RAB geranylgeranylation (Homo sapiens)

From WikiPathways

Revision as of 11:13, 1 November 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
4, 6-9, 11...2, 7, 21, 29, 30, 327, 182, 12, 15, 20, 29...1, 3-6, 10...7, 11, 18, 21, 24...cytosolCHML RAB2A RAB20 RAB17 RAB43 RAB24 RAB27B geranylgeranyl diphosphate GGC-RAB2A RAB38 RAB3D RAB25 GGC-RAB32 RAB24 RAB33B GGC-RAB22A RAB2B RAB14 GGC-RAB21 RABGGTA GGC-RAB42 CHML GGC-RAB14 RAB9A RAB6A GGC-RAB40A RABGGTB RAB42 RAB21 RAB27A CHM RGGTA:RGGTB:GGPPGGC-RAB1B RAB9B RAB10 RAB37 RAB14 RAB5B RAB33A RAB6B RAB34 RAB40B RAB5B GGC-RAB38 GGC-RAB23 RAB34 RAB2B RABGGTBRAB18 RAB40A RAB26 RAB35 FarC-PTP4A2 RABGGTB RAB8B RAB2A geranylgeranyldiphosphateRAB31 GGC-RAB26 RAB12 GGC-RAB5B geranylgeranyl diphosphate geranylgeranyl diphosphate RAB33B GGC-RAB8A GGC-RAB37 GGC-RAB35 RABGGTB RAB30 RAB4A RAB22A GGC-RAB44 RAB44 GGC-RAB40C RAB20 RAB3A RAB4B RAB9A GGC-RAB18 GGC-RAB6A RAB11B GGC-RAB36 GGC-RAB4A PPi(3-)RAB43 CHML GGC-RAB40B RABGGTA RAB13 CHM RAB23 RAB40C RAB26 RAB5A RAB36 RAB39A RAB17 RAB3C GGC-RAB27B RABGGTA:RABGGTBRAB6B RAB9B RAB7B RAB41 CHM RGGT:CHMs:RABs:GDPRAB32 RAB10 RAB1A GGC-RAB9A RAB11A RAB1A RAB38 RAB6A RAB18 GGC-RAB19 RAB15 RAB27B RAB3A GGC-RAB8B RAB23 GGC-RAB20 GGC-RAB41 RAB8A FarC-PTP4A2RAB40B RAB5C GGC-RAB10 RAB44 GGC-RAB11B RAB7A GGC-RAB31 RAB42 RAB8A RAB3D CHMsGGC-RAB6B GGC-RAB3D RAB22A GGC-RAB3A RABGGTB RABGGTA:RABGGTB:CHMs:GGPPRAB21 RAB19 CHMs:GGC-RABs:GDPRAB8B GGC-RAB33B GGC-RAB33A RAB29 GGC-RAB4B GGC-RAB3B GGC-RAB7A GGC-RAB39A RAB12 RAB40A GGC-RAB13 RAB7A RAB3B FarC-PTP4A2:RABGGTBGGC-RAB43 RAB32 RABGGTA RAB7B GGC-RAB5C GGC-RAB9B RAB3C RAB29 RAB25 GGC-RAB39B RAB41 RAB39B GGC-RAB1A GDP GGC-RAB17 RAB1B GGC-RAB27A RAB37 GGC-RAB30 RAB33A RAB1B GGC-RAB12 RAB15 GDP GGC-RAB11A GGC-RAB2B RAB11A RAB4B RABGGTAGDP GGC-RAB34 GGC-RAB3C RABGGTA GGC-RAB15 RAB19 RAB36 RABs:GDPRAB3B RAB39A CHML GGC-RAB5A GGC-RAB25 RAB30 CHM RAB4A GGC-RAB29 RAB39B GGC-RAB7B RAB5C RAB40C RAB5A RAB11B RAB35 RABGGTB GGC-RAB24 RAB13 RAB27A RAB31 1818


Description

Human cells have more than 60 RAB proteins that are involved in trafficking of proteins in the endolysosomal system. These small GTPases contribute to trafficking specificity by localizing to the membranes of different endocytic compartments and interacting with effectors such as sorting adaptors, tethering factors, kinases, phosphatases and tubular-vesicular cargo (reviewed in Stenmark et al, 2009; Wandinger-Ness and Zerial, 2014). RAB localization depends on a number of factors including C-terminal prenylation, the sequence of an upstream hypervariable regions and what nucleotide is bound (Chavrier et al, 1991; Ullrich et al, 1993; Soldati et al, 1994; Farnsworth et al, 1994; Seabra, 1996; Wu et al, 2010; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014). In the active, GTP-bound form, prenylated RAB proteins are membrane associated, while in the inactive GDP-bound form, RABs are extracted from the target membrane and exist in a soluble form in complex with GDP dissociation inhibitors (GDIs) (Ullrich et al, 1993; Soldati et al, 1994; Gavriljuk et al, 2103). Conversion between the inactive and active form relies on the activities of RAB guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) (Yoshimura et al, 2010; Wu et al, 2011; Pan et al, 2006; Frasa et al, 2012; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014).
