RAB geranylgeranylation (Homo sapiens)

From WikiPathways

Revision as of 15:26, 9 October 2020 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1-3, 5, 7...18, 3113, 15, 17-19, 21...1, 4-6, 9...5, 14, 15, 24, 26...13, 15, 24, 26, 31...cytosolGDP RAB5A RAB21 RAB20 GGC-RAB25 RAB36 RAB38 RABGGTBRAB40B RAB11A GGC-RAB14 CHM RAB27B GGC-RAB30 RGGTA:RGGTB:GGPPGGC-RAB3A GGC-RAB9A GGC-RAB33B GGC-RAB17 RAB6B geranylgeranyl diphosphate RAB15 GGC-RAB31 RAB31 RAB5B RAB27A RAB41 RAB43 RAB30 RAB7B RAB37 RAB3C GGC-RAB15 RAB9A RABGGTB GGC-RAB1B RAB35 CHML GGC-RAB23 RAB3B RAB33B GGC-RAB7A FarC-PTP4A2 RABGGTA RAB18 RAB12 RAB44 RAB40A RAB37 CHM GGC-RAB38 RABGGTA RABGGTARAB39B RABGGTB RAB23 RABGGTA geranylgeranyl diphosphate RAB27A RAB5C RAB7A GGC-RAB11A geranylgeranyl diphosphate RAB9B CHML FarC-PTP4A2GGC-RAB12 GGC-RAB2A RAB43 RAB3D GGC-RAB34 RAB7A GGC-RAB4A RAB29 GGC-RAB41 RAB40C RAB14 RAB31 RAB3D RABGGTA:RABGGTBGGC-RAB32 RAB6A RAB39B RAB1B RAB25 RABGGTA RAB27B RAB44 RAB5B RAB41 RAB19 RAB26 GGC-RAB21 GGC-RAB36 GGC-RAB18 RAB34 GGC-RAB13 GGC-RAB44 RAB8B RAB8B FarC-PTP4A2:RABGGTBRAB40C RAB13 RAB2A GGC-RAB35 GGC-RAB1A GGC-RAB40C RAB3A RAB6B RAB33B GGC-RAB27A RAB4A RAB24 GGC-RAB3C RAB1A RAB8A RAB17 RAB42 geranylgeranyldiphosphateGGC-RAB9B RAB1A RAB4B GGC-RAB42 RABGGTB RAB13 RAB33A RAB40B GDP RAB32 CHML GGC-RAB5A RAB2A RAB2B PPi(3-)RAB34 RAB9A GGC-RAB8B GGC-RAB11B RAB39A GGC-RAB20 CHM RAB38 RAB10 RABGGTB RAB23 GGC-RAB29 RAB11A RAB33A RAB36 RAB22A RAB20 RAB24 RAB3A CHM RABGGTA:RABGGTB:CHMs:GGPPGGC-RAB7B GGC-RAB24 GGC-RAB40B GGC-RAB6B RAB39A RAB7B RAB30 GGC-RAB3D GGC-RAB5B GGC-RAB2B GGC-RAB37 RAB11B GDP RAB17 RAB19 RAB6A CHMs:GGC-RABs:GDPRAB10 GGC-RAB10 GGC-RAB19 RAB42 RABs:GDPRAB1B RGGT:CHMs:RABs:GDPGGC-RAB26 RAB5A GGC-RAB27B CHML GGC-RAB8A RAB40A GGC-RAB39A RAB26 RAB14 RAB12 GGC-RAB4B RAB11B GGC-RAB33A GGC-RAB6A GGC-RAB3B RAB4A GGC-RAB43 RAB18 CHMsRAB4B GGC-RAB5C RAB29 RAB22A RAB21 RAB3C RAB2B GGC-RAB40A RAB35 RABGGTB RAB15 RAB25 RAB32 GGC-RAB39B RAB3B RAB9B RAB5C GGC-RAB22A RAB8A 1818


Description

Human cells have more than 60 RAB proteins that are involved in trafficking of proteins in the endolysosomal system. These small GTPases contribute to trafficking specificity by localizing to the membranes of different endocytic compartments and interacting with effectors such as sorting adaptors, tethering factors, kinases, phosphatases and tubular-vesicular cargo (reviewed in Stenmark et al, 2009; Wandinger-Ness and Zerial, 2014). RAB localization depends on a number of factors including C-terminal prenylation, the sequence of an upstream hypervariable regions and what nucleotide is bound (Chavrier et al, 1991; Ullrich et al, 1993; Soldati et al, 1994; Farnsworth et al, 1994; Seabra, 1996; Wu et al, 2010; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014). In the active, GTP-bound form, prenylated RAB proteins are membrane associated, while in the inactive GDP-bound form, RABs are extracted from the target membrane and exist in a soluble form in complex with GDP dissociation inhibitors (GDIs) (Ullrich et al, 1993; Soldati et al, 1994; Gavriljuk et al, 2103). Conversion between the inactive and active form relies on the activities of RAB guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) (Yoshimura et al, 2010; Wu et al, 2011; Pan et al, 2