Nonsense-Mediated Decay (NMD) (Homo sapiens)

From WikiPathways

Revision as of 11:43, 1 November 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
7, 21, 36, 37, 39...4, 9, 30, 31, 35...2, 10, 11, 14, 19...2, 16, 346, 13, 14, 18, 36...2, 5, 11, 14, 16...1, 3, 6, 8, 9, 12...Nonsense-mediated Decay Independent of the Exon Junction ComplexNonsense-mediated Decay Enhanced by the Exon Junction ComplexcytosolRPSA RPS4Y2 RPS16 GSPT1 RPL11 RPL36 RPS4X RPL35A PABPC1 RPL7A RPLP1 UPF3B RPL39 ATPUPF3A SMG7 RPL27 RPL27 RPS26 RPS26 RPS12 PPP2CA ETF1 UPF3A p-4S-UPF1 RBM8A RPL12 RPL35 RPL39 18S rRNA RPS3 RPL11 RPL9 RPL38 RPL14 RPS9 RPS27 RPS21 UPF1:eRF3 Complex onTranslated mRNARPL23A RPL35A ETF1 RPS13 RPL3L RPL9 CASC3 RPS29 RPS17 RPL26 RPL23 RPS3A RPL35 UPF3A SMG5 28S rRNA RPL40 RPL37A RPL23A RPS23 RPL38 NCBP1 RPL21 RPL40 PABPC1 RPS18 RPL34 RPL11 RPS3A GSPT2 RPL21 FAU UPF3B RPL19 RPS27L SMG6RPS9 RPS3 RPS21 5.8S rRNA GSPT2 EIF4A3 RPL39L RPS2 RPL29 RPS27 PABPC1 RPL36A NCBP2 ETF1 RPL21 RPS8 RPS14 RPL17 RPL9 RPS6 RPL37 NCBP2 RPS27A(77-156) RBM8A RPLP2 PPP2R1A RPL10 MAGOHB RPL3L RPL10L SMG8 FAU RPL41 RPS24 3' Fragment of Cleaved mRNA RPL23 RPL10L RPS15 RPS12 RPL31 RPL10A RPL12 RPL26L1 RPL29 RPL10A RPS6 mRNA with premature termination codon preceding exon junction RPS4Y2 RPL22L1 RPS14 RPS11 RPS21 RPL13A Translated mRNAComplex withPrematureTermination CodonPreceding ExonJunctionRPL3 RPS2 RPL17 RPL18 UPF1 MAGOHB RPL19 RPL37A RPL27 RPS5 RPL26 RPS27L RPL32 18S rRNA RPS20 RPS10 RPL35 RPL7 RPS23 RPL36AL RPL34 RPL27A RPS4Y1 RPL13 GSPT1 SMG7RPL18A RPL39L RPS27A(77-156) SMG6 RPS4Y1 RPL41 RPS14 RPL4 RPL27A RPS20 RPS27 RPL14 NCBP1 RPS29 RPL15 GSPT1 RPLP0 RPS15A RPL7A RNPS1 RPS25 5S rRNA RPS12 RPS5 RPL10L RPS28 RPL5 RPL28 RPL23 RPL41 RPS27L RPS15A RPL28 RPS5 NCBP1 RPL13 RPL28 RPL18 RPS4Y2 RPL14 RPLP1 RPL14 RPL23 SMG1:SMG8:SMG9ComplexRPL10 RPL30 UPF2 RPL34 RPL26L1 RPS4X RPL37A RPL8 RPL15 RPS7 RPS27L RPL41 RPSA RPL36AL SMG9 RPL41 RPS18 RPL11 DCP1ARPL30 PPP2CA PPP2R2A RPS29 RPS14 5.8S rRNA mRNA with premature termination codon preceding exon junction RPS16 RPL39 RPS19 RPL10L RPL22L1 EIF4A3 RPL13 RPL27A RPL12 RPS27L RPS7 PPP2R2A RPL37 EIF4A3 RPL5 RPS7 RPS8 RPS9 RPL8 RPS28 RPL7A RPL30 RPL8 RPL39 RPS27 UPF2 RPS29 5S rRNA RPL9 tRNA RPL23A RPL24 EIF4G1 RPS24 RPL23 RPL24 RPLP0 RPS26 RPL18A RPL3L RPL10 RPS7 RPS28 RPL3 RPL18 RPL32 p-4S-UPF1 RPL17 RPL36A RPS12 RPL27 RPS16 RPS2 RPS20 RPL35A RPS17 RPLP0 RPS25 18S rRNA NCBP2 RPS24 RPL13 p-4S-UPF1RPS3A RPL36 RPS6 RPL22L1 RPL7 RPL26L1 RPL35A RPL30 RNPS1 ADPRPL32 RPS11 RPL38 RPS15 RPS25 tRNA PABPC1 RPL7 RPL14 mRNA with premature termination codon not preceding exon junction RPS23 28S rRNA 5S rRNA RPL13A RPL6 RPL14 RPS10 RPS21 RPL24 RPL40 GSPT1 RPS27A(77-156) PABPC1 RPL35A RPL36 RPS10 RPS21 RPL9 RPS23 GSPT2 RPS6 RPS27A(77-156) RPS2 RPL36A UPF1RPL5 5' Fragment of Cleaved mRNA RPL39L GDP RPS15A RPL19 RPLP0 RPS15A tRNA SMG8 RPL12 RPL36 RPS14 GSPT2 RPL31 RPS5 RPL4 EIF4G1 RPS9 RPL10A ETF1 RPL6 RPL3L RPL22 PhosphorylatedUPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNP18S rRNA RPS9 RPL35 18S rRNA RPS26 RPL35A RPS4X RPS13 RPL39L RPL26 UPF1 RPSA RPS20 RPS15 RPL13 RPS27L RPS7 RPS4Y2 RPL23A RPS24 RPS15A 5S rRNA GSPT2 RPL3 RPLP0 RPL22 RPL38 RPL15 RPS19 ETF1 RPL22 RPL6 RPS28 tRNA FAU RPS4X RPLP2 RPLP0 RPL26L1 RPL7A RPL32 5S rRNA RPS3 EIF4A3 RPS3 RNPS1 UPF2 EIF4G1 RPS10 RPS5 CASC3 PPP2R1A RPS25 NCBP1 RPS4X RPS12 RPL26L1 RPL36A RPS6 RPS15 28S rRNA tRNA RPL29 EIF4G1RPL37 RPS8 RPS16 PPP2R2A UPF3B RPS4Y1 RPS8 SMG1:UPF1:EJC:Translated mRNPUPF2 RPL3 GDP mRNA Cleaved by SMG6RPL36A RPS9 RPL39 RPL27A RPS15 RPS4Y1 SMG1 RPS19 RPS29 RPL29 PNRC2RPL36A RPL31 RPL4 RPL22L1 RPL36AL RPL36 RPL3L RPS2 RPL24 PABPC1 RPL10A mRNA with premature termination codon not preceding exon junction RPS29 RPL17 RPLP1 MAGOHB MAGOH PABPC1 RPL40 RPS13 RPL26 RPS27 RPS3A SMG528S rRNA RPL28 RPS17 RPS3A RPL26 RPL40 RPL22 RPL5 RPS15A RPS27 RPL7 RPL28 RPL36 RPL26L1 RPL37 RPL31 NCBP2 RPL19 EIF4G1 RPL9 mRNA with premature termination codon preceding exon junction RPL35 Translated mRNAComplex withPrematureTermination CodonNot Preceding ExonJunctionRPS12 RPS28 RPS13 RPL36AL RPL10 RPS18 RPL7A RPS11 RPLP2 FAU RPL19 RPL7A RPS16 RPL5 RPL26 PP2A(Aalpha:B55alpha:Calpha)SMG1 RPL37A RPL7 RPLP1 RPL23A RPL17 RPL15 RPSA RPL23 SMG9 RPL7 RPL6 FAU RPL39L RPS4Y2 RPS20 RPL31 MAGOH RPL18A RPS5 RPL10 PPP2CA EIF4G1 RPS10 tRNA RPS23 NCBP1 RPL5 28S rRNA RPS23 RPL18 NCBP1 RPS19 RPL10 RPL30 NCBP1 RPL40 RPL39 RPL10L ETF1 RPS8 RPL13A RPS11 RPS28 RPL22L1 RPL34 RPS27A(77-156) RPSA RBM8A RPS15 RPL10A RPL12 EIF4G1 RPS19 RPLP1 RPS2 RPL19 RPS24 PPP2R1A RPL30 GDP RPS18 RPL37 RPL21 RPL34 5.8S rRNA RPS3 RPS19 RPS13 RPS17 RPL36AL RPS10 RPL37A RPS13 GDP RPL36AL RPL13A RPL15 GSPT2 RPS21 RPL38 RPS25 RPS4X RPS18 RPL31 UPF3A RPL38 RPS11 RPS7 RPL27 RPL29 RPL12 RPS25 SMG1 RPL18 RPL6 RPS20 5.8S rRNA RPL8 mRNA with premature termination codon preceding exon junction NCBP1 RPLP1 RPL3 SMG6 MAGOH RPL3 NCBP2 5.8S rRNA RPS4Y1 RPL35 RPL27A SMG8 RPS24 RPL41 RPL18A RPLP2 RPS14 RPL22 RPL37A RNPS1 RPL28 RPL10A RPL10L 5.8S rRNA RPL4 RPL8 GDP NCBP2 RPL3L RPL37 p-4S-UPF1 RPL13A 18S rRNA PABPC1RPS26 RPL17 RBM8A RPL6 RPL11 RPS26 RPL24 RPL13 RPL23A NCBP2 RPL24 RPS16 GDP RPLP2 RPL13A Cap Binding Complex(CBC)CASC3 RPS17 RPS6 UPF3AS-2 RPL21 SMG7 MAGOHB UPF3B RPL18A SMG9 RPL15 RPL34 RPLP2 MAGOH RPS17 RPL27A RPL22 RPL21 EIF4G1 RPS18 SMG5 RPSA RPS4Y2 RPL29 SMG1:PhosphorylatedUPF1:EJC:TranslatedmRNPRPL8 RPS27A(77-156) RPL32 RPS4Y1 RPL4 GSPT1 RPS11 FAU RPS3A 5S rRNA RPS3 28S rRNA RPL32 RPL27 RPL18A RPL39L RPL11 CASC3 RPL22L1 RPL18 GSPT1 RPL4 RPS8 NCBP2 415210, 1431


Description

The Nonsense-Mediated Decay (NMD) pathway activates the destruction of mRNAs containing premature termination codons (PTCs) (reviewed in Isken and Maquat 2007, Chang et al. 2007, Behm-Ansmant et al. 2007, Neu-Yilik and Kulozik 2008, Rebbapragada and Lykke-Andersen 2009, Bhuvanagiri et al. 2010, Nicholson et al. 2010, Durand and Lykke-Andersen 2011). In mammalian cells a termination codon can be recognized as premature if it precedes an exon-exon junction by at least 50-55 nucleotides or if it is followed by an abnormal 3' untranslated region (UTR). While length of the UTR may play a part, the qualifications for being "abnormal" have not been fully elucidated. Also, some termination codons preceding exon junctions are not degraded by NMD so the criteria for triggering NMD are not yet fully known (reviewed in Rebbapragada and Lykke-Andersen 2009). While about 30% of disease-associated mutations in humans activate NMD, about 10% of normal human transcripts are also degraded by NMD (reviewed in Stalder and Muhlemann 2008, Neu-Yilik and Kulozik 2008, Bhuvanagiri et al. 2010, Nicholson et al. 2010). Thus NMD is a normal physiological process controlling mRNA stability in unmutated cells.
Exon junction complexes (EJCs) are deposited on an mRNA during splicing in the nucleus and are displaced by ribosomes during the first round of translation. When a ribosome terminates translation the A site encounters the termination codon and the eRF1 factor enters the empty A site and recruits eRF3. Normally, eRF1 cleaves the translated polypeptide from the tRNA in the P site and eRF3 interacts with Polyadenylate-binding protein (PABP) bound to the polyadenylated tail of the mRNA.
During activation of NMD eRF3 interacts with UPF1 which is contained in a complex with SMG1, SMG8, and SMG9. NMD can arbitrarily be divided into EJC-enhanced and EJC-independent pathways. In EJC-enhanced NMD, an exon junction is located downstream of the PTC and the EJC remains on the mRNA after termination of the pioneer round of translation. The core EJC is associated with UPF2 and UPF3, which interact with UPF1 and stimulate NMD. Once bound near the PTC, UPF1 is phosphorylated by SMG1. The phosphorylation is the rate-limiting step in NMD and causes UPF1 to recruit either SMG6, which is an endoribonuclease, or SMG5 and SMG7, which recruit ribonucleases. SMG6 and SMG5:SMG7 recruit phosphatase PP2A to dephosphorylate UPF1 and allow further rounds of degradation. How EJC-independent NMD is activated remains enigmatic but may involve competition between PABP and UPF1 for eRF3. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 927802
Reactome-version 
Reactome version: 73
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Chan WK, Bhalla AD, Le Hir H, Nguyen LS, Huang L, Gécz J, Wilkinson MF.; ''A UPF3-mediated regulatory switch that maintains RNA surveillance.''; PubMed Europe PMC Scholia
  2. Eberle AB, Lykke-Andersen S, Mühlemann O, Jensen TH.; ''SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells.''; PubMed Europe PMC Scholia
  3. Mühlemann O, Lykke-Andersen J.; ''How and where are nonsense mRNAs degraded in mammalian cells?''; PubMed Europe PMC Scholia
  4. Singh G, Rebbapragada I, Lykke-Andersen J.; ''A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  5. Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, Ohno M, Dreyfuss G, Ohno S.; ''Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  6. Clerici M, Mourão A, Gutsche I, Gehring NH, Hentze MW, Kulozik A, Kadlec J, Sattler M, Cusack S.; ''Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2.''; PubMed Europe PMC Scholia
  7. Kashima I, Jonas S, Jayachandran U, Buchwald G, Conti E, Lupas AN, Izaurralde E.; ''SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  8. Lejeune F, Li X, Maquat LE.; ''Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities.''; PubMed Europe PMC Scholia
  9. Neu-Yilik G, Kulozik AE.; ''NMD: multitasking between mRNA surveillance and modulation of gene expression.''; PubMed Europe PMC Scholia
  10. Ishigaki Y, Li X, Serin G, Maquat LE.; ''Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20.''; PubMed Europe PMC Scholia
  11. Durand S, Cougot N, Mahuteau-Betzer F, Nguyen CH, Grierson DS, Bertrand E, Tazi J, Lejeune F.; ''Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies.''; PubMed Europe PMC Scholia
  12. Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE.; ''Y14 and hUpf3b form an NMD-activating complex.''; PubMed Europe PMC Scholia
  13. Chamieh H, Ballut L, Bonneau F, Le Hir H.; ''NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity.''; PubMed Europe PMC Scholia
  14. Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JW, Maquat LE.; ''Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  15. Lykke-Andersen J.; ''Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay.''; PubMed Europe PMC Scholia
  16. Franks TM, Singh G, Lykke-Andersen J.; ''Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense- mediated mRNA decay.''; PubMed Europe PMC Scholia
  17. Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, Kulozik AE.; ''Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements.''; PubMed Europe PMC Scholia
  18. Durand S, Lykke-Andersen J.; ''SnapShot: Nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  19. Unterholzner L, Izaurralde E.; ''SMG7 acts as a molecular link between mRNA surveillance and mRNA decay.''; PubMed Europe PMC Scholia
  20. Chiu SY, Serin G, Ohara O, Maquat LE.; ''Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1.''; PubMed Europe PMC Scholia
  21. Shibuya T, Tange TØ, Sonenberg N, Moore MJ.; ''eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay.''; PubMed Europe PMC Scholia
  22. Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE.; ''UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps.''; PubMed Europe PMC Scholia
  23. Silva AL, Ribeiro P, Inácio A, Liebhaber SA, Romão L.; ''Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  24. Stalder L, Mühlemann O.; ''The meaning of nonsense.''; PubMed Europe PMC Scholia
  25. Singh G, Jakob S, Kleedehn MG, Lykke-Andersen J.; ''Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm.''; PubMed Europe PMC Scholia
  26. Fernández IS, Yamashita A, Arias-Palomo E, Bamba Y, Bartolomé RA, Canales MA, Teixidó J, Ohno S, Llorca O.; ''Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex.''; PubMed Europe PMC Scholia
  27. Palacios IM, Gatfield D, St Johnston D, Izaurralde E.; ''An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  28. Chen CY, Shyu AB.; ''Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway.''; PubMed Europe PMC Scholia
  29. Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H, Conti E.; ''Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2.''; PubMed Europe PMC Scholia
  30. Hogg JR, Goff SP.; ''Upf1 senses 3'UTR length to potentiate mRNA decay.''; PubMed Europe PMC Scholia
  31. Denning G, Jamieson L, Maquat LE, Thompson EA, Fields AP.; ''Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein.''; PubMed Europe PMC Scholia
  32. Cho H, Han S, Choe J, Park SG, Choi SS, Kim YK.; ''SMG5-PNRC2 is functionally dominant compared with SMG5-SMG7 in mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  33. Lai T, Cho H, Liu Z, Bowler MW, Piao S, Parker R, Kim YK, Song H.; ''Structural basis of the PNRC2-mediated link between mrna surveillance and decapping.''; PubMed Europe PMC Scholia
  34. Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O.; ''Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors.''; PubMed Europe PMC Scholia
  35. Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB.; ''Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover.''; PubMed Europe PMC Scholia
  36. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S.; ''Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7.''; PubMed Europe PMC Scholia
  37. Chan WK, Huang L, Gudikote JP, Chang YF, Imam JS, MacLean JA, Wilkinson MF.; ''An alternative branch of the nonsense-mediated decay pathway.''; PubMed Europe PMC Scholia
  38. Gehring NH, Lamprinaki S, Hentze MW, Kulozik AE.; ''The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  39. Bühler M, Steiner S, Mohn F, Paillusson A, Mühlemann O.; ''EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3' UTR length.''; PubMed Europe PMC Scholia
  40. Hosoda N, Kim YK, Lejeune F, Maquat LE.; ''CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells.''; PubMed Europe PMC Scholia
  41. Bhuvanagiri M, Schlitter AM, Hentze MW, Kulozik AE.; ''NMD: RNA biology meets human genetic medicine.''; PubMed Europe PMC Scholia
  42. Buchwald G, Ebert J, Basquin C, Sauliere J, Jayachandran U, Bono F, Le Hir H, Conti E.; ''Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex.''; PubMed Europe PMC Scholia
  43. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S.; ''Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  44. Isken O, Maquat LE.; ''Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function.''; PubMed Europe PMC Scholia
  45. Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, Muramatsu R, Morita T, Iwamatsu A, Hachiya T, Kurata R, Hirano H, Anderson P, Ohno S.; ''SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  46. Glavan F, Behm-Ansmant I, Izaurralde E, Conti E.; ''Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex.''; PubMed Europe PMC Scholia
  47. Huntzinger E, Kashima I, Fauser M, Saulière J, Izaurralde E.; ''SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan.''; PubMed Europe PMC Scholia
  48. Couttet P, Grange T.; ''Premature termination codons enhance mRNA decapping in human cells.''; PubMed Europe PMC Scholia
  49. Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik AE.; ''Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways.''; PubMed Europe PMC Scholia
  50. Cho H, Kim KM, Kim YK.; ''Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex.''; PubMed Europe PMC Scholia
  51. Kunz JB, Neu-Yilik G, Hentze MW, Kulozik AE, Gehring NH.; ''Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation.''; PubMed Europe PMC Scholia
  52. Chang YF, Imam JS, Wilkinson MF.; ''The nonsense-mediated decay RNA surveillance pathway.''; PubMed Europe PMC Scholia
  53. Behm-Ansmant I, Kashima I, Rehwinkel J, Saulière J, Wittkopp N, Izaurralde E.; ''mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons.''; PubMed Europe PMC Scholia
  54. Lykke-Andersen J, Shu MD, Steitz JA.; ''Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1.''; PubMed Europe PMC Scholia
  55. Eberle AB, Stalder L, Mathys H, Orozco RZ, Mühlemann O.; ''Posttranscriptional gene regulation by spatial rearrangement of the 3' untranslated region.''; PubMed Europe PMC Scholia
  56. Rebbapragada I, Lykke-Andersen J.; ''Execution of nonsense-mediated mRNA decay: what defines a substrate?''; PubMed Europe PMC Scholia
  57. Maquat LE, Gong C.; ''Gene expression networks: competing mRNA decay pathways in mammalian cells.''; PubMed Europe PMC Scholia
  58. Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E.; ''SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway.''; PubMed Europe PMC Scholia
  59. Le Hir H, Gatfield D, Izaurralde E, Moore MJ.; ''The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  60. Mühlemann O, Eberle AB, Stalder L, Zamudio Orozco R.; ''Recognition and elimination of nonsense mRNA.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114999view16:53, 25 January 2021ReactomeTeamReactome version 75
113443view11:52, 2 November 2020ReactomeTeamReactome version 74
112643view16:02, 9 October 2020ReactomeTeamReactome version 73
101558view11:43, 1 November 2018ReactomeTeamreactome version 66
101094view21:25, 31 October 2018ReactomeTeamreactome version 65
100623view20:00, 31 October 2018ReactomeTeamreactome version 64
100174view16:44, 31 October 2018ReactomeTeamreactome version 63
99724view15:12, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99298view12:46, 31 October 2018ReactomeTeamreactome version 62
93761view13:34, 16 August 2017ReactomeTeamreactome version 61
93285view11:19, 9 August 2017ReactomeTeamreactome version 61
88067view14:29, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86369view09:16, 11 July 2016ReactomeTeamreactome version 56
83339view10:50, 18 November 2015ReactomeTeamVersion54
81759view10:00, 26 August 2015ReactomeTeamVersion53
76924view08:19, 17 July 2014ReactomeTeamFixed remaining interactions
76629view12:00, 16 July 2014ReactomeTeamFixed remaining interactions
75960view10:01, 11 June 2014ReactomeTeamRe-fixing comment source
75662view10:56, 10 June 2014ReactomeTeamReactome 48 Update
75017view13:53, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74661view08:43, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
28S rRNA ProteinM11167 (EMBL)
3' Fragment of Cleaved mRNA R-ALL-927738 (Reactome)
5' Fragment of Cleaved mRNA R-ALL-927835 (Reactome)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
ADPMetaboliteCHEBI:456216 (ChEBI)
ATPMetaboliteCHEBI:30616 (ChEBI)
CASC3 ProteinO15234 (Uniprot-TrEMBL)
Cap Binding Complex (CBC)ComplexR-HSA-162460 (Reactome)
DCP1AProteinQ9NPI6 (Uniprot-TrEMBL)
EIF4A3 ProteinP38919 (Uniprot-TrEMBL)
EIF4G1 ProteinQ04637 (Uniprot-TrEMBL)
EIF4G1ProteinQ04637 (Uniprot-TrEMBL)
ETF1 ProteinP62495 (Uniprot-TrEMBL)
FAU ProteinP62861 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GSPT1 ProteinP15170 (Uniprot-TrEMBL)
GSPT2 ProteinQ8IYD1 (Uniprot-TrEMBL)
MAGOH ProteinP61326 (Uniprot-TrEMBL)
MAGOHB ProteinQ96A72 (Uniprot-TrEMBL)
NCBP1 ProteinQ09161 (Uniprot-TrEMBL)
NCBP2 ProteinP52298 (Uniprot-TrEMBL)
PABPC1 ProteinP11940 (Uniprot-TrEMBL)
PABPC1ProteinP11940 (Uniprot-TrEMBL)
PNRC2ProteinQ9NPJ4 (Uniprot-TrEMBL)
PP2A (Aalpha:B55alpha:Calpha)ComplexR-HSA-377182 (Reactome)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R2A ProteinP63151 (Uniprot-TrEMBL)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPComplexR-HSA-927854 (Reactome)
RBM8A ProteinQ9Y5S9 (Uniprot-TrEMBL)
RNPS1 ProteinQ15287 (Uniprot-TrEMBL)
RPL10 ProteinP27635 (Uniprot-TrEMBL)
RPL10A ProteinP62906 (Uniprot-TrEMBL)
RPL10L ProteinQ96L21 (Uniprot-TrEMBL)
RPL11 ProteinP62913 (Uniprot-TrEMBL)
RPL12 ProteinP30050 (Uniprot-TrEMBL)
RPL13 ProteinP26373 (Uniprot-TrEMBL)
RPL13A ProteinP40429 (Uniprot-TrEMBL)
RPL14 ProteinP50914 (Uniprot-TrEMBL)
RPL15 ProteinP61313 (Uniprot-TrEMBL)
RPL17 ProteinP18621 (Uniprot-TrEMBL)
RPL18 ProteinQ07020 (Uniprot-TrEMBL)
RPL18A ProteinQ02543 (Uniprot-TrEMBL)
RPL19 ProteinP84098 (Uniprot-TrEMBL)
RPL21 ProteinP46778 (Uniprot-TrEMBL)
RPL22 ProteinP35268 (Uniprot-TrEMBL)
RPL22L1 ProteinQ6P5R6 (Uniprot-TrEMBL)
RPL23 ProteinP62829 (Uniprot-TrEMBL)
RPL23A ProteinP62750 (Uniprot-TrEMBL)
RPL24 ProteinP83731 (Uniprot-TrEMBL)
RPL26 ProteinP61254 (Uniprot-TrEMBL)
RPL26L1 ProteinQ9UNX3 (Uniprot-TrEMBL)
RPL27 ProteinP61353 (Uniprot-TrEMBL)
RPL27A ProteinP46776 (Uniprot-TrEMBL)
RPL28 ProteinP46779 (Uniprot-TrEMBL)
RPL29 ProteinP47914 (Uniprot-TrEMBL)
RPL3 ProteinP39023 (Uniprot-TrEMBL)
RPL30 ProteinP62888 (Uniprot-TrEMBL)
RPL31 ProteinP62899 (Uniprot-TrEMBL)
RPL32 ProteinP62910 (Uniprot-TrEMBL)
RPL34 ProteinP49207 (Uniprot-TrEMBL)
RPL35 ProteinP42766 (Uniprot-TrEMBL)
RPL35A ProteinP18077 (Uniprot-TrEMBL)
RPL36 ProteinQ9Y3U8 (Uniprot-TrEMBL)
RPL36A ProteinP83881 (Uniprot-TrEMBL)
RPL36AL ProteinQ969Q0 (Uniprot-TrEMBL)
RPL37 ProteinP61927 (Uniprot-TrEMBL)
RPL37A ProteinP61513 (Uniprot-TrEMBL)
RPL38 ProteinP63173 (Uniprot-TrEMBL)
RPL39 ProteinP62891 (Uniprot-TrEMBL)
RPL39L ProteinQ96EH5 (Uniprot-TrEMBL)
RPL3L ProteinQ92901 (Uniprot-TrEMBL)
RPL4 ProteinP36578 (Uniprot-TrEMBL)
RPL40 ProteinP62987 (Uniprot-TrEMBL)
RPL41 ProteinP62945 (Uniprot-TrEMBL)
RPL5 ProteinP46777 (Uniprot-TrEMBL)
RPL6 ProteinQ02878 (Uniprot-TrEMBL)
RPL7 ProteinP18124 (Uniprot-TrEMBL)
RPL7A ProteinP62424 (Uniprot-TrEMBL)
RPL8 ProteinP62917 (Uniprot-TrEMBL)
RPL9 ProteinP32969 (Uniprot-TrEMBL)
RPLP0 ProteinP05388 (Uniprot-TrEMBL)
RPLP1 ProteinP05386 (Uniprot-TrEMBL)
RPLP2 ProteinP05387 (Uniprot-TrEMBL)
RPS10 ProteinP46783 (Uniprot-TrEMBL)
RPS11 ProteinP62280 (Uniprot-TrEMBL)
RPS12 ProteinP25398 (Uniprot-TrEMBL)
RPS13 ProteinP62277 (Uniprot-TrEMBL)
RPS14 ProteinP62263 (Uniprot-TrEMBL)
RPS15 ProteinP62841 (Uniprot-TrEMBL)
RPS15A ProteinP62244 (Uniprot-TrEMBL)
RPS16 ProteinP62249 (Uniprot-TrEMBL)
RPS17 ProteinP08708 (Uniprot-TrEMBL)
RPS18 ProteinP62269 (Uniprot-TrEMBL)
RPS19 ProteinP39019 (Uniprot-TrEMBL)
RPS2 ProteinP15880 (Uniprot-TrEMBL)
RPS20 ProteinP60866 (Uniprot-TrEMBL)
RPS21 ProteinP63220 (Uniprot-TrEMBL)
RPS23 ProteinP62266 (Uniprot-TrEMBL)
RPS24 ProteinP62847 (Uniprot-TrEMBL)
RPS25 ProteinP62851 (Uniprot-TrEMBL)
RPS26 ProteinP62854 (Uniprot-TrEMBL)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
RPS27A(77-156) ProteinP62979 (Uniprot-TrEMBL)
RPS27L ProteinQ71UM5 (Uniprot-TrEMBL)
RPS28 ProteinP62857 (Uniprot-TrEMBL)
RPS29 ProteinP62273 (Uniprot-TrEMBL)
RPS3 ProteinP23396 (Uniprot-TrEMBL)
RPS3A ProteinP61247 (Uniprot-TrEMBL)
RPS4X ProteinP62701 (Uniprot-TrEMBL)
RPS4Y1 ProteinP22090 (Uniprot-TrEMBL)
RPS4Y2 ProteinQ8TD47 (Uniprot-TrEMBL)
RPS5 ProteinP46782 (Uniprot-TrEMBL)
RPS6 ProteinP62753 (Uniprot-TrEMBL)
RPS7 ProteinP62081 (Uniprot-TrEMBL)
RPS8 ProteinP62241 (Uniprot-TrEMBL)
RPS9 ProteinP46781 (Uniprot-TrEMBL)
RPSA ProteinP08865 (Uniprot-TrEMBL)
SMG1 ProteinQ96Q15 (Uniprot-TrEMBL)
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
ComplexR-HSA-927890 (Reactome)
SMG1:SMG8:SMG9 ComplexComplexR-HSA-927853 (Reactome)
SMG1:UPF1:EJC:Translated mRNPComplexR-HSA-927767 (Reactome)
SMG5 ProteinQ9UPR3 (Uniprot-TrEMBL)
SMG5ProteinQ9UPR3 (Uniprot-TrEMBL)
SMG6 ProteinQ86US8 (Uniprot-TrEMBL)
SMG6ProteinQ86US8 (Uniprot-TrEMBL)
SMG7 ProteinQ92540 (Uniprot-TrEMBL)
SMG7ProteinQ92540 (Uniprot-TrEMBL)
SMG8 ProteinQ8ND04 (Uniprot-TrEMBL)
SMG9 ProteinQ9H0W8 (Uniprot-TrEMBL)
Translated mRNA

Complex with Premature Termination Codon Not Preceding Exon

Junction
ComplexR-HSA-927787 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Preceding Exon

Junction
ComplexR-HSA-927773 (Reactome)
UPF1 ProteinQ92900 (Uniprot-TrEMBL)
UPF1:eRF3 Complex on Translated mRNAComplexR-HSA-927762 (Reactome)
UPF1ProteinQ92900 (Uniprot-TrEMBL)
UPF2 ProteinQ9HAU5 (Uniprot-TrEMBL)
UPF3A ProteinQ9H1J1 (Uniprot-TrEMBL)
UPF3AS-2 ProteinQ9H1J1-2 (Uniprot-TrEMBL)
UPF3B ProteinQ9BZI7 (Uniprot-TrEMBL)
mRNA Cleaved by SMG6ComplexR-HSA-927845 (Reactome)
mRNA with premature termination codon not preceding exon junction R-ALL-927733 (Reactome)
mRNA with premature termination codon preceding exon junction R-ALL-927796 (Reactome) This is an mRNA with a premature termination codon which precedes an exon junction. Such mRNAs are subject to nonsense-mediated decay (NMD).
p-4S-UPF1 ProteinQ92900 (Uniprot-TrEMBL)
p-4S-UPF1ProteinQ92900 (Uniprot-TrEMBL)
tRNA R-HSA-141679 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-927889 (Reactome)
ATPR-HSA-927889 (Reactome)
Cap Binding Complex (CBC)ArrowR-HSA-927830 (Reactome)
DCP1AR-HSA-927813 (Reactome)
EIF4G1ArrowR-HSA-927830 (Reactome)
PABPC1ArrowR-HSA-927830 (Reactome)
PNRC2R-HSA-927813 (Reactome)
PP2A (Aalpha:B55alpha:Calpha)ArrowR-HSA-927830 (Reactome)
PP2A (Aalpha:B55alpha:Calpha)R-HSA-927813 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPArrowR-HSA-927813 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPR-HSA-927836 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPmim-catalysisR-HSA-927836 (Reactome)
R-HSA-927789 (Reactome) Nonsense-mediated decay of an mRNA can be triggered even if the termination codon does not precede an exon junction (Buhler et al. 2006, Eberle et al. 2008, Silva et al. 2008, Singh et al. 2008, Ivanov et al. 2008). UPF1 and PABP seem to modulate the efficiency of translation termination and PABP in the proximity of a termination codon prevents NMD likely by outcompeting UPF1 for interaction with eRF3 (Singh et al. 2008, Ivanov et al. 2008, Silva et al. 2008). Factors in the competition may be the length and secondary structure of the 3' UTR (Buhler et al. 2006, Eberle et al. 2008). UPF1 preferentially binds some but not all longer UTRs (Hogg and Goff 2010).
Interaction of eRF3 with PABP stimulates ribosome dissociation and initiation of a new round of translation on the mRNA. Interaction of eRF3 with UPF1 appears to promote nonsense-mediated decay. It is possible but not yet demonstrated that all components of the SURF complex (SMG1, UPF1, eRF1, eRF3) are assembled on an mRNA without an exon junction complex and that UPF1 is phosphorylated by SMG1.
R-HSA-927813 (Reactome) SMG6, SMG5 and SMG7 contain 14-3-3 domains which are believed to bind phosphorylated SQ motifs in UPF1 (Chiu et al. 2003, Ohnishi et al. 2003, Unterholzner and Izaurralde 2004, Fukuhara et al. 2005, Durand et al. 2007). SMG7 has been shown to bind UPF1 directly, target UPF1 for dephosphorylation by PP2A, and recruit enzymes that degrade RNA (Ohnishi et al. 2003, Unterholzner and Izaurralde 2004, Fukuhara et al. 2005). UPF3AS (the small isoform of UPF3A) also associates with the complex (Ohnishi et al. 2003). SMG6 is an endoribonuclease that cleaves the mRNA bound by UPF1 and also recruits phosphatase PP2A to dephosphorylate UPF1 (Chiu et al. 2003, Glavan et al. 2006, Eberle et al. 2009). PNRC2 binds both phospo-UPF1 and the decapping enzyme DCP1A, thereby facilitating decapping of the mRNA (Cho et al. 2009, Lai et al. 2012, Cho et al. 2013).
Though immunofluorescence in vivo indicates that SMG5 and SMG7 exist in separate complexes from SMG6 (Unterholzner and Izaurralde 2004) immunoprecipitation shows that SMG6 is present in complexes that also contain SMG5, SMG7, UPF1, UPF2, Y14, Magoh, and PABP (Kashima et al. 2010). SMG5, SMG6, and SMG7 are therefore represented here together in the same RNP complex. It is possible that some complexes contain only SMG6 or SMG5:SMG7 (reviewed in Nicholson et al. 2010, Muhlemann and Lykke-Andersen 2010). Note that "Smg5/7a" in Chiu et al. 2003 actually refers to SMG6.
Phosphorylated UPF1 also inhibits translation initiation by inhibiting conversion of 40S:tRNAmet:mRNA to 80S:tRNAmet:mRNA complexes (Isken et al. 2008)
R-HSA-927830 (Reactome) SMG6 endonucleolytically cleaves an mRNA it is believed that the resulting fragments are degraded by exonucleases, possibly XRN1, a 5'-to-3' nuclease, and the exosome complex, a 3'-to-5' nuclease (Huntzinger et al. 2008, Eberle et al. 2009). Inhibition of XRN1 is observed to cause accumulation of SMG6-cleaved intermediates therefore XRN1 is postulated to act downstream of SMG6 (Huntzinger et al. 2008).
In general, during Nonsense-Mediated Decay mRNAs are observed to be deadenlyated (implicating the PAN2 complex, PARN complex, and CCR4 complex), decapped (implicating the DCP1:DCP2 complex), and exoribonucleolytically digested (implicating the XRN1 5'-to-3' exonuclease and exosome 3'-to-5' exonuclease) (Lykke-Andersen 2002, Chen et al. 2003, Lejeune et al. 2003, Couttet and Grange 2004, Unterholzner and Izaurralde 2004, Yamashita et al. 2005). UPF1 is observed to associate with the decapping enzymes DCP1a and DCP2, however the specific decay reactions that occur after SMG6, SMG5 and SMG7 have associated with an mRNA are unknown (Lykke-Andersen et al. 2002). Likewise, SMG6 may be present in complexes separate from SMG5 and SMG7 and these complexes may have different routes of decay (reviewed in Nicholson et al. 2010, Muhlemann and Lykke-Andersen 2010).
ATPase activity of UPF1 is necessary for NMD and may reflect ATP-dependent helicase activity that disassembles the mRNA-protein complex (Franks et al. 2010). UPF1 must be dephosphorylated by PP2A for NMD to continue (Ohnishi et al. 2003, Chiu et al. 2003). Presumably the dephosphoryation recycles UPF1 for interaction with other mRNA complexes.
R-HSA-927832 (Reactome) The presence of an exon junction complex (EJC) downstream of a termination codon enhances nonsense-mediated decay (NMD) but is not absolutely required for NMD. The EJC is deposited during splicing and remains bound to the mRNA until a ribosome dislodges it during the pioneer round of translation, distinguished by the presence of the cap-binding complex at the 5' end. If translation terminates at least 50-55 nucleotides 5' to an EJC during the pioneer round then termination factors (eRF1 and eRF3) and the EJC recruit UPF1 and other NMD machinery (Lykke-Andersen et al. 2001, Ishigaki et al. 2001, Le Hir et al. 2001, Gehring et al. 2003, Hosoda et al. 2005, Kashima et al. 2006, Singh et al. 2007, Chamieh et al. 2008, Ivanov et al. 2008, Buchwald et al. 2010).
A current model for NMD enhanced by the EJC posits recruitment of UPF1, SMG1, SMG8, and SMG9 to eRF3 at the ribosome to form the SURF complex (Kashima et al. 2006, Chang et al. 2007, Isken et al. 2008, Muhlemann et al. 2008, Stalder and Muhlemann 2008, Chamieh et al. 2009, Maquat and Gong 2009, Rebbapragada and Lykke-Andersen 2009, Hwang et al. 2010, Nicholson et al. 2010). UPF1 and SMG1 then interact with components of the EJC, activating phosphorylation of UPF1 by SMG1.
The model of the NMD mechanism is inferred from known protein interactions:
eRF1 and eRF3 interact with UPF1, the key regulator of NMD which also binds SMG1, UPF2, and UPF3 (UPF3a or UPF3b) to form the SURF complex (Kashima et al.2006, Ivanov et al. 2008, Clerici et al. 2009, Chakrabarti et al. 2011). UPF1 also interacts with CBP80 at the cap of the mRNA (Hwang et al. 2010).
SMG8 and SMG9 associate with SMG1 and the SURF complex and modulate the phosphorylation activity of SMG1 (Yamashita et al. 2009).
UPF2 and UPF3 are peripheral components of the EJC and thus may link the EJC to the SURF complex (Chamieh et al. 2008). UPF3b binds UPF1 and a composite surface formed by the Y14, MAGOH, and eIF4A3 subunits of the core EJC (Gehring et al. 2003, Kunz et al. 2006, Buchwald et al. 2010). SMG1 also interacts with the EJC (Kashima et al. 2006, Yamashita et al. 2009). UPF3a more weakly activates NMD than does UPF3b (Kunz et al. 2006) and UPF3a levels increase in response to loss of UPF3b (Chan et al. 2009).
The binding of UPF1 to translated RNAs may occur in two steps: Binding of the SURF complex to the terminating ribosome followed by transfer of UPF1 and SMG1 to the EJC (Kashima et al. 2006, Hwang et al. 2010).
The core EJC (Y14, MAGOH, eIF4A3, and BTZ) can activate NMD without UPF2, however RNPS1, another EJC subunit, requires UPF2 to activate NMD (Gehring et al. 2005). RNAs show differential dependence on RNPS1-activated NMD (Gehring et al. 2005). Also, NMD of some transcripts requires EJC component eIF4A3 but not UPF3b (Chan et al. 2007) therefore there may be more than one route to activating NMD via the EJC.
R-HSA-927836 (Reactome) SMG6 is an endoribonuclease which cleaves the mRNA bound by UPF1 near the premature termination codon (Glavan et al. 2006, Eberle et al. 2009).
R-HSA-927889 (Reactome) SMG1 phosphorylates UPF1 in vitro and in vivo (Denning et al. 2001, Yamashita et al. 2001, Kashima et al. 2006). Serines 1073, 1078, 1096, and 1116 in isoform 2 (Serines 1084, 1089, 1107, 1127 in isoform 1) are phosphorylated in vitro and phosphorylation at serines 1078 and 1096 has been confirmed in vivo (Yamashita et al. 2001, Ohnishi et al. 2003, Kashima et al. 2006). UPF1 also contains additional serine and threonine residues that could be phosphorylated. SMG8 and SMG9 associate with SMG1 and regulate the kinase activity of SMG1 (Yamashita et al. 2009). The phosphorylation reaction is rate-limiting in nonsense-mediated decay and is therefore regarded as a licensing step (reviewed in Rebbapragada and Lykke-Andersen 2009). Phosphorylation is enhanced by the exon junction complex, which can interact with UPF1 via UPF2 and/or UPF3 (Kashima et al. 2006, Ivanov et al. 2008) or via Y14:Magoh (Ivanov et al. 2008). SMG8 and SMG9 bind SMG1 and regulate its kinase activity (Yamashita et al. 2009, Fernandez et al. 2011).
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
ArrowR-HSA-927889 (Reactome)
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
R-HSA-927813 (Reactome)
SMG1:SMG8:SMG9 ComplexR-HSA-927832 (Reactome)
SMG1:UPF1:EJC:Translated mRNPArrowR-HSA-927832 (Reactome)
SMG1:UPF1:EJC:Translated mRNPR-HSA-927889 (Reactome)
SMG1:UPF1:EJC:Translated mRNPmim-catalysisR-HSA-927889 (Reactome)
SMG5ArrowR-HSA-927830 (Reactome)
SMG5R-HSA-927813 (Reactome)
SMG6ArrowR-HSA-927830 (Reactome)
SMG6R-HSA-927813 (Reactome)
SMG7ArrowR-HSA-927830 (Reactome)
SMG7R-HSA-927813 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Not Preceding Exon

Junction
R-HSA-927789 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Preceding Exon

Junction
R-HSA-927832 (Reactome)
UPF1:eRF3 Complex on Translated mRNAArrowR-HSA-927789 (Reactome)
UPF1ArrowR-HSA-927830 (Reactome)
UPF1R-HSA-927789 (Reactome)
UPF1R-HSA-927832 (Reactome)
mRNA Cleaved by SMG6ArrowR-HSA-927836 (Reactome)
mRNA Cleaved by SMG6R-HSA-927830 (Reactome)
p-4S-UPF1ArrowR-HSA-927830 (Reactome)
Personal tools