadenosine phosphate (PAP), is hydrolyzed by a Golgi resident phosphoadenosine phosphate phosphatase (gPAPP) in order to prevent feedback inhibition of these reactions.
Linked with a dotted arrow to the GeneProduct nodes are diseases caused by mutation in the respective gene.
Quality Tags
Ontology Terms
Bibliography
View all... |
- Kamiyama S, Sasaki N, Goda E, Ui-Tei K, Saigo K, Narimatsu H, Jigami Y, Kannagi R, Irimura T, Nishihara S; ''Molecular cloning and characterization of a novel 3'-phosphoadenosine 5'-phosphosulfate transporter, PAPST2.''; J Biol Chem, 2006 PubMed Europe PMC Scholia
- Kitagawa H, Izumikawa T, Uyama T, Sugahara K; ''Molecular cloning of a chondroitin polymerizing factor that cooperates with chondroitin synthase for chondroitin polymerization.''; J Biol Chem, 2003 PubMed Europe PMC Scholia
- Paganini C, Costantini R, Superti-Furga A, Rossi A; ''Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view.''; FEBS J, 2019 PubMed Europe PMC Scholia
- Hästbacka J, Kaitila I, Sistonen P, de la Chapelle A; ''Diastrophic dysplasia gene maps to the distal long arm of chromosome 5.''; Proc Natl Acad Sci U S A, 1990 PubMed Europe PMC Scholia
- Vynios DH; ''Metabolism of cartilage proteoglycans inhealth and disease.''; Biomed Res Int, 2014 PubMed Europe PMC Scholia
- Sato T, Gotoh M, Kiyohara K, Akashima T, Iwasaki H, Kameyama A, Mochizuki H, Yada T, Inaba N, Togayachi A, Kudo T, Asada M, Watanabe H, Imamura T, Kimata K, Narimatsu H; ''Differential roles of two N-acetylgalactosaminyltransferases, CSGalNAcT-1, and a novel enzyme, CSGalNAcT-2. Initiation and elongation in synthesis of chondroitin sulfate.''; J Biol Chem, 2003 PubMed Europe PMC Scholia
- Kamiyama S, Suda T, Ueda R, Suzuki M, Okubo R, Kikuchi N, Chiba Y, Goto S, Toyoda H, Saigo K, Watanabe M, Narimatsu H, Jigami Y, Nishihara S; ''Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter.''; J Biol Chem, 2003 PubMed Europe PMC Scholia
- Prydz K; ''Determinants of Glycosaminoglycan (GAG)Structure.''; Biomolecules, 2015 PubMed Europe PMC Scholia
- Izumikawa T, Uyama T, Okuura Y, Sugahara K, Kitagawa H; ''Involvement of chondroitin sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymerization through its interaction with chondroitin synthase-1 or chondroitin-polymerizing factor.''; Biochem J, 2007 PubMed Europe PMC Scholia
- Mihov D, Spiess M; ''Glycosaminoglycans: Sorting determinants in intracellular protein traffic.''; Int J Biochem Cell Biol, 2015 PubMed Europe PMC Scholia
- Mizumoto S, Yamada S, Sugahara K; ''Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias.''; Biomed Res Int, 2015 PubMed Europe PMC Scholia
- Mizumoto S, Yamada S, Sugahara K; ''Human genetic disorders and knockout mice deficient in glycosaminoglycan.''; Biomed Res Int, 2014 PubMed Europe PMC Scholia
- Kitagawa H, Uyama T, Sugahara K; ''Molecular cloning and expression of a human chondroitin synthase.''; J Biol Chem, 2001 PubMed Europe PMC Scholia
- Uyama T, Kitagawa H, Tamura Ji J, Sugahara K; ''Molecular cloning and expression of human chondroitin N-acetylgalactosaminyltransferase: the key enzyme for chain initiation and elongation of chondroitin/dermatan sulfate on the protein linkage region tetrasaccharide shared by heparin/heparan sulfate.''; J Biol Chem, 2002 PubMed Europe PMC Scholia
- Frederick JP, Tafari AT, Wu SM, Megosh LC, Chiou ST, Irving RP, York JD; ''A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation.''; Proc Natl Acad Sci U S A, 2008 PubMed Europe PMC Scholia
- Izumikawa T, Koike T, Shiozawa S, Sugahara K, Tamura J, Kitagawa H; ''Identification of chondroitin sulfate glucuronyltransferase as chondroitin synthase-3 involved in chondroitin polymerization: chondroitin polymerization is achieved by multiple enzyme complexes consisting of chondroitin synthase family members.''; J Biol Chem, 2008 PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Name | Type | Database reference | Comment |
---|---|---|---|
ADENOSINE MONOPHOSPHATE | Metabolite | CHEBI:16027 (ChEBI) | |
B3GALT6 | GeneProduct | ENSG00000176022 (Ensembl) | |
B3GAT3 | GeneProduct | ENSG00000149541 (Ensembl) | |
B4GALT7 | GeneProduct | ENSG00000027847 (Ensembl) | |
CANT1 | GeneProduct | ENSG00000171302 (Ensembl) | |
CHST14 | GeneProduct | ENSG00000169105 (Ensembl) | |
CHST3 | GeneProduct | ENSG00000122863 (Ensembl) | |
CHSY1 | GeneProduct | ENSG00000131873 (Ensembl) | |
CSGALNACT1 | GeneProduct | ENSG00000147408 (Ensembl) | |
D-glucuronic acid | Metabolite | CHEBI:4178 (ChEBI) | |
EXT1 | GeneProduct | ENSG00000182197 (Ensembl) | |
EXT2 | GeneProduct | ENSG00000151348 (Ensembl) | |
EXTL3 | GeneProduct | ENSG00000012232 (Ensembl) | |
IMPAD1 | GeneProduct | ENSG00000104331 (Ensembl) | |
L-Iduronic acid | Metabolite | CHEBI:24769 (ChEBI) | |
N-Acetylgalactosamine | Metabolite | CHEBI:28800 (ChEBI) | |
N-acetylglucosamines | Metabolite | CHEBI:59640 (ChEBI) | |
PAPS | Metabolite | CHEBI:17980 (ChEBI) | |
PAPSS2 | GeneProduct | ENSG00000198682 (Ensembl) | |
PO4(.2-) | Metabolite | CHEBI:29932 (ChEBI) | |
Phosphoadenosine phosphate | Metabolite | CHEBI:17985 (ChEBI) | |
SLC26A2 | GeneProduct | ENSG00000155850 (Ensembl) | |
SLC35B2 | GeneProduct | ENSG00000157593 (Ensembl) | |
SLC35B3 | GeneProduct | ENSG00000124786 (Ensembl) | |
Sulfate ion (SO42-) | Metabolite | CHEBI:16189 (ChEBI) | |
UDP | Metabolite | CHEBI:17659 (ChEBI) | |
UMP | Metabolite | CHEBI:16695 (ChEBI) | |
Udp galactose | Metabolite | CHEBI:18307 (ChEBI) | |
Udp xylose | Metabolite | CHEBI:16082 (ChEBI) | |
XYLT1 | GeneProduct | ENSG00000103489 (Ensembl) | |
XYLT2 | GeneProduct | ENSG00000015532 (Ensembl) | |
Xylose | Metabolite | CHEBI:18222 (ChEBI) | |
chloride | Metabolite | CHEBI:17996 (ChEBI) | |
galactose | Metabolite | CHEBI:28260 (ChEBI) | |
uridine diphosphate glucuronic acid | Metabolite | CHEBI:17200 (ChEBI) |
Annotated Interactions
No annotated interactions