Major pathway of rRNA processing in the nucleolus and cytosol (Homo sapiens)

From WikiPathways

Revision as of 15:23, 9 October 2020 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
4, 12, 15, 16, 24...18, 23, 37, 47, 483, 8, 26, 282, 5, 11, 13, 27...10, 14, 17, 20, 30...1, 6, 7, 19, 22...1, 22, 429, 25, 42nucleoplasmcytosolWDR43 RPS14U3 snoRNA RPS23RPS7 RPS2 PDCD11 RPS20 RPL36A DDX47 DDX49 RPS9HEATR1 MPHOSPH10 RPL22 WDR46 RRP7A DIEXF RPS6 KRR1 RPS11 RRP7A 28S rRNA NIP7nascent pre-rRNA transcript WDR3 RPS2 5.8S rRNA RPL4 DDX47 LAS1LNOP58 UTP6 RPS15 RPS7 BMS1 UTP14A NOC4L UTP15 RPL39 HEATR1 RIOK218SE pre-rRNA RPS13 RRP36 WBSCR22UTPA complexRPS9 NOL11 DIS3NHP2L1 RPL12 NOC4L RIOK3DCAF13 NOL9 EXOSC7 PNO140S ribosomalcomplexUTP15 FBL RPS4X NOP14 NOC4L NOP56 WDR12 21S pre-rRNA RPS3AUTP11L RPS20 NHP2L1 RPS16 WDR36 RPS4Y2 RPL30 DDX52 RPL39L RPS27 CSNK1D BYSL UTP14A PWP2 NOL11RPL9 WDR36 RPL3L RPL40 RPS19 RPS6 RPS7 NOC4L WDR18 RPL6 RPL35 WDR75 RPL23 30S pre-rRNA:SSUprocessomeRPS7 SENP3 UTP15 LTV1 RRP9 RPS14 RPSA RRP9 RPS9 PDCD11 RPS28 TBL3 PELP1 NOP14 IMP4 PES1 RPS10 WDR3 RPL37A RPS10 RCL1 RPL34 PES1 FCF1 RPS12 RPS18 RPL36 NOP56 UTP20 RPL18 XRN2RPS7 CIRH1A 30S pre-rRNA RPL10A FCF1PELP1 RRP36 NOP58 RIOK2 RPS3 RPS29 FCF1 IMP4 WDR12 RPS14 FCF1 RPS14 CIRH1A EXOSC2 UTP18 HEATR1 RPL8 RPL35A IMP3 WDR3 RPL10 C1D UTP6 RPS6EXOSC1 28SrRNA:12Spre-rRNA:Rix1:LAS1L:NOL9:SENP3:PeBoWIMP4 DCAF13 NOL6 NOP58 RPS9 RPP30 RPS2 ERI1KRR1 UTP14A RBM28RPS4Y1 RRP36 RRP1NOL6 UTP14C NHP2L1 RPS15 KRR1 HEATR1 EXOSC9 U3 snoRNA DDX49 RPS4X RRP36 RRP9 IMP3 47S pre-rRNA:SSUprocessomePES1 NOC4L MPHOSPH10 UTPA complexRPS8UTP15 NOL6 WDR75 RPP21 PWP2 45S pre-rRNA WDR36 RPL14 RPS27RPL7 RPL26 21S pre-rRNA:SSUprocessomeEMG1 BOP1 NOB1PWP2 PDCD11 FBL WDR46 U3 snoRNA RPS6 UTP14A UTP11L RPS27A(77-156) 18SE pre-rRNA:SSUprocessomeRPL13 WDR43 DHX37 WDR43 TBL3 RPL11 BOP1SKIV2L2EXOSC4 RPS21 RPL24 RPS26 MPHOSPH10 WDR75 RPS25 UTP18 CIRH1A RPS4Y1 RRP7A CIRH1A DDX52 FAU RPS27L SENP3 RPS15A EXOSC6 RPL7A NOP14 NOP56 BMS1 U3 snoRNA RPS3A WDR36 PDCD11 WDR46 DDX21 CIRH1A TBL3 RCL1 RPS2 UTP11L SKIV2L2 FCF1 RPS15AUTP14C EXOSC10 RPS17 RPL17 UTP14A RIOK1 NHP2L1 RPL23A DIEXF RPS23 LAS1L DHX37 RPS7 WDR46 MPHOSPH10 45S pre-rRNA:SSUprocessomeRPS24 RRP7A IMP4 RPL5 EXOSC8 IMP3 FBL WDR43 UTP3 IMP3 UTP15 DDX47 RPS27 28S rRNA NHP2L1 18SE pre-40SparticleUTP18FBL CIRH1A SKIV2L2PWP2 C1DRIOK1RPLP0 RPS5DCAF13 PWP2 RPS14 RPS2 UTP18 RPS13RPS2 WDR46 RPSA CSNK1EUTP11L RPP25 RRP7A RPS27LRPS6 RPS17 UTPC complexRPS6 NOL6 12S pre-rRNA NOL9 EXOSC5RPL31 PeBoW complexDCAF13 NOP14 UTP3 EXOSC10:C1D:MPHOSPH6:SKIV2L2:ExosomeGNL3 RRP36 WDR18 DHX37 RPP14 ISG20L2CIRH1A RPS29 WDR43 RPL22L1 RPS11RPS28 LAS1L RPLP2 GNL3:EBNA1BP2:DDX21:PES1RPS13 RRP36 UTP20 RPL38 RPS26 UTP18 RPS3A BYSLRPS18 DDX49 EXOSC5 RPL32 DDX49 TSR1NOL11 CSNK1DEMG1 SKIV2L2DDX47 WDR3 NOL9UTP15 LTV1WDR75 RCL1 NOL12HEATR1 RRP7A RPS9 RPL36AL KRR1 RPS19 RPS14 TEX10 RPS7RRP9 RPS4Y2 IMP4 RPS15A RPP40 MPHOSPH6DDX52 RPL3 DIEXF NOP58 RPS24 RPS3 NOP56 NOL11RPS7 BMS1 RPL27A MPHOSPH10 XRN2DDX52 RPS8 BMS1 BOP1 PDCD11 BMS1 DIEXF UTP15 EMG1 FBL RPS5 18SE pre-rRNA RPL28 WDR3 UTP20 RCL1 MPHOSPH6 UTP14C UTP14C EMG1 NOL11 HEATR1 WDR43 RPS5 DDX47 DIEXF UTP3 CSNK1E RPL10L TEX10 HEATR1 EMG1 TBL3 NOL6 RPL15 UTP14C EXOSC3 RPS28DDX49 NOP56 DCAF13 RPL18A DHX37 RPL27 5S rRNA KRR1 NOP14 NOL11 RPS6 UTP18 RPS9 WDR75 UTP11L RRP9 RPS16WDR36 RPLP1 RPL29 IMP3 TBL3 RPS14 RPL13A 18S rRNA RPL41 32S pre-rRNA RPS11 FCF1 EBNA1BP2 RPS9 RPS27L UTP3 60S ribosomalcomplexRPL37 WDR43 RPS6 UTP20 32S pre-rRNARPS21 RPS27A(77-156) RPS25 RCL1 RPS14 DDX52 RPS8 NOL6 NCLEXOSC10NOP58 RPL26L1 DHX37 RPS16 RPS12 TSR1 UTP3 RPL19 RPS9 NOL11 EXOSC10RPS2 32Spre-rRNA:Rix1:LAS1L:NOL9:SENP3UTP6 WDR75 PNO1 U3 snoRNA NOB1 FTSJ3UTP6 UTP20 WDR75 RPS2RPP38 RPS24RPS23 RPL21 FAU UTP6 23473610, 17, 20, 30, 3222, 29, 34, 4341, 44304714474721334726, 4210, 17, 20, 30, 324741, 443347


Description

In humans, a 47S precursor rRNA (pre-rRNA) is transcribed by RNA polymerase I from rRNA-encoding genes (rDNA) at the boundary of the fibrillar center and the dense fibrillar components of the nucleolus (Stanek et al. 2001). The 47S precursor is processed over the course of about 5-8 minutes (Popov et al. 2013) by endoribonucleases and exoribonucleases to yield the 28S rRNA and 5.8S rRNA of the 60S subunit and the 18S rRNA of the 40S subunit (reviewed in Mullineus and Lafontaine 2012, Henras et al. 2015). As the pre-rRNA is being transcribed, a large protein complex, the small subunit (SSU) processome, assembles in the region of the 18S rRNA sequence, forming terminal knobs on the pre-rRNA (reviewed in Phipps et al. 2011, inferred from yeast in Dragon et al. 2002). The SSU processome contains both ribosomal proteins of the small subunit and processing factors which process the pre-rRNA and modify nucleotides. Through addition of subunits the SSU processome appears to be converted into the larger 90S pre-ribosome (inferred from yeast in Grandi et al. 2002). An analogous large subunit processome (LSU) assembles in the region of the 28S rRNA, however the LSU is less well characterized (inferred from yeast in McCann et al. 2015).
Following cleavage of the pre-rRNA within internal transcribed spacer 1 (ITS1), the pre-ribosomal particle separates into a pre-60S subunit and a pre-40S subunit in the nucleolus (reviewed in Hernandez-Verdun et al. 2010, Phipps et al. 2011). The pre-60S and pre-40S ribosomal particles are then exported from the nucleus to the cytoplasm where the processing factors dissociate and recycle back to the nucleus
Nuclease digestions of the 47S pre-rRNA can follow several paths. In the major pathway, the ends of the 47S pre-rRNA are trimmed to yield the 45S pre-rRNA. Digestion at site 2 (also called site 2b in mouse, see Henras et al. 2015 for nomenclature) cleaves the 45S pre-rRNA to yield the 30S pre-rRNA containing the 18S rRNA of the small subunit and the 32S pre-rRNA containing the 5.8S rRNA and the 28S rRNA of the large subunit. The 32S pre-rRNA is digested in the nucleus to yield the 5.8S rRNA and the 28S rRNA while the 30S pre-rRNA is digested in the nucleus to yield the 18SE pre-rRNA which is then processed in the nucleus and cytosol to yield the 18S rRNA. At least 286 human proteins, 74 of which have no yeast homolog, are required for efficient processing of pre-rRNA in the nucleus (Tafforeau et al. 2013) View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6791226
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Mullineux ST, Lafontaine DL.; ''Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand?''; PubMed Europe PMC Scholia
  2. Zemp I, Wandrey F, Rao S, Ashiono C, Wyler E, Montellese C, Kutay U.; ''CK1δ and CK1ε are components of human 40S subunit precursors required for cytoplasmic 40S maturation.''; PubMed Europe PMC Scholia
  3. Sato M, Araki N, Kumeta M, Takeyasu K, Taguchi Y, Asai T, Furukawa K, Horigome T.; ''Interaction, mobility, and phosphorylation of human orthologues of WD repeat-containing components of the yeast SSU processome t-UTP sub-complex.''; PubMed Europe PMC Scholia
  4. Zhou GJ, Zhang Y, Wang J, Guo JH, Ni J, Zhong ZM, Wang LQ, Dang YJ, Dai JF, Yu L.; ''Cloning and characterization of a novel human RNA binding protein gene PNO1.''; PubMed Europe PMC Scholia
  5. Haindl M, Harasim T, Eick D, Muller S.; ''The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing.''; PubMed Europe PMC Scholia
  6. Turner AJ, Knox AA, Prieto JL, McStay B, Watkins NJ.; ''A novel small-subunit processome assembly intermediate that contains the U3 snoRNP, nucleolin, RRP5, and DBP4.''; PubMed Europe PMC Scholia
  7. Yanagida M, Shimamoto A, Nishikawa K, Furuichi Y, Isobe T, Takahashi N.; ''Isolation and proteomic characterization of the major proteins of the nucleolin-binding ribonucleoprotein complexes.''; PubMed Europe PMC Scholia
  8. Castle CD, Cassimere EK, Denicourt C.; ''LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis.''; PubMed Europe PMC Scholia
  9. Ginisty H, Amalric F, Bouvet P.; ''Nucleolin functions in the first step of ribosomal RNA processing.''; PubMed Europe PMC Scholia
  10. Morello LG, Hesling C, Coltri PP, Castilho BA, Rimokh R, Zanchin NI.; ''The NIP7 protein is required for accurate pre-rRNA processing in human cells.''; PubMed Europe PMC Scholia
  11. Prieto JL, McStay B.; ''Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells.''; PubMed Europe PMC Scholia
  12. Tomecki R, Labno A, Drazkowska K, Cysewski D, Dziembowski A.; ''hUTP24 is essential for processing of the human rRNA precursor at site A1, but not at site A0.''; PubMed Europe PMC Scholia
  13. Tafforeau L, Zorbas C, Langhendries JL, Mullineux ST, Stamatopoulou V, Mullier R, Wacheul L, Lafontaine DL.; ''The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors.''; PubMed Europe PMC Scholia
  14. Hölzel M, Orban M, Hochstatter J, Rohrmoser M, Harasim T, Malamoussi A, Kremmer E, Längst G, Eick D.; ''Defects in 18 S or 28 S rRNA processing activate the p53 pathway.''; PubMed Europe PMC Scholia
  15. Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, Marzioch M, Schäfer T, Kuster B, Tschochner H, Tollervey D, Gavin AC, Hurt E.; ''90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors.''; PubMed Europe PMC Scholia
  16. Rouquette J, Choesmel V, Gleizes PE.; ''Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells.''; PubMed Europe PMC Scholia
  17. Hölzel M, Rohrmoser M, Schlee M, Grimm T, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Hiddemann W, Bornkamm GW, Eick D.; ''Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation.''; PubMed Europe PMC Scholia
  18. Yoshikawa H, Ishikawa H, Izumikawa K, Miura Y, Hayano T, Isobe T, Simpson RJ, Takahashi N.; ''Human nucleolar protein Nop52 (RRP1/NNP-1) is involved in site 2 cleavage in internal transcribed spacer 1 of pre-rRNAs at early stages of ribosome biogenesis.''; PubMed Europe PMC Scholia
  19. Popov A, Smirnov E, Kováčik L, Raška O, Hagen G, Stixová L, Raška I.; ''Duration of the first steps of the human rRNA processing.''; PubMed Europe PMC Scholia
  20. Sloan KE, Mattijssen S, Lebaron S, Tollervey D, Pruijn GJ, Watkins NJ.; ''Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing.''; PubMed Europe PMC Scholia
  21. McCann KL, Charette JM, Vincent NG, Baserga SJ.; ''A protein interaction map of the LSU processome.''; PubMed Europe PMC Scholia
  22. Gérus M, Bonnart C, Caizergues-Ferrer M, Henry Y, Henras AK.; ''Evolutionarily conserved function of RRP36 in early cleavages of the pre-rRNA and production of the 40S ribosomal subunit.''; PubMed Europe PMC Scholia
  23. Zorbas C, Nicolas E, Wacheul L, Huvelle E, Heurgué-Hamard V, Lafontaine DL.; ''The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis.''; PubMed Europe PMC Scholia
  24. Stanek D, Koberna K, Pliss A, Malínský J, Masata M, Vecerová J, Risueño MC, Raska I.; ''Non-isotopic mapping of ribosomal RNA synthesis and processing in the nucleolus.''; PubMed Europe PMC Scholia
  25. Wang M, Pestov DG.; ''5'-end surveillance by Xrn2 acts as a shared mechanism for mammalian pre-rRNA maturation and decay.''; PubMed Europe PMC Scholia
  26. Phipps KR, Charette J, Baserga SJ.; ''The small subunit processome in ribosome biogenesis—progress and prospects.''; PubMed Europe PMC Scholia
  27. Hölzel M, Grimm T, Rohrmoser M, Malamoussi A, Harasim T, Gruber-Eber A, Kremmer E, Eick D.; ''The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing.''; PubMed Europe PMC Scholia
  28. Freed EF, Prieto JL, McCann KL, McStay B, Baserga SJ.; ''NOL11, implicated in the pathogenesis of North American Indian childhood cirrhosis, is required for pre-rRNA transcription and processing.''; PubMed Europe PMC Scholia
  29. Morello LG, Coltri PP, Quaresma AJ, Simabuco FM, Silva TC, Singh G, Nickerson JA, Oliveira CC, Moore MJ, Zanchin NI.; ''The human nucleolar protein FTSJ3 associates with NIP7 and functions in pre-rRNA processing.''; PubMed Europe PMC Scholia
  30. Romanova L, Grand A, Zhang L, Rayner S, Katoku-Kikyo N, Kellner S, Kikyo N.; ''Critical role of nucleostemin in pre-rRNA processing.''; PubMed Europe PMC Scholia
  31. Widmann B, Wandrey F, Badertscher L, Wyler E, Pfannstiel J, Zemp I, Kutay U.; ''The kinase activity of human Rio1 is required for final steps of cytoplasmic maturation of 40S subunits.''; PubMed Europe PMC Scholia
  32. Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL.; ''The nucleolus: structure/function relationship in RNA metabolism.''; PubMed Europe PMC Scholia
  33. Haag S, Kretschmer J, Bohnsack MT.; ''WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA.''; PubMed Europe PMC Scholia
  34. Preti M, O'Donohue MF, Montel-Lehry N, Bortolin-Cavaillé ML, Choesmel V, Gleizes PE.; ''Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA.''; PubMed Europe PMC Scholia
  35. Pertschy B, Schneider C, Gnädig M, Schäfer T, Tollervey D, Hurt E.; ''RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1.''; PubMed Europe PMC Scholia
  36. Kass S, Sollner-Webb B.; ''The first pre-rRNA-processing event occurs in a large complex: analysis by gel retardation, sedimentation, and UV cross-linking.''; PubMed Europe PMC Scholia
  37. O'Donohue MF, Choesmel V, Faubladier M, Fichant G, Gleizes PE.; ''Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits.''; PubMed Europe PMC Scholia
  38. Carron C, O'Donohue MF, Choesmel V, Faubladier M, Gleizes PE.; ''Analysis of two human pre-ribosomal factors, bystin and hTsr1, highlights differences in evolution of ribosome biogenesis between yeast and mammals.''; PubMed Europe PMC Scholia
  39. Heindl K, Martinez J.; ''Nol9 is a novel polynucleotide 5'-kinase involved in ribosomal RNA processing.''; PubMed Europe PMC Scholia
  40. Tomecki R, Tomecki R, Kristiansen MS, Lykke-Andersen S, Chlebowski A, Larsen KM, Szczesny RJ, Drazkowska K, Pastula A, Andersen JS, Stepien PP, Dziembowski A, Jensen TH.; ''The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L.''; PubMed Europe PMC Scholia
  41. Wyler E, Zimmermann M, Widmann B, Gstaiger M, Pfannstiel J, Kutay U, Zemp I.; ''Tandem affinity purification combined with inducible shRNA expression as a tool to study the maturation of macromolecular assemblies.''; PubMed Europe PMC Scholia
  42. Grimm T, Hölzel M, Rohrmoser M, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Eick D.; ''Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex.''; PubMed Europe PMC Scholia
  43. Zemp I, Wild T, O'Donohue MF, Wandrey F, Widmann B, Gleizes PE, Kutay U.; ''Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2.''; PubMed Europe PMC Scholia
  44. Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y, Beyer AL, Hunt DF, Baserga SJ.; ''A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis.''; PubMed Europe PMC Scholia
  45. Rohrmoser M, Hölzel M, Grimm T, Malamoussi A, Harasim T, Orban M, Pfisterer I, Gruber-Eber A, Kremmer E, Eick D.; ''Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit.''; PubMed Europe PMC Scholia
  46. Schilders G, van Dijk E, Pruijn GJ.; ''C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing.''; PubMed Europe PMC Scholia
  47. Henras AK, Plisson-Chastang C, O'Donohue MF, Chakraborty A, Gleizes PE.; ''An overview of pre-ribosomal RNA processing in eukaryotes.''; PubMed Europe PMC Scholia
  48. Couté Y, Kindbeiter K, Belin S, Dieckmann R, Duret L, Bezin L, Sanchez JC, Diaz JJ.; ''ISG20L2, a novel vertebrate nucleolar exoribonuclease involved in ribosome biogenesis.''; PubMed Europe PMC Scholia
  49. Sloan KE, Bohnsack MT, Bohnsack MT, Schneider C, Watkins NJ.; ''The roles of SSU processome components and surveillance factors in the initial processing of human ribosomal RNA.''; PubMed Europe PMC Scholia
  50. Ansel KM, Pastor WA, Rath N, Lapan AD, Glasmacher E, Wolf C, Smith LC, Papadopoulou N, Lamperti ED, Tahiliani M, Ellwart JW, Shi Y, Kremmer E, Rao A, Heissmeyer V.; ''Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114630view16:09, 25 January 2021ReactomeTeamReactome version 75
113078view11:13, 2 November 2020ReactomeTeamReactome version 74
112312view15:23, 9 October 2020ReactomeTeamReactome version 73
101211view11:10, 1 November 2018ReactomeTeamreactome version 66
100749view20:35, 31 October 2018ReactomeTeamreactome version 65
100293view19:12, 31 October 2018ReactomeTeamreactome version 64
99839view15:56, 31 October 2018ReactomeTeamreactome version 63
99396view14:34, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99090view12:39, 31 October 2018ReactomeTeamreactome version 62
94494view08:59, 14 September 2017Mkutmonreactome version 61
86967view13:41, 15 July 2016MkutmonOntology Term : 'RNA processing pathway' added !
86396view09:17, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
12S pre-rRNA R-HSA-6791201 (Reactome)
18S rRNA ProteinX03205 (EMBL)
18SE pre-40S particleComplexR-HSA-6791531 (Reactome)
18SE pre-rRNA R-HSA-6791204 (Reactome)
18SE pre-rRNA:SSU processomeComplexR-HSA-6791187 (Reactome)
21S pre-rRNA R-HSA-6791194 (Reactome)
21S pre-rRNA:SSU processomeComplexR-HSA-6791199 (Reactome)
28S

rRNA:12S

pre-rRNA:Rix1:LAS1L:NOL9:SENP3:PeBoW
ComplexR-HSA-6791568 (Reactome)
28S rRNA ProteinM11167 (EMBL)
30S pre-rRNA R-HSA-6791193 (Reactome)
30S pre-rRNA:SSU processomeComplexR-HSA-6791185 (Reactome)
32S pre-rRNA:Rix1:LAS1L:NOL9:SENP3ComplexR-HSA-6791562 (Reactome) The PeBoW complex and the Rix1:LAS1L:NOL9:SENP3 complex associate with pre-60S ribosome subunits during maturation and are required for efficient rRNA processing. Note that this complex contains many ribsomal subunit proteins and processing factors but the precise composition is not known.
32S pre-rRNA R-HSA-6791200 (Reactome)
32S pre-rRNAR-HSA-6791200 (Reactome)
40S ribosomal complexComplexR-HSA-72392 (Reactome)
45S pre-rRNA R-HSA-6791208 (Reactome)
45S pre-rRNA:SSU processomeComplexR-HSA-6791211 (Reactome)
47S pre-rRNA:SSU processomeComplexR-HSA-6791184 (Reactome)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
60S ribosomal complexComplexR-HSA-72499 (Reactome)
BMS1 ProteinQ14692 (Uniprot-TrEMBL)
BOP1 ProteinQ14137 (Uniprot-TrEMBL)
BOP1ProteinQ14137 (Uniprot-TrEMBL)
BYSL ProteinQ13895 (Uniprot-TrEMBL)
BYSLProteinQ13895 (Uniprot-TrEMBL)
C1D ProteinQ13901 (Uniprot-TrEMBL)
C1DProteinQ13901 (Uniprot-TrEMBL)
CIRH1A ProteinQ969X6 (Uniprot-TrEMBL)
CSNK1D ProteinP48730 (Uniprot-TrEMBL)
CSNK1DProteinP48730 (Uniprot-TrEMBL)
CSNK1E ProteinP49674 (Uniprot-TrEMBL)
CSNK1EProteinP49674 (Uniprot-TrEMBL)
DCAF13 ProteinQ9NV06 (Uniprot-TrEMBL)
DDX21 ProteinQ9NR30 (Uniprot-TrEMBL)
DDX47 ProteinQ9H0S4 (Uniprot-TrEMBL)
DDX49 ProteinQ9Y6V7 (Uniprot-TrEMBL)
DDX52 ProteinQ9Y2R4 (Uniprot-TrEMBL)
DHX37 ProteinQ8IY37 (Uniprot-TrEMBL)
DIEXF ProteinQ68CQ4 (Uniprot-TrEMBL)
DIS3ProteinQ9Y2L1 (Uniprot-TrEMBL)
EBNA1BP2 ProteinQ99848 (Uniprot-TrEMBL)
EMG1 ProteinQ92979 (Uniprot-TrEMBL)
ERI1ProteinQ8IV48 (Uniprot-TrEMBL)
EXOSC1 ProteinQ9Y3B2 (Uniprot-TrEMBL)
EXOSC10 ProteinQ01780 (Uniprot-TrEMBL)
EXOSC10:C1D:MPHOSPH6:SKIV2L2:ExosomeComplexR-HSA-6791581 (Reactome)
EXOSC10ProteinQ01780 (Uniprot-TrEMBL)
EXOSC2 ProteinQ13868 (Uniprot-TrEMBL)
EXOSC3 ProteinQ9NQT5 (Uniprot-TrEMBL)
EXOSC4 ProteinQ9NPD3 (Uniprot-TrEMBL)
EXOSC5 ProteinQ9NQT4 (Uniprot-TrEMBL)
EXOSC5ProteinQ9NQT4 (Uniprot-TrEMBL)
EXOSC6 ProteinQ5RKV6 (Uniprot-TrEMBL)
EXOSC7 ProteinQ15024 (Uniprot-TrEMBL)
EXOSC8 ProteinQ96B26 (Uniprot-TrEMBL)
EXOSC9 ProteinQ06265 (Uniprot-TrEMBL)
FAU ProteinP62861 (Uniprot-TrEMBL)
FBL ProteinP22087 (Uniprot-TrEMBL)
FCF1 ProteinQ9Y324 (Uniprot-TrEMBL)
FCF1ProteinQ9Y324 (Uniprot-TrEMBL)
FTSJ3ProteinQ8IY81 (Uniprot-TrEMBL)
GNL3 ProteinQ9BVP2 (Uniprot-TrEMBL)
GNL3:EBNA1BP2:DDX21:PES1ComplexR-HSA-8869320 (Reactome)
HEATR1 ProteinQ9H583 (Uniprot-TrEMBL)
IMP3 ProteinQ9NV31 (Uniprot-TrEMBL)
IMP4 ProteinQ96G21 (Uniprot-TrEMBL)
ISG20L2ProteinQ9H9L3 (Uniprot-TrEMBL)
KRR1 ProteinQ13601 (Uniprot-TrEMBL)
LAS1L ProteinQ9Y4W2 (Uniprot-TrEMBL)
LAS1LProteinQ9Y4W2 (Uniprot-TrEMBL)
LTV1 ProteinQ96GA3 (Uniprot-TrEMBL)
LTV1ProteinQ96GA3 (Uniprot-TrEMBL)
MPHOSPH10 ProteinO00566 (Uniprot-TrEMBL)
MPHOSPH6 ProteinQ99547 (Uniprot-TrEMBL)
MPHOSPH6ProteinQ99547 (Uniprot-TrEMBL)
NCLProteinP19338 (Uniprot-TrEMBL)
NHP2L1 ProteinP55769 (Uniprot-TrEMBL)
NIP7ProteinQ9Y221 (Uniprot-TrEMBL)
NOB1 ProteinQ9ULX3 (Uniprot-TrEMBL)
NOB1ProteinQ9ULX3 (Uniprot-TrEMBL)
NOC4L ProteinQ9BVI4 (Uniprot-TrEMBL)
NOL11 ProteinQ9H8H0 (Uniprot-TrEMBL)
NOL11ProteinQ9H8H0 (Uniprot-TrEMBL)
NOL12ProteinQ9UGY1 (Uniprot-TrEMBL)
NOL6 ProteinQ9H6R4 (Uniprot-TrEMBL)
NOL9 ProteinQ5SY16 (Uniprot-TrEMBL)
NOL9ProteinQ5SY16 (Uniprot-TrEMBL)
NOP14 ProteinP78316 (Uniprot-TrEMBL)
NOP56 ProteinO00567 (Uniprot-TrEMBL)
NOP58 ProteinQ9Y2X3 (Uniprot-TrEMBL)
PDCD11 ProteinQ14690 (Uniprot-TrEMBL)
PELP1 ProteinQ8IZL8 (Uniprot-TrEMBL)
PES1 ProteinO00541 (Uniprot-TrEMBL)
PNO1 ProteinQ9NRX1 (Uniprot-TrEMBL)
PNO1ProteinQ9NRX1 (Uniprot-TrEMBL)
PWP2 ProteinQ15269 (Uniprot-TrEMBL)
PeBoW complexComplexR-HSA-6791214 (Reactome)
RBM28ProteinQ9NW13 (Uniprot-TrEMBL)
RCL1 ProteinQ9Y2P8 (Uniprot-TrEMBL)
RIOK1 ProteinQ9BRS2 (Uniprot-TrEMBL)
RIOK1ProteinQ9BRS2 (Uniprot-TrEMBL)
RIOK2 ProteinQ9BVS4 (Uniprot-TrEMBL)
RIOK2ProteinQ9BVS4 (Uniprot-TrEMBL)
RIOK3ProteinO14730 (Uniprot-TrEMBL)
RPL10 ProteinP27635 (Uniprot-TrEMBL)
RPL10A ProteinP62906 (Uniprot-TrEMBL)
RPL10L ProteinQ96L21 (Uniprot-TrEMBL)
RPL11 ProteinP62913 (Uniprot-TrEMBL)
RPL12 ProteinP30050 (Uniprot-TrEMBL)
RPL13 ProteinP26373 (Uniprot-TrEMBL)
RPL13A ProteinP40429 (Uniprot-TrEMBL)
RPL14 ProteinP50914 (Uniprot-TrEMBL)
RPL15 ProteinP61313 (Uniprot-TrEMBL)
RPL17 ProteinP18621 (Uniprot-TrEMBL)
RPL18 ProteinQ07020 (Uniprot-TrEMBL)
RPL18A ProteinQ02543 (Uniprot-TrEMBL)
RPL19 ProteinP84098 (Uniprot-TrEMBL)
RPL21 ProteinP46778 (Uniprot-TrEMBL)
RPL22 ProteinP35268 (Uniprot-TrEMBL)
RPL22L1 ProteinQ6P5R6 (Uniprot-TrEMBL)
RPL23 ProteinP62829 (Uniprot-TrEMBL)
RPL23A ProteinP62750 (Uniprot-TrEMBL)
RPL24 ProteinP83731 (Uniprot-TrEMBL)
RPL26 ProteinP61254 (Uniprot-TrEMBL)
RPL26L1 ProteinQ9UNX3 (Uniprot-TrEMBL)
RPL27 ProteinP61353 (Uniprot-TrEMBL)
RPL27A ProteinP46776 (Uniprot-TrEMBL)
RPL28 ProteinP46779 (Uniprot-TrEMBL)
RPL29 ProteinP47914 (Uniprot-TrEMBL)
RPL3 ProteinP39023 (Uniprot-TrEMBL)
RPL30 ProteinP62888 (Uniprot-TrEMBL)
RPL31 ProteinP62899 (Uniprot-TrEMBL)
RPL32 ProteinP62910 (Uniprot-TrEMBL)
RPL34 ProteinP49207 (Uniprot-TrEMBL)
RPL35 ProteinP42766 (Uniprot-TrEMBL)
RPL35A ProteinP18077 (Uniprot-TrEMBL)
RPL36 ProteinQ9Y3U8 (Uniprot-TrEMBL)
RPL36A ProteinP83881 (Uniprot-TrEMBL)
RPL36AL ProteinQ969Q0 (Uniprot-TrEMBL)
RPL37 ProteinP61927 (Uniprot-TrEMBL)
RPL37A ProteinP61513 (Uniprot-TrEMBL)
RPL38 ProteinP63173 (Uniprot-TrEMBL)
RPL39 ProteinP62891 (Uniprot-TrEMBL)
RPL39L ProteinQ96EH5 (Uniprot-TrEMBL)
RPL3L ProteinQ92901 (Uniprot-TrEMBL)
RPL4 ProteinP36578 (Uniprot-TrEMBL)
RPL40 ProteinP62987 (Uniprot-TrEMBL)
RPL41 ProteinP62945 (Uniprot-TrEMBL)
RPL5 ProteinP46777 (Uniprot-TrEMBL)
RPL6 ProteinQ02878 (Uniprot-TrEMBL)
RPL7 ProteinP18124 (Uniprot-TrEMBL)
RPL7A ProteinP62424 (Uniprot-TrEMBL)
RPL8 ProteinP62917 (Uniprot-TrEMBL)
RPL9 ProteinP32969 (Uniprot-TrEMBL)
RPLP0 ProteinP05388 (Uniprot-TrEMBL)
RPLP1 ProteinP05386 (Uniprot-TrEMBL)
RPLP2 ProteinP05387 (Uniprot-TrEMBL)
RPP14 ProteinO95059 (Uniprot-TrEMBL)
RPP21 ProteinQ9H633 (Uniprot-TrEMBL)
RPP25 ProteinQ9BUL9 (Uniprot-TrEMBL)
RPP30 ProteinP78346 (Uniprot-TrEMBL)
RPP38 ProteinP78345 (Uniprot-TrEMBL)
RPP40 ProteinO75818 (Uniprot-TrEMBL)
RPS10 ProteinP46783 (Uniprot-TrEMBL)
RPS11 ProteinP62280 (Uniprot-TrEMBL)
RPS11ProteinP62280 (Uniprot-TrEMBL)
RPS12 ProteinP25398 (Uniprot-TrEMBL)
RPS13 ProteinP62277 (Uniprot-TrEMBL)
RPS13ProteinP62277 (Uniprot-TrEMBL)
RPS14 ProteinP62263 (Uniprot-TrEMBL)
RPS14ProteinP62263 (Uniprot-TrEMBL)
RPS15 ProteinP62841 (Uniprot-TrEMBL)
RPS15A ProteinP62244 (Uniprot-TrEMBL)
RPS15AProteinP62244 (Uniprot-TrEMBL)
RPS16 ProteinP62249 (Uniprot-TrEMBL)
RPS16ProteinP62249 (Uniprot-TrEMBL)
RPS17 ProteinP08708 (Uniprot-TrEMBL)
RPS18 ProteinP62269 (Uniprot-TrEMBL)
RPS19 ProteinP39019 (Uniprot-TrEMBL)
RPS2 ProteinP15880 (Uniprot-TrEMBL)
RPS20 ProteinP60866 (Uniprot-TrEMBL)
RPS21 ProteinP63220 (Uniprot-TrEMBL)
RPS23 ProteinP62266 (Uniprot-TrEMBL)
RPS23ProteinP62266 (Uniprot-TrEMBL)
RPS24 ProteinP62847 (Uniprot-TrEMBL)
RPS24ProteinP62847 (Uniprot-TrEMBL)
RPS25 ProteinP62851 (Uniprot-TrEMBL)
RPS26 ProteinP62854 (Uniprot-TrEMBL)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
RPS27A(77-156) ProteinP62979 (Uniprot-TrEMBL)
RPS27L ProteinQ71UM5 (Uniprot-TrEMBL)
RPS27LProteinQ71UM5 (Uniprot-TrEMBL)
RPS27ProteinP42677 (Uniprot-TrEMBL)
RPS28 ProteinP62857 (Uniprot-TrEMBL)
RPS28ProteinP62857 (Uniprot-TrEMBL)
RPS29 ProteinP62273 (Uniprot-TrEMBL)
RPS2ProteinP15880 (Uniprot-TrEMBL)
RPS3 ProteinP23396 (Uniprot-TrEMBL)
RPS3A ProteinP61247 (Uniprot-TrEMBL)
RPS3AProteinP61247 (Uniprot-TrEMBL)
RPS4X ProteinP62701 (Uniprot-TrEMBL)
RPS4Y1 ProteinP22090 (Uniprot-TrEMBL)
RPS4Y2 ProteinQ8TD47 (Uniprot-TrEMBL)
RPS5 ProteinP46782 (Uniprot-TrEMBL)
RPS5ProteinP46782 (Uniprot-TrEMBL)
RPS6 ProteinP62753 (Uniprot-TrEMBL)
RPS6ProteinP62753 (Uniprot-TrEMBL)
RPS7 ProteinP62081 (Uniprot-TrEMBL)
RPS7ProteinP62081 (Uniprot-TrEMBL)
RPS8 ProteinP62241 (Uniprot-TrEMBL)
RPS8ProteinP62241 (Uniprot-TrEMBL)
RPS9 ProteinP46781 (Uniprot-TrEMBL)
RPS9ProteinP46781 (Uniprot-TrEMBL)
RPSA ProteinP08865 (Uniprot-TrEMBL)
RRP1ProteinP56182 (Uniprot-TrEMBL)
RRP36 ProteinQ96EU6 (Uniprot-TrEMBL)
RRP7A ProteinQ9Y3A4 (Uniprot-TrEMBL)
RRP9 ProteinO43818 (Uniprot-TrEMBL)
SENP3 ProteinQ9H4L4 (Uniprot-TrEMBL)
SKIV2L2 ProteinP42285 (Uniprot-TrEMBL)
SKIV2L2ProteinP42285 (Uniprot-TrEMBL)
TBL3 ProteinQ12788 (Uniprot-TrEMBL)
TEX10 ProteinQ9NXF1 (Uniprot-TrEMBL)
TSR1 ProteinQ2NL82 (Uniprot-TrEMBL)
TSR1ProteinQ2NL82 (Uniprot-TrEMBL)
U3 snoRNA ProteinNR_006880 (NCBI Protein)
UTP11L ProteinQ9Y3A2 (Uniprot-TrEMBL)
UTP14A ProteinQ9BVJ6 (Uniprot-TrEMBL)
UTP14C ProteinQ5TAP6 (Uniprot-TrEMBL)
UTP15 ProteinQ8TED0 (Uniprot-TrEMBL)
UTP18 ProteinQ9Y5J1 (Uniprot-TrEMBL)
UTP18ProteinQ9Y5J1 (Uniprot-TrEMBL)
UTP20 ProteinO75691 (Uniprot-TrEMBL)
UTP3 ProteinQ9NQZ2 (Uniprot-TrEMBL)
UTP6 ProteinQ9NYH9 (Uniprot-TrEMBL)
UTPA complexComplexR-HSA-6790880 (Reactome)
UTPC complexComplexR-HSA-6790889 (Reactome)
WBSCR22ProteinO43709 (Uniprot-TrEMBL)
WDR12 ProteinQ9GZL7 (Uniprot-TrEMBL)
WDR18 ProteinQ9BV38 (Uniprot-TrEMBL)
WDR3 ProteinQ9UNX4 (Uniprot-TrEMBL)
WDR36 ProteinQ8NI36 (Uniprot-TrEMBL)
WDR43 ProteinQ15061 (Uniprot-TrEMBL)
WDR46 ProteinO15213 (Uniprot-TrEMBL)
WDR75 ProteinQ8IWA0 (Uniprot-TrEMBL)
XRN2ProteinQ9H0D6 (Uniprot-TrEMBL)
nascent pre-rRNA transcript ProteinNR_046235 (NCBI Protein)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
18SE pre-40S particleR-HSA-6791223 (Reactome)
18SE pre-rRNA:SSU processomeArrowR-HSA-6791222 (Reactome)
21S pre-rRNA:SSU processomeArrowR-HSA-6791221 (Reactome)
21S pre-rRNA:SSU processomeR-HSA-6791222 (Reactome)
28S

rRNA:12S

pre-rRNA:Rix1:LAS1L:NOL9:SENP3:PeBoW
ArrowR-HSA-6791219 (Reactome)
28S

rRNA:12S

pre-rRNA:Rix1:LAS1L:NOL9:SENP3:PeBoW
R-HSA-6791218 (Reactome)
30S pre-rRNA:SSU processomeArrowR-HSA-6791228 (Reactome)
30S pre-rRNA:SSU processomeR-HSA-6791221 (Reactome)
32S pre-rRNA:Rix1:LAS1L:NOL9:SENP3R-HSA-6791219 (Reactome)
32S pre-rRNAArrowR-HSA-6791228 (Reactome)
40S ribosomal complexArrowR-HSA-6791223 (Reactome)
45S pre-rRNA:SSU processomeArrowR-HSA-6791227 (Reactome)
45S pre-rRNA:SSU processomeR-HSA-6791228 (Reactome)
47S pre-rRNA:SSU processomeR-HSA-6791227 (Reactome)
60S ribosomal complexArrowR-HSA-6791218 (Reactome)
BOP1ArrowR-HSA-6791228 (Reactome)
BYSLArrowR-HSA-6791223 (Reactome)
C1DArrowR-HSA-6791218 (Reactome)
CSNK1DArrowR-HSA-6791223 (Reactome)
CSNK1EArrowR-HSA-6791223 (Reactome)
DIS3ArrowR-HSA-6791218 (Reactome)
ERI1ArrowR-HSA-6791218 (Reactome)
EXOSC10:C1D:MPHOSPH6:SKIV2L2:Exosomemim-catalysisR-HSA-6791222 (Reactome)
EXOSC10ArrowR-HSA-6791218 (Reactome)
EXOSC10ArrowR-HSA-6791222 (Reactome)
EXOSC10ArrowR-HSA-6791228 (Reactome)
EXOSC5ArrowR-HSA-6791222 (Reactome)
FCF1ArrowR-HSA-6791221 (Reactome)
FTSJ3ArrowR-HSA-6791221 (Reactome)
GNL3:EBNA1BP2:DDX21:PES1ArrowR-HSA-6791219 (Reactome)
ISG20L2ArrowR-HSA-6791218 (Reactome)
LAS1LArrowR-HSA-6791219 (Reactome)
LTV1ArrowR-HSA-6791223 (Reactome)
MPHOSPH6ArrowR-HSA-6791218 (Reactome)
NCLArrowR-HSA-6791227 (Reactome)
NIP7ArrowR-HSA-6791221 (Reactome)
NOB1ArrowR-HSA-6791223 (Reactome)
NOB1mim-catalysisR-HSA-6791223 (Reactome)
NOL11ArrowR-HSA-6791221 (Reactome)
NOL11ArrowR-HSA-6791227 (Reactome)
NOL12ArrowR-HSA-6791228 (Reactome)
NOL9ArrowR-HSA-6791219 (Reactome)
PNO1ArrowR-HSA-6791223 (Reactome)
PeBoW complexArrowR-HSA-6791219 (Reactome)
R-HSA-6791218 (Reactome) The 12S pre-rRNA is nucleolytically cleaved to yield 5.8S rRNA. C1D, MPHOSPH6 (MPP6), and EXOSC10 (Pm/Scl-100) of the exosome associate and, together with SKIV2L2 (MTR4), are required for 3' processing of mature 5.8S rRNA therefore the exonuclease activity of the exosome seems to be involved (Schilders et al. 2007). Similarly, the DIS3 subunit of the nuclear exosome is required for production of 5.8S rRNA (Tomecki et al. 2010) and the 3'-5' exoribonuclease ISG20L2 (Coute et al. 2008) are also required for production of 5.8S rRNA from 12S pre-rRNA. As inferred from the mouse homolog, the 3'-5' exonuclease ERI1 also plays a role in trimming the 3' end of pre-5.8S rRNA (Ansel et al. 2008).
R-HSA-6791219 (Reactome) Unknown nucleases process the 32S precursor rRNA (pre-rRNA) at site 4, yielding the 28S rRNA and the 12S pre-RNA that will be further processed to the mature 5.8S rRNA. Processing occurs in precursor 60S ribosomal (pre-60S) subunits that contain ribosomal proteins and processing factors. The PES1:BOP1:WDR12 complex (PeBoW complex) associates with pre-60S subunits in both the nucleus and cytosol where it is involved in processing 32S rRNA and recycling pre-60S subunit processing factors. Perturbation of the PeBoW complex prevents processing of the 32S pre-rRNA (Holzel et al. 2005, Grimm et al. 2006, Holzel et al 2007, Rohrmoser et al. 2007). The polynucleotide kinase activity of NOL9, which is associated with pre-60s subunits, is also required for processing of pre-32S rRNA (Heindl and Martinez 2010). LAS1L interacts with PELP1:TEX10:WDR18, NOL9, and SENP3 in pre-60S subunits where it is required for processing of the internal transcribed spacer 2 (ITS2) in pre-32S rRNA (Castle et al. 2012). The PELP1:TEX10:WDR18 complex is the mammalian homolog of the yeast Rix1 complex (Castle et al. 2012). A complex containing GNL3 (Nucleostemin), EBNA1BP2, DDX21, and PES1 is also required for processing 32S rRNA to 28S rRNA (Romanova et al. 2009). Both the Nucleostemin complex and the PeBoW complex both contain PES1 and therefore may be part of a single larger complex.
R-HSA-6791221 (Reactome) An unknown endonuclease cleaves site 1 (also called site A1), removing the remainder of the 5' external transcribed spacer (5' ETS) from 30S pre-rRNA containing the 18S rRNA (Freed et al. 2012, Tomecki et al. 2015). Sixteen proteins of the small ribosomal subunit are required for processing sequences flanking the 18S rRNA in the 30S pre-rRNA (O'Donohue et al. 2010) presumably due to their assembly onto pre-rRNA as processing proceeds. Additionally, FCF1 (hUTP24, part of the SSU processome) is required for cleavage at site 1 (Tomecki et al. 2015) and NOL11 and CIRH1A (Cirhin, part of the UTPA complex) interact and are required for cleavage at site 1 and other sites (A', A0, and 2) (Freed et al. 2012). FTSJ3 and NIP7 interact and are required for processing at sites 1, 2, and A0 (Morello et al. 2011).
R-HSA-6791222 (Reactome) An unknown endonuclease in the nucleolus cleaves at site E (site 2a in mouse) of 21S pre-rRNA, yielding 18SE pre-rRNA (Preti et al. 2013, Sloan et al. 2013). Evidence also indicates that 18SE may also be produced by an exonucleolytic pathway (Carron et al. 2011, Sloan et al. 2013). BYSL (Bystin, ENG1), SKIV2L2 (MTR4), and the exonuclease activity of EXOSC10 (RRP6), all associated with the exosome, are required for formation of 18SE by the exonucleolytic pathway (Sloan et al. 2013). Sequencing indicates that 18SE molecules can have variable ends, presumably due to exonuclease activity (Preti et al. 2013).
R-HSA-6791223 (Reactome) Exonuclease activity of the exosome (Preti et al. 2013) and endonuclease activity of NOB1 (inferred from yeast, Pertschy et al. 2009) process the 3' end of precursor rRNA (pre-rRNA) 18SE to yield mature 18S rRNA. During the processing, pre-rRNA 18SE is bound in the pre-40S ribosome subunit, which contains ribosomal proteins and processing factors such as NOB1 and BYSL. The pre-40S subunit is exported from the nucleus to the cytosol where processing factors are released and recycled back to the nucleus. The kinases RIOK1, RIOK2, CSNK1D and CSNK1E are associated with the pre-40S rRNA subunit in both the nucleus and cytosol and their kinase activity is required for recycling of processing factors back to the nucleus (Zemp et al. 2009, Zemp et al. 2014). RIOK1 and RIOK2 are also required for 18SE processing (Widmann et al. 2012, Zemp et al. 2009). RIOK3 (RIO3) is a cytosolic kinase that associates with the pre-40S ribosomal particle after export from the nucleus and is required for release of processing factors (Baumas et al. 2012).
R-HSA-6791227 (Reactome) Unknown nucleases concomitantly cleave the 47S precursor rRNA (pre-rRNA) at the A' site (also known as the 01 site or the A1 site), the A0 site in the 5' external transcribed spacer (5' ETS), and site 02 (also known as site 6 in mouse) in the 3' ETS (Sloan et al. 2014). Cleavage occurs when the pre-rRNA is complexed with the small subunit processome (SSU processome) complex, a large protein complex that binds the 5' region of the pre-rRNA after transcription commences (Kass and Sollner-Webb 1990, Sloan et al. 2014, inferred from yeast in Dragon et al. 2002). The UTP-A subcomplex of the SSU processome and SKIV2L2 (MTR4) are required for cleavage at the A' site while the UTP-B subcomplex and U3 snoRNP (Sloan et al. 2014) and RRP36 of the UTPC subcomplex of the SSU processome (Gerus et al. 2010) improve efficiency of cleavage. UTP18 is required for cleavage of the 5' ETS (Holzel et al. 2010). Nucleolin (NCL) interacts with the 47S pre-rRNA (Yanagida et al. 2001, inferred from mouse in Ginisty et al. 1998) and is involved in cleavage at the A' site (inferred from mouse in Ginisty et al. 1998) but its association with the SSU processome is transitory (Turner et al. 2009). NOL11, a component of the SSU processome which interacts with UTP4, increases the efficiency of processing at A', but is not strictly required (Freed et al. 2012). XRN2 exonucleolytically degrades the 5' 01 fragment (Sloan et al. 2013, inferred from mouse homologs in Wang and Pestov 2011).
R-HSA-6791228 (Reactome) An unknown endonuclease cleaves at site 2 (also called site 2b in mouse) in the internal transcribed spacer 1 (ITS1) between the 18S rRNA and the 5.8S rRNA in the 45S precursor rRNA (pre-rRNA) while the pre-rRNA is contained in a 90S particle containing ribosomal proteins and assembly factors (Sloan et al. 2013). (The 90S particle is believed to be produced by addition of further subunits to the complex containing the pre-RNA and the small subunit (SSU) processome (inferred from yeast in Grandi et al. 2002).) The products are a 30S pre-rRNA which contains the 18S rRNA and a 32S pre-rRNA containing the 5.8S rRNA and the 28S rRNA. The cleavage splits the 90S particle into a pre-40S particle and a pre-60S particle and is believed to occur while the 5' region of the 45S rRNA is bound by the SSU processome. BOP1 (a subunit of the PeBoW complex), RBM28, NOL12 and RRP1 (NOP52) also participate in the cleavage (Sloan et al. 2013, Yoshikawa et al. 2015). Exonucleases including XRN2 and EXOSC10 (RRP6) of the exosome complex then remove further nucleotides from the end of the ITS (Sloan et al. 2013).
RBM28ArrowR-HSA-6791228 (Reactome)
RIOK1ArrowR-HSA-6791223 (Reactome)
RIOK2ArrowR-HSA-6791223 (Reactome)
RIOK3ArrowR-HSA-6791223 (Reactome)
RIOK3R-HSA-6791223 (Reactome)
RPS11ArrowR-HSA-6791221 (Reactome)
RPS13ArrowR-HSA-6791221 (Reactome)
RPS14ArrowR-HSA-6791221 (Reactome)
RPS15AArrowR-HSA-6791221 (Reactome)
RPS16ArrowR-HSA-6791221 (Reactome)
RPS23ArrowR-HSA-6791221 (Reactome)
RPS24ArrowR-HSA-6791221 (Reactome)
RPS27ArrowR-HSA-6791221 (Reactome)
RPS27LArrowR-HSA-6791221 (Reactome)
RPS28ArrowR-HSA-6791221 (Reactome)
RPS2ArrowR-HSA-6791221 (Reactome)
RPS3AArrowR-HSA-6791221 (Reactome)
RPS5ArrowR-HSA-6791221 (Reactome)
RPS6ArrowR-HSA-6791221 (Reactome)
RPS7ArrowR-HSA-6791221 (Reactome)
RPS8ArrowR-HSA-6791221 (Reactome)
RPS9ArrowR-HSA-6791221 (Reactome)
RRP1ArrowR-HSA-6791228 (Reactome)
SKIV2L2ArrowR-HSA-6791218 (Reactome)
SKIV2L2ArrowR-HSA-6791222 (Reactome)
SKIV2L2ArrowR-HSA-6791227 (Reactome)
TSR1ArrowR-HSA-6791223 (Reactome)
UTP18ArrowR-HSA-6791227 (Reactome)
UTPA complexArrowR-HSA-6791221 (Reactome)
UTPA complexArrowR-HSA-6791227 (Reactome)
UTPC complexArrowR-HSA-6791227 (Reactome)
WBSCR22ArrowR-HSA-6791223 (Reactome)
XRN2ArrowR-HSA-6791228 (Reactome)
XRN2mim-catalysisR-HSA-6791227 (Reactome)
Personal tools