Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 11:20, 1 November 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1, 4, 6, 7, 12...71328132, 7, 22, 29, 332, 15, 18, 19, 21...11345, 13, 275, 13mitochondrial matrixtRNA(Ser) MRPS31 Arg-tRNA(Arg) MRPS7 MT-TV MRPL36 MRPL42 MRPS22 GTP Thr-tRNA(Thr) ICT1 ICT1 MRPL42 MRPL34 tRNA(Met) MRPL48 MRPL18 MRPL14 MRPS12 MRPL17 Mitochondrial 12S rRNA MRPL54 MRPS31 TUFM MRPL28 MRPL11 MRPL21 MRPL2 GTP MRPL44 MRPS7 MRPS16 MRPL47 TUFM MRPL1 MRPL20 GDP AURKAIP1 MRPL36 MRPL52 MRPL15 tRNA(Thr) MRPL37 MRPL41 MRPL22 MRPL50 MRPL13 GFM2:GTPMitochondrial 16S rRNA MRPS11 MRPS23 MRPL55 MRPL45 MRPL36 MRPL44 MRPL48 28S ribosomalsubunit:MTIF3MRPL3 ERAL1 fMet-tRNA(fMet) PiMRPL52 MRPS17 MRPS27 MRPL19 MRPS5 tRNA(Tyr) MRPL48 MT-TV Pro-tRNA(Pro) MRPS24 MRPS18A Val-tRNA(Val) MRPL50 MRPL24 MRPL32 Phe-tRNA(Phe) MRPS6 Glu-tRNA(Glu) MRPS31 MRPS9 MRPL35 Mitochondrial 12S rRNA MRPL37 MRPL28 MRPL40 MRPS31 MRPL55 tRNA(Val) MRPS21 MRPL41 MRPL11 MRPS30 MRPL53 MRPS16 MRPS25 MRPL9 MRPL17 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPL1 CHCHD1 Gly-tRNA(Gly) MRPL57 MRPL44 MRPL32 MRPL16 MRPL13 AURKAIP1 MRPL30 MRPS25 ERAL1 MRPL57 MRPS18B MRPL20 MRPS33 MRPS24 ICT1 Gln-tRNA(Gln) MRPS17 MRPS18B GTPMRPS15 MRPL14 39S ribosomalsubunitMRPS34 MRPL21 MRPL13 MT-TV MRPL18 MRPL19 MRPS25 PTCD3 MRPL41 MRPL27 MRPL4 MRRFMRPS36 MRPL27 MRPL18 MRPS12 MRPS34 MRPS36 MRPL48 MRPS18B OXA1L GADD45GIP1 MT-TV MRPS11 MRPL23 MRPS6 MRPL13 MRPL47 MRPL52 MRPS23 Pro-tRNA(Pro) Asp-tRNA(Asp) MRPL16 MRPS21 Leu-tRNA(Leu) MRPS18A MRPS30 MRPL37 TUFM MRPL43 GDPTrp-tRNA(Trp) OXA1L MRPL20 tRNA(Pro) MRPL15 Ser-tRNA(Ser) MRPS2 MRPL39 MRPL55 MRPL28 MRPL54 MRPL53 MRPL35 MRPL49 TUFM:GDPMRPS9 Arg-tRNA(Arg) MRPS33 GADD45GIP1 MTIF2:GTPMRPL50 MRPL57 MRPS25 MRPL10 MTIF2PTCD3 MRPS35 MRPL17 Mitochondrial 16S rRNA ERAL1 MRPL48 tRNA(Asn) tRNA(Arg) AURKAIP1 Phe-tRNA(Phe) MRPL30 MRPL30 MRPL27 MRPL44 MRPL19 MRPS21 MRPS15 MRPS34 MRPS18C MRPL4 MRPL13 MRPL51 MRPS30 MRPS2 MRPL21 MRPL18 fMet-tRNA(fMet)Mitochondrial 16S rRNA MRPS6 MRPL36 MT-TV MRPS33 Gly-tRNA(Gly) MRPL37 MRPL43 MRPL34 Gly-tRNA(Gly) MRPL15 MRPL11 MRPL36 MRPL18 MRPL24 Tyr-tRNA(Tyr) MRPS18A MRPL2 MRPS23 MRPL36 MRPS26 MRPS26 MRPL34 GTP MRPS5 