Newly synthesized RABs are bound by a RAB escort protein, CHM (also known as REP1) or CHML (REP2) (Alexandrov et al, 1994; Shen and Seabra, 1996). CHM/REP proteins are the substrate-binding component of the trimeric RAB geranylgeranyltransferase enzyme (GGTaseII) along with the two catalytic subunits RABGGTA and RABGGTB (reviewed in Gutkowska and Swiezewska, 2012; Palsuledesai and Distefano, 2015). REP proteins recruit the unmodified RAB in its GDP-bound state to the GGTase for sequential geranylgeranylation at one or two C-terminal cysteine residues (Alexandrov et al, 1994; Seabra et al 1996; Shen and Seabra, 1996; Baron and Seabra, 2008). After geranylgeranylation, CHM/REP proteins remain in complex with the geranylgeranylated RAB and escort it to its target membrane, where its activity is regulated by GAPs, GEFs, GDIs and membrane-bound GDI displacement factors (GDFs) (Sivars et al, 2003; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 8873719
Reactome-version 
Reactome version: 73
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Andres DA, Seabra MC, Brown MS, Armstrong SA, Smeland TE, Cremers FP, Goldstein JL.; ''cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein.''; PubMed Europe PMC Scholia
  2. Si X, Zeng Q, Ng CH, Hong W, Pallen CJ.; ''Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II.''; PubMed Europe PMC Scholia
  3. Ullrich O, Stenmark H, Alexandrov K, Huber LA, Kaibuchi K, Sasaki T, Takai Y, Zerial M.; ''Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins.''; PubMed Europe PMC Scholia
  4. Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA.; ''Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A.''; PubMed Europe PMC Scholia
  5. Overmeyer JH, Wilson AL, Maltese WA.; ''Membrane targeting of a Rab GTPase that fails to associate with Rab escort protein (REP) or guanine nucleotide dissociation inhibitor (GDI).''; PubMed Europe PMC Scholia
  6. Thomä NH, Iakovenko A, Goody RS, Alexandrov K.; ''Phosphoisoprenoids modulate association of Rab geranylgeranyltransferase with REP-1.''; PubMed Europe PMC Scholia
  7. Shen F, Seabra MC.; ''Mechanism of digeranylgeranylation of Rab proteins. Formation of a complex between monogeranylgeranyl-Rab and Rab escort protein.''; PubMed Europe PMC Scholia
  8. Thomä NH, Iakovenko A, Kalinin A, Waldmann H, Goody RS, Alexandrov K.; ''Allosteric regulation of substrate binding and product release in geranylgeranyltransferase type II.''; PubMed Europe PMC Scholia
  9. Wandinger-Ness A, Zerial M.; ''Rab proteins and the compartmentalization of the endosomal system.''; PubMed Europe PMC Scholia
  10. Khosravi-Far R, Lutz RJ, Cox AD, Conroy L, Bourne JR, Sinensky M, Balch WE, Buss JE, Der CJ.; ''Isoprenoid modification of rab proteins terminating in CC or CXC motifs.''; PubMed Europe PMC Scholia
  11. Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirota FL, Eisenhaber F.; ''Towards complete sets of farnesylated and geranylgeranylated proteins.''; PubMed Europe PMC Scholia
  12. Leung KF, Baron R, Seabra MC.; ''Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases.''; PubMed Europe PMC Scholia
  13. Seabra MC.; ''Nucleotide dependence of Rab geranylgeranylation. Rab escort protein interacts preferentially with GDP-bound Rab.''; PubMed Europe PMC Scholia
  14. Gutkowska M, Swiezewska E.; ''Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein.''; PubMed Europe PMC Scholia
  15. Leung KF, Baron R, Ali BR, Magee AI, Seabra MC.; ''Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation.''; PubMed Europe PMC Scholia
  16. Stenmark H.; ''Rab GTPases as coordinators of vesicle traffic.''; PubMed Europe PMC Scholia
  17. Wilson AL, Sheridan KM, Erdman RA, Maltese WA.; ''Prenylation of a Rab1B mutant with altered GTPase activity is impaired in cell-free systems but not in intact mammalian cells.''; PubMed Europe PMC Scholia
  18. Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL.; ''Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence.''; PubMed Europe PMC Scholia
  19. Sivars U, Aivazian D, Pfeffer SR.; ''Yip3 catalyses the dissociation of endosomal Rab-GDI complexes.''; PubMed Europe PMC Scholia
  20. Pan X, Eathiraj S, Munson M, Lambright DG.; ''TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.''; PubMed Europe PMC Scholia
  21. Palsuledesai CC, Distefano MD.; ''Protein prenylation: enzymes, therapeutics, and biotechnology applications.''; PubMed Europe PMC Scholia
  22. Joberty G, Tavitian A, Zahraoui A.; ''Isoprenylation of Rab proteins possessing a C-terminal CaaX motif.''; PubMed Europe PMC Scholia
  23. Soldati T, Shapiro AD, Svejstrup AB, Pfeffer SR.; ''Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange.''; PubMed Europe PMC Scholia
  24. Gavriljuk K, Itzen A, Goody RS, Gerwert K, Kötting C.; ''Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy.''; PubMed Europe PMC Scholia
  25. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M.; ''Hypervariable C-terminal domain of rab proteins acts as a targeting signal.''; PubMed Europe PMC Scholia
  26. Alexandrov K, Horiuchi H, Steele-Mortimer O, Seabra MC, Zerial M.; ''Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes.''; PubMed Europe PMC Scholia
  27. Ioannou MS, Girard M, McPherson PS.; ''Rab13 Traffics on Vesicles Independent of Prenylation.''; PubMed Europe PMC Scholia
  28. Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA.; ''Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors.''; PubMed Europe PMC Scholia
  29. Wu X, Bradley MJ, Cai Y, Kümmel D, De La Cruz EM, Barr FA, Reinisch KM.; ''Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate.''; PubMed Europe PMC Scholia
  30. Baron RA, Seabra MC.; ''Rab geranylgeranylation occurs preferentially via the pre-formed REP-RGGT complex and is regulated by geranylgeranyl pyrophosphate.''; PubMed Europe PMC Scholia
  31. Wu YW, Oesterlin LK, Tan KT, Waldmann H, Alexandrov K, Goody RS.; ''Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes.''; PubMed Europe PMC Scholia
  32. Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM.; ''Illuminating the functional and structural repertoire of human TBC/RABGAPs.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114653view16:12, 25 January 2021ReactomeTeamReactome version 75
113101view11:16, 2 November 2020ReactomeTeamReactome version 74
112335view15:26, 9 October 2020ReactomeTeamReactome version 73
101235view11:13, 1 November 2018ReactomeTeamreactome version 66
100774view20:40, 31 October 2018ReactomeTeamreactome version 65
100318view19:17, 31 October 2018ReactomeTeamreactome version 64
99863view16:00, 31 October 2018ReactomeTeamreactome version 63
99420view14:36, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93401view11:22, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
CHM ProteinP24386 (Uniprot-TrEMBL)
CHML ProteinP26374 (Uniprot-TrEMBL)
CHMs:GGC-RABs:GDPComplexR-HSA-8870447 (Reactome)
CHMsComplexR-HSA-8870446 (Reactome)
FarC-PTP4A2 ProteinQ12974 (Uniprot-TrEMBL)
FarC-PTP4A2:RABGGTBComplexR-HSA-8870455 (Reactome)
FarC-PTP4A2ProteinQ12974 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GGC-RAB10 ProteinP61026 (Uniprot-TrEMBL)
GGC-RAB11A ProteinP62491 (Uniprot-TrEMBL)
GGC-RAB11B ProteinQ15907 (Uniprot-TrEMBL)
GGC-RAB12 ProteinQ6IQ22 (Uniprot-TrEMBL)
GGC-RAB13 ProteinP51153 (Uniprot-TrEMBL)
GGC-RAB14 ProteinP61106 (Uniprot-TrEMBL)
GGC-RAB15 ProteinP59190 (Uniprot-TrEMBL)
GGC-RAB17 ProteinQ9H0T7 (Uniprot-TrEMBL)
GGC-RAB18 ProteinQ9NP72 (Uniprot-TrEMBL)
GGC-RAB19 ProteinA4D1S5 (Uniprot-TrEMBL)
GGC-RAB1A ProteinP62820 (Uniprot-TrEMBL)
GGC-RAB1B ProteinQ9H0U4 (Uniprot-TrEMBL)
GGC-RAB20 ProteinQ9NX57 (Uniprot-TrEMBL)
GGC-RAB21 ProteinQ9UL25 (Uniprot-TrEMBL)
GGC-RAB22A ProteinQ9UL26 (Uniprot-TrEMBL)
GGC-RAB23 ProteinQ9ULC3 (Uniprot-TrEMBL)
GGC-RAB24 ProteinQ969Q5 (Uniprot-TrEMBL)
GGC-RAB25 ProteinP57735 (Uniprot-TrEMBL)
GGC-RAB26 ProteinQ9ULW5 (Uniprot-TrEMBL)
GGC-RAB27A ProteinP51159 (Uniprot-TrEMBL)
GGC-RAB27B ProteinO00194 (Uniprot-TrEMBL)
GGC-RAB29 ProteinO14966 (Uniprot-TrEMBL)
GGC-RAB2A ProteinP61019 (Uniprot-TrEMBL)
GGC-RAB2B ProteinQ8WUD1 (Uniprot-TrEMBL)
GGC-RAB30 ProteinQ15771 (Uniprot-TrEMBL)
GGC-RAB31 ProteinQ13636 (Uniprot-TrEMBL)
GGC-RAB32 ProteinQ13637 (Uniprot-TrEMBL)
GGC-RAB33A ProteinQ14088 (Uniprot-TrEMBL)
GGC-RAB33B ProteinQ9H082 (Uniprot-TrEMBL)
GGC-RAB34 ProteinQ9BZG1 (Uniprot-TrEMBL)
GGC-RAB35 ProteinQ15286 (Uniprot-TrEMBL)
GGC-RAB36 ProteinO95755 (Uniprot-TrEMBL)
GGC-RAB37 ProteinQ96AX2 (Uniprot-TrEMBL)
GGC-RAB38 ProteinP57729 (Uniprot-TrEMBL)
GGC-RAB39A ProteinQ14964 (Uniprot-TrEMBL)
GGC-RAB39B ProteinQ96DA2 (Uniprot-TrEMBL)
GGC-RAB3A ProteinP20336 (Uniprot-TrEMBL)
GGC-RAB3B ProteinP20337 (Uniprot-TrEMBL)
GGC-RAB3C ProteinQ96E17 (Uniprot-TrEMBL)
GGC-RAB3D ProteinO95716 (Uniprot-TrEMBL)
GGC-RAB40A ProteinQ8WXH6 (Uniprot-TrEMBL)
GGC-RAB40B ProteinQ12829 (Uniprot-TrEMBL)
GGC-RAB40C ProteinQ96S21 (Uniprot-TrEMBL)
GGC-RAB41 ProteinQ5JT25 (Uniprot-TrEMBL)
GGC-RAB42 ProteinQ8N4Z0 (Uniprot-TrEMBL)
GGC-RAB43 ProteinQ86YS6 (Uniprot-TrEMBL)
GGC-RAB44 ProteinQ7Z6P3 (Uniprot-TrEMBL)
GGC-RAB4A ProteinP20338 (Uniprot-TrEMBL)
GGC-RAB4B ProteinP61018 (Uniprot-TrEMBL)
GGC-RAB5A ProteinP20339 (Uniprot-TrEMBL)