tRNA(Gln) tRNA(Leu) MRPL33 MRPL37 MRPL15 MRPL20 MT-TV MRPS16 MRPL32 MRPS28 MRPL43 MRPL23 MRPL11 MRPL38 MRPS14 MRPL55 MRPL19 MRPL20 MRPS11 tRNA(Ile) MRPL9 Phe-tRNA(Phe) MRPL34 MRPS6 ERAL1 MRPL43 tRNA(Val) MRPL43 MRPS34 MRPS33 MRPL45 MRPS9 MRPS17 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPL57 CHCHD1 MRPL36 OXA1L Mitochondrial 12S rRNA MRPS21 MRPL17 MRPL47 MRPS33 MRPS12 MRPS18C MRPS18B DAP3 GADD45GIP1 tRNA(Cys) MRPL47 Mitochondrial 16S rRNA Gly-tRNA(Gly) MRPS18B CHCHD1 MRPS10 MRPL49 MRPS24 MRPS31 MRPL44 MRPS15 MRPL33 MRPS16 MRPS7 GDPMRPL33 MRPL53 MRPS17 MRPS33 MRPL50 AURKAIP1 10-formyl-THFMRPS16 MRPL1 MRPL1 MRPS18C MRPL41 MRPL23 MRPL48 MRPS25 TUFM:GTP:aminoacyl-tRNAMRPS34 MRPL2 MRPS23 MRPL21 ERAL1 MRPL13 MRPL9 MRPS22 ICT1 OXA1L MRPS10 MT-TV MRPS24 MRPS14 MRPL30 MTIF3 Mitochondrial 16S rRNA MRPL38 MRPL38 MRPL15 MRPL4 ICT1 MRPL30 MRPS10 MRPL17 MRPS35 MRPL16 MTFMTMRPL11 MRPL15 MRPL44 MRPL4 MRPL51 MRPS17 MRPL27 MRPL57 MRPS31 MRPL14 MRPS11 MRPL1 MRPS22 Val-tRNA(Val) MRPL40 MRPS21 MRPL38 MRPL42 MRPL30 tRNA(Ala) tRNAMRPL33 tRNA(Ala) MRPS33 Cys-tRNA(Cys) MRPS9 MRPS27 MRPS30 MRPL41 MRPS18A MRPS2 MRPL40 aminoacyl-tRNAMitochondrial 12S rRNA MRPL14 MRPL27 DAP3 MRPL34 MRPL19 MRPS22 MRPL49 CHCHD1 Mitochondrial 16S rRNA MRPL39 MRPS27 MRPS16 MRPS17 Glu-tRNA(Glu) MRPS10 MRPS7 MRPL42 MRPL13 MRPL43 MRPL53 MRPS16 MRPL15 Trp-tRNA(Trp) MRPL50 MRPL3 MRPS16 MRPS24 MRPS7 MRPL48 tRNA(Asn) tRNA(Cys) MRPS23 MRPS10 Tyr-tRNA(Tyr) tRNA(Trp) MRPL39 MRPL22 MRPL18 MRPL45 MRPL20 MRPL27 MRPS9 MRPL54 GADD45GIP1 MRPL54 Mitochondrial 12S rRNA MRPL16 MRPL17 GFM1:GDPMRPS31 MRPL4 ICT1 MTRF1L, ICT1MRPS15 MRPL16 MRPL51 MRPL21 MRPL40 MRPS2 MRPL53 MTIF2 MRPL53 MRPL23 MRPL35 MRPL23 tRNA(Phe) Met-tRNA(Met) MRPL49 MRPL46 MRPS6 GTPMRPL40 MRPS33 Gln-tRNA(Gln) MRPS5 CHCHD1 Mitochondrial 16S rRNA MRPS12 MRPL35 MRPS30 Ala-tRNA(Ala) His-tRNA(His) GADD45GIP1 MRPS27 MRPL46 MRPS5 MRPS23 Phe-tRNA(Phe) MRPS26 MRPL12 MRPS7 Leu-tRNA(Leu) Met-tRNA(Met) PTCD3 tRNA(Tyr) MRPS7 MRPL46 MRPL42 MRPL9 MRPL24 MRPL43 MRPL50 MRPS7 MRPS21 MRPL51 MRPL14 MRPL3 MRPL21 Mitochondrial 16S rRNA Thr-tRNA(Thr) MRPL15 DAP3 MRPL19 PTCD3 MRPS2 MRPS34 PTCD3 MRPL34 MRPL41 MRPL55 Asn-tRNA(Asn) CHCHD1 MRPL3 MRPL9 MRPL42 MRPS17 MRPS21 28S ribosomalsubunitMRPL32 