GGC-RAB5B ProteinP61020 (Uniprot-TrEMBL)
GGC-RAB5C ProteinP51148 (Uniprot-TrEMBL)
GGC-RAB6A ProteinP20340 (Uniprot-TrEMBL)
GGC-RAB6B ProteinQ9NRW1 (Uniprot-TrEMBL)
GGC-RAB7A ProteinP51149 (Uniprot-TrEMBL)
GGC-RAB7B ProteinQ96AH8 (Uniprot-TrEMBL)
GGC-RAB8A ProteinP61006 (Uniprot-TrEMBL)
GGC-RAB8B ProteinQ92930 (Uniprot-TrEMBL)
GGC-RAB9A ProteinP51151 (Uniprot-TrEMBL)
GGC-RAB9B ProteinQ9NP90 (Uniprot-TrEMBL)
PPi(3-)MetaboliteCHEBI:33019 (ChEBI)
RAB10 ProteinP61026 (Uniprot-TrEMBL)
RAB11A ProteinP62491 (Uniprot-TrEMBL)
RAB11B ProteinQ15907 (Uniprot-TrEMBL)
RAB12 ProteinQ6IQ22 (Uniprot-TrEMBL)
RAB13 ProteinP51153 (Uniprot-TrEMBL)
RAB14 ProteinP61106 (Uniprot-TrEMBL)
RAB15 ProteinP59190 (Uniprot-TrEMBL)
RAB17 ProteinQ9H0T7 (Uniprot-TrEMBL)
RAB18 ProteinQ9NP72 (Uniprot-TrEMBL)
RAB19 ProteinA4D1S5 (Uniprot-TrEMBL)
RAB1A ProteinP62820 (Uniprot-TrEMBL)
RAB1B ProteinQ9H0U4 (Uniprot-TrEMBL)
RAB20 ProteinQ9NX57 (Uniprot-TrEMBL)
RAB21 ProteinQ9UL25 (Uniprot-TrEMBL)
RAB22A ProteinQ9UL26 (Uniprot-TrEMBL)
RAB23 ProteinQ9ULC3 (Uniprot-TrEMBL)
RAB24 ProteinQ969Q5 (Uniprot-TrEMBL)
RAB25 ProteinP57735 (Uniprot-TrEMBL)
RAB26 ProteinQ9ULW5 (Uniprot-TrEMBL)
RAB27A ProteinP51159 (Uniprot-TrEMBL)
RAB27B ProteinO00194 (Uniprot-TrEMBL)
RAB29 ProteinO14966 (Uniprot-TrEMBL)
RAB2A ProteinP61019 (Uniprot-TrEMBL)
RAB2B ProteinQ8WUD1 (Uniprot-TrEMBL)
RAB30 ProteinQ15771 (Uniprot-TrEMBL)
RAB31 ProteinQ13636 (Uniprot-TrEMBL)
RAB32 ProteinQ13637 (Uniprot-TrEMBL)
RAB33A ProteinQ14088 (Uniprot-TrEMBL)
RAB33B ProteinQ9H082 (Uniprot-TrEMBL)
RAB34 ProteinQ9BZG1 (Uniprot-TrEMBL)
RAB35 ProteinQ15286 (Uniprot-TrEMBL)
RAB36 ProteinO95755 (Uniprot-TrEMBL)
RAB37 ProteinQ96AX2 (Uniprot-TrEMBL)
RAB38 ProteinP57729 (Uniprot-TrEMBL)
RAB39A ProteinQ14964 (Uniprot-TrEMBL)
RAB39B ProteinQ96DA2 (Uniprot-TrEMBL)
RAB3A ProteinP20336 (Uniprot-TrEMBL)
RAB3B ProteinP20337 (Uniprot-TrEMBL)
RAB3C ProteinQ96E17 (Uniprot-TrEMBL)
RAB3D ProteinO95716 (Uniprot-TrEMBL)
RAB40A ProteinQ8WXH6 (Uniprot-TrEMBL)
RAB40B ProteinQ12829 (Uniprot-TrEMBL)
RAB40C ProteinQ96S21 (Uniprot-TrEMBL)
RAB41 ProteinQ5JT25 (Uniprot-TrEMBL)
RAB42 ProteinQ8N4Z0 (Uniprot-TrEMBL)
RAB43 ProteinQ86YS6 (Uniprot-TrEMBL)
RAB44 ProteinQ7Z6P3 (Uniprot-TrEMBL)
RAB4A ProteinP20338 (Uniprot-TrEMBL)
RAB4B ProteinP61018 (Uniprot-TrEMBL)
RAB5A ProteinP20339 (Uniprot-TrEMBL)
RAB5B ProteinP61020 (Uniprot-TrEMBL)
RAB5C ProteinP51148 (Uniprot-TrEMBL)
RAB6A ProteinP20340 (Uniprot-TrEMBL)
RAB6B ProteinQ9NRW1 (Uniprot-TrEMBL)
RAB7A ProteinP51149 (Uniprot-TrEMBL)
RAB7B ProteinQ96AH8 (Uniprot-TrEMBL)
RAB8A ProteinP61006 (Uniprot-TrEMBL)
RAB8B ProteinQ92930 (Uniprot-TrEMBL)
RAB9A ProteinP51151 (Uniprot-TrEMBL)
RAB9B ProteinQ9NP90 (Uniprot-TrEMBL)
RABGGTA ProteinQ92696 (Uniprot-TrEMBL)
RABGGTA:RABGGTB:CHMs:GGPPComplexR-HSA-8870462 (Reactome)
RABGGTA:RABGGTBComplexR-HSA-8870460 (Reactome)
RABGGTAProteinQ92696 (Uniprot-TrEMBL)
RABGGTB ProteinP53611 (Uniprot-TrEMBL)
RABGGTBProteinP53611 (Uniprot-TrEMBL)
RABs:GDPComplexR-HSA-8875311 (Reactome)
RGGT:CHMs:RABs:GDPComplexR-HSA-8870467 (Reactome)
RGGTA:RGGTB:GGPPComplexR-HSA-8936087 (Reactome)
geranylgeranyl diphosphateMetaboliteCHEBI:48861 (ChEBI)
geranylgeranyl diphosphate MetaboliteCHEBI:48861 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
CHMs:GGC-RABs:GDPArrowR-HSA-8870469 (Reactome)
CHMsR-HSA-8870465 (Reactome)
FarC-PTP4A2:RABGGTBArrowR-HSA-8870457 (Reactome)
FarC-PTP4A2:RABGGTBTBarR-HSA-8870461 (Reactome)
FarC-PTP4A2R-HSA-8870457 (Reactome)
PPi(3-)ArrowR-HSA-8870469 (Reactome)
R-HSA-8870457 (Reactome) PTP4A2, also known as PRL2, is a member of the protein tyrosine phosphatase family. Farnesylated PTP4A2 interacts with RABGGTB, one of the two catalytic subunits of the RAB geranylgeranyl transferase complex and prevents its association with the other catalytic subunit RABGBTA (Si et al, 2001). In this way, binding of PTP4A2 acts as a negative regulator of RAB geranylgeranylation (reviewed in Gutkowska and Swiezewska, 2012).
R-HSA-8870461 (Reactome) RABGGTA and RABGGTB are the two catalytic subunits of a trimeric RAB geranylgeranyl transferase complex (GGTase); the third subunit is the RAB binding subunit CHM or CHML (reviewed in Leung et al, 2006; Gutkowska and Swiezewska, 2012). RABGGTB also interacts in a mutually exclusive way with PTP4A2, preventing formation of a functional gernanylgeranyl transferase complex (Si et al, 2001; Baron and Seabra, 2008). Newly synthesized RAB proteins are singly or more commonly doubly geranylgeranylated near their C-termini by the GGTase. Geranylgeranylation promotes association of active RAB proteins with membranes. Membrane association is additionally modulated by the nucleotide state of the GTPase through regulatory proteins such as guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and GDP Dissocation Inhibitors (GDIs), among others (reviewed in Stenmark et al, 2009; Wandinger-Ness and Zerial, 2014). An exception to this is RAB13, which has recently been shown to be membrane-associated even in the inactive state and to traffic on vesicles independently of geranylgeranylation (Ioannou et al, 2016).
R-HSA-8870465 (Reactome) The catalytic dimer of RGGTA and B interacts with RAB-escorting proteins 1 or 2 (CHM and CHML, also known as REP-1 and REP-2) to form a functional trimeric RAB geranylgeranyl transferase complex that is capable of binding and geranylgeranylating newly synthesized RAB proteins (Baron and Seabra, 2008; reviewed in Leung et al, 2006; Gutkowska and Swiezewska, 2012). There are two models for the formation of a functional enzyme:substrate complex. In the classical model, unprenylated RAB first binds to REP and is subsequently presented to the catalytic subunits of the GGTase. Incorporation of geranylgeranyl pyrophosphate (GGPP) strengthens the interaction between enzyme and substrate (Andres et al, 1993; Thoma et al, 2001a). In the alternate route, which is depicted in this pathway, RGGTA and RGGTB first bind to REP in a GGPP-dependent manner in the absence of the RAB substrate. Unprenylated RABs then bind to the fully formed GGTase for geranylgeranylation (Thoma et al, 2001b; Baron and Seabra, 2008).
R-HSA-8870466 (Reactome) CHM and CHML are the substrate-binding subunits of the RAB geranylgeranyltransferase (GGTase) complex. CHMs, also known as RAB escort proteins (REPs) bind to unprenylated RAB proteins in the GDP bound state (Seabra, 1996). In the classical model of RAB recruitment, CHM proteins first bind the unprenylated RAB alone and then present it to the catalytic dimer of the RAB GGTase, while in the alternative model, depicted here, RAB recruitment occurs after the GGPP-dependent formation of a highly stable trimeric GGTase complex (Andres et al, 1993; Thoma et al, 2001a; Thoma et al 2001b; Baron and Seabra, 2008). After geranylgeranylation, binding of additional GGPP to the GGTase promotes release of the CHM:RAB complex, possibly through an allosteric mechanism (Baron and Seabra, 2008). CHM proteins remain in complex with the RABs after geranylgeranylation, dissociating after the RAB has been transferred to the target membrane (Alexandrov et al, 1994; Shen and Seabra, 1996; Baron and Seabra, 2008).
R-HSA-8870469 (Reactome) RAB geranylgeranyltransferase (GGTase) recognizes and geranylgeranylates cysteine residues in -CXCX, -CCXX or -XXCC motifs in the C-termini of RAB proteins. Most RAB proteins are doubly geranylgeranylated, most likely in a sequential fashion, but some are only singly modified (Baron and Seabra, 2008; Farnsworth et al 1994; Wilson et al, 1996; Overmeyer et al, 2000; Khosravi-Far et al, 1991; Joberty et al, 1993; Catherman et al, 2013; Leung et al, 2007; Maurer-Stroh et al, 2007). In most cases, geranylgeranylation is required for proper localization and function of the RAB proteins. After geranylgeranylation, RABs remain associated with the RAB escort protein CHM or CHML, which dissociates when the GTPase reaches its target membrane (Alexandrov et al, 1994; Seabra et al, 1996; Shen and Seabra, 1996). Release of the geranylgeranyl RAB:CHM complex from the catalytic subunits is promoted by the binding of additional GGPP to the enzyme (Baron and Seabra, 2008). Once prenylated, RABs cycle between active GTP bound forms that are membrane associated, and inactive GDP bound forms that are cytosolic and associated with RAB GDP dissociation inhibitor (GDI) proteins. Conversion between these states is governed by the activities of guanine nucleotide exchange factors (GEFs), which promote the exchange of GDP for GTP, and GTPase activating proteins (GAPs), which stimulate the intrinsic GTPase activity of RABs (Ullrich et al, 1993; Soldati et al, 1994; reviewed in Wandinger-Ness and Zerial, 2014; Stenmark, 2009).
RABGGTA:RABGGTB:CHMs:GGPPArrowR-HSA-8870465 (Reactome)
RABGGTA:RABGGTB:CHMs:GGPPR-HSA-8870466 (Reactome)
RABGGTA:RABGGTBArrowR-HSA-8870461 (Reactome)
RABGGTA:RABGGTBR-HSA-8870465 (Reactome)
RABGGTAR-HSA-8870461 (Reactome)
RABGGTBR-HSA-8870457 (Reactome)
RABGGTBR-HSA-8870461 (Reactome)
RABs:GDPR-HSA-8870466 (Reactome)
RGGT:CHMs:RABs:GDPArrowR-HSA-8870466 (Reactome)
RGGT:CHMs:RABs:GDPR-HSA-8870469 (Reactome)
RGGT:CHMs:RABs:GDPmim-catalysisR-HSA-8870469 (Reactome)
RGGTA:RGGTB:GGPPArrowR-HSA-8870469 (Reactome)
geranylgeranyl diphosphateR-HSA-8870465 (Reactome)
geranylgeranyl diphosphateR-HSA-8870469 (Reactome)
Personal tools