MRPL38 MRPL32 MRPS30 MRPL48 MRPL21 MRPL51 MRPS5 MT-TV MRPS26 Trp-tRNA(Trp) MRPS17 mRNA MRPL9 tRNA(Gly) Ile-tRNA(Ile) MRPS18B MRPS10 Asp-tRNA(Asp) AURKAIP1 MRPL52 MRPL53 MRPL41 MRPL21 MRPL23 MRPL13 fMet-tRNA(fMet) MRPL10 MRPL27 MRPS25 MRPS35 ERAL1 MRPL54 MRPL4 MRPS28 MRPL51 MRPL50 MRPL11 MRPS21 tRNA(Arg) PTCD3 mRNA MRPL28 MRPS36 fMet-tRNA(fMet) MRPL2 MRPL4 MRPS28 MRPL46 MRPL21 MRPL22 tRNA(Glu) MRPS18B MRPL47 MRPS36 MRPL50 MRPL14 MRPL32 Pro-tRNA(Pro) MRPL46 MRPL39 MRPS28 His-tRNA(His) tRNA(Asp) 55Sribosome:mRNA:fMet-tRNAMRPL1 MRPL12 MRPS22 MRPS14 MRPS26 MRPL47 MRPS11 MRPL49 MRPL55 MRPS35 MRPS18A MRPL44 AURKAIP1 Gln-tRNA(Gln) MRPS35 MRPL46 MRPL52 MRPS25 Tyr-tRNA(Tyr) MRPS18A MTIF3MRPL16 MRPL24 MRPS24 MRPS23 MRPS22 MRPL51 OXA1L MRPL2 Mitochondrial 12S rRNA MRPL10 MRPS24 MRPS6 MRPL30 Thr-tRNA(Thr) MRPS34 Leu-tRNA(Leu) MRPS7 Mitochondrial 12S rRNA MRPS35 MRPS5 GTP Glu-tRNA(Glu) MRPS23 MRPS18C MRPS21 MRPL33 MRPL4 GFM1:GTPMRPS15 DAP3 MRPL10 MRPL35 MRPL2 MRPS18A MRPL37 mRNA TUFM MRPL42 MRPL33 MRPL10 MRPS14 MRPL49 MRPL24 Ile-tRNA(Ile) MRPL18 MTRF1L tRNA(Ile) ICT1 ICT1 PTCD3 CHCHD1 MRPS24 Mitochondrial 12S rRNA MRPL13 OXA1L MRPS12 tRNA(Leu) MRPL46 MRPL16 MRPS27 MRPL10 MRPL24 MRPS28 tRNA(Phe) MRPS17 tRNA(Met) MRPL55 MRPL20 ERAL1 MRPS9 MRPS25 MRPL12 fMet-tRNA(fMet) MRPS14 MRPS33 MRPL43 Ala-tRNA(Ala) mRNA MRPL35 Asp-tRNA(Asp) MRPS27 MRPL22 OXA1L MRPS6 MRPL57 MRPS36 MRPL4 MRPL23 MRPL10 MRPL49 MRPL46 tRNA(Val) MRPL37 mRNA MRPL3 MRPS17 Val-tRNA(Val) tRNA(Leu) MRPS7 MRPS12 MRPL34 GTP Mitochondrial 12S rRNA MRPL9 GFM2 MRPL22 MRPL9 MRPL12 MT-TV MRPL10 MRPL11 MRPS36 MRPS2 MRPL50 Mitochondrial 12S rRNA MRPS14 MRPL40 ICT1 DAP3 MRPL40 MRPS11 tRNA(Tyr) GTP tRNA(Pro) MRPS11 MRPS36 MRPL53 tRNA(Met) MRPS18A OXA1L tRNA(Trp) MRPS21 MRPL10 MRPL41 MRPS24 tRNA(Lys) MRPL50 Ile-tRNA(Ile) MRPS28 MRPS18B PTCD3 MRPL17 MRPS18C MRPS9 CHCHD1 PTCD3 MRPS12 mRNA tRNA(Asn) MRPS28 MRPS27 ICT1 MRPS35 MRPL2 MRPL49 AURKAIP1 AURKAIP1 MRPS11 DAP3 MRPL39 GDP MRPS22 GADD45GIP1 MRPS22 MRPS25 MRPS26 MRPS35 MRPS15 MRPS28 DAP3 mRNA Leu-tRNA(Leu) MRPL35 MRPL34 MRPL16 MRPL15 MRPL22 mRNA MRPL45 MRPL20 MRPS11 MRPS17 MRPL40 tRNA(Arg) AURKAIP1 MRPS15 MRPL24 MRPL43 Pi55Sribosome:mRNA:tRNAMRPL36 MRPS18A MRPL44 MRPL9 MRPL57 MRPL45 MRPL38 MRPS30 MRPS16 MRPL34 MRPL10 MRPS2 MRPS18A MRPL19 MRPS17 MRPL12 Met-tRNA(Met) MRPS21 MRPS7 MRPS10 Met-tRNA(Met) MRPS7 MRPL40 MRPL55 MRPS28 MRPS27 MRPS18A MRPS31 GTP PTCD3 MRPL33 MRPL14 MRPL32 55Sribosome:MRRF:GFM2:GTPMRPL27 MRPL24 MRPL2 MRPS31 peptidyl-tRNA with elongated peptide MRPL41 MRPL11 MRPS22 MRPS22 PTCD3 MRPL28 MRPS18B tRNA(Lys) MRPS35 MRPS7 MRPL43 OXA1L MRPL37 MRPS24 tRNA(Lys) MRPL1 MRPS10 MRPL48 MRPS24 Mitochondrial 16S rRNA MRPL33 MRPS15 tRNA(Met)MRPS24 MRPS31 fMet-tRNA(fMet) MRPL33 MRPS10 MRPL51 MRPL3 GTP CHCHD1 MT-TV Asp-tRNA(Asp) MRPL48 MRPS2 MRPL2 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNApeptidyl-tRNA with elongated peptide Cys-tRNA(Cys) MRPL21 GFM2:GDPMRPL12 MRPS10 DAP3 MRPL47 ERAL1 MRPS5 MRPL39 MRPL23 Pro-tRNA(Pro) MRPL17 MRPS9 MRPL42 MRPL41 MRPS22 MRPL18 DAP3 MRPL11 MRPS6 MRPS28 ICT1 PiMRPL14 MRPL57 TUFM:GTPMRPL30 MRPS30 TSFM MRPL37 DAP3 MRPL48 MRPL55 MRPL53 MRPS16 MRPS18B GADD45GIP1 MRPS21 MRPL54 MRPL57 MRPS36 MRPS12 MRPS12 MRPS27 MRPL18 MRPL45 MRPL23 tRNA(Pro) 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPL20 MRPL49 MRPL3 MRPL38 tRNA(Cys) MRPS10 MRPL36 MRPL1 Lys-tRNA(Lys) MRPS6 GADD45GIP1 MRPS33 MRPL33 GDPMRPL21 Mitochondrial 12S rRNA PiMRPL54 MT-TV MRPS27 MRPS6 mRNA MRPS26 MRPL37 tRNA(His) MRPL54 MRPS12 MRPS34 MRPL12 MRPS26 MRPS22 GTP MRPL51 MRPL17 MRPS33 Cys-tRNA(Cys) DAP3 MRPL35 MRPL52 MRPL45 MRPS15 MRPS28 MRPL46 MRPL12 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMTRF1L MRPS6 MRPS5 mRNAERAL1 MRPS26 AURKAIP1 MRPL28 ICT1 GFM2 tRNA(Thr) TUFM:TSFMMRPL55 MRPL1 MRPS10 MRPS34 MRPS18C MRPS18A MRPS31 tRNA(Asp) MRPS34 MRPL52 mRNA Ser-tRNA(Ser) DAP3 MRPS18C MRPS11 GADD45GIP1 MRPS23 Ile-tRNA(Ile) MRPS28 MRPS34 MRPL24 MRPL27 MRPS18C MRPL35 AURKAIP1 MRPS30 ERAL1 polypeptideMRPL33 MRPL32 peptidyl-tRNA with elongated peptide OXA1L MRPL20 MRPL32 GDP PTCD3 MRPS10 Mitochondrial 16S rRNA MRPL40 MRPS2 MRPL16 MRPL49 CHCHD1 MRPL23 MRPL10 MRPL13 MRPL47 tRNA(Ser) Lys-tRNA(Lys) MRPL1 MRPL3 MRPS28 MRPS12 peptidyl-tRNA with elongated peptide MRPS25 55Sribosome:mRNA:peptidyl-tRNA at P-siteGADD45GIP1 ICT1 MRPS26 MRPL18 MRPL43 MRPL57 MRPS18C tRNA(Gly) MRPL36 MRPS27 MRPS16 MRPS2 Gln-tRNA(Gln) MRPS18C MRPL30 MRPL27 MRPL46 MRPL9 MRPS15 MRPL37 MRPL45 MRPL9 Ala-tRNA(Ala) MRPL36 MRPL39 MRPL22 MRPL24 OXA1L Trp-tRNA(Trp) tRNA(Gln) AURKAIP1 MRPL28 MRPL42 MRPL53 MRPL47 MRPL22 MRPS18B MRPL44 MRPL39 MRPL16 TSFMMRPS15 MRPL1 GADD45GIP1 fMet-tRNA(fMet) MRPS18C tRNA(Ser) MRPL51 Cys-tRNA(Cys) MRPL24 MRPS27 MRPS34 MRPS11 Ala-tRNA(Ala) MRPL44 MRPL55 MRPL50 MRPS27 MRPL40 MRPS26 GTP Mitochondrial 12S rRNA MRPL35 MRPL22 MRPS34 MRPL28 MRPL34 MRPS22 MRPS11 MRPS23 MRPS5 CHCHD1 MRPS31 MRPS18A tRNA(Asp) Asn-tRNA(Asn) 55Sribosome:mRNA:tRNA:MRRFArg-tRNA(Arg) MRPL20 MRPS36 MRPS9 PTCD3 MRPL14 Mitochondrial 16S rRNA MRPS26 ERAL1 MRPS11 MRPL38 MRPL18 MRPS35 MRPL51 tRNA(Trp) MRPL41 AURKAIP1 ERAL1 MRPS5 MRPL42 MRPS9 MRPL47 MRPL52 MRPL17 MRPS2 MRPL47 tRNA(Glu) tRNA(Gln) MRPL52 Tyr-tRNA(Tyr) MRPL15 MRPS9 MRPS14 His-tRNA(His) MRPL34 MRPL12 MRPL27 MRPS2 MRPL52 MRPS21 MRPS18B THFMRPS15 MRPL23 MRPL17 MRPL16 Arg-tRNA(Arg) tRNA(Thr) Met-tRNA(Met)MRPS16 MRPS30 Thr-tRNA(Thr) MRPL19 MRPS6 Ser-tRNA(Ser) MRPL45 MRPS12 GFM1 MRPL2 His-tRNA(His) tRNA(Phe) MRPL38 MRPS14 MRPL19 MRPL49 tRNA(Ala) Lys-tRNA(Lys) MRPS35 MRPS26 MTIF2 ERAL1 MRPS2 MRPL3 MRPS33 MRPL57 MRPS23 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAAsn-tRNA(Asn) tRNA(His) MRPS36 MRPS14 DAP3 MRPL53 MRPS23 MRPL19 MRPL38 MRPS5 MRPS6 MRPS14 MRPL39 MRRF MRPS14 MRPL39 GFM2 MRPS5 Mitochondrial 12S rRNA MRPL15 MRPL19 MRPS24 MRPS12 MRPL42 MRPS36 MRPS25 MRPL11 MRPL52 MRPL38 MRPL4 MRPS14 MRPL13 MRPL44 tRNA(His) CHCHD1 tRNA(Gly) tRNA(Glu) TUFM MRPS23 MRPS36 MRPS17 Glu-tRNA(Glu) MRPS18C MRPS30 MRPL39 MRPL28 MRPL12 MRPL14 MRPL32 MRPL30 MRPS25 MTIF3 MRPS35 MRPS15 MRPS31 MRPL54 CHCHD1 Lys-tRNA(Lys) MRPS36 MRPL11 MRPS18C Ser-tRNA(Ser) Asn-tRNA(Asn) GFM1 MRPL3 tRNA(Ile) MRPS14 MRRF PiMRPS5 MRPL2 MRPL45 MRPL54 MRPS9 MRPS35 MRPL45 MRPL28 MRPS16 MRPS30 MRPS33 MRPL28 MRPL54 MRPL30 MRPL12 MRPS30 MRPS25 MRPS9 Val-tRNA(Val) MRPL46 MRPS18B MRPL22 MRPL14 MRPL32 MRPL22 MRPL4 MRPL3 GFM1 MRPL35 3, 8, 10, 253, 83, 83, 83, 83, 83, 89, 10, 20, 243, 815, 21, 293, 83, 83, 83, 83, 83, 8


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 73
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
OXA1L ProteinQ15070 (Uniprot-TrEMBL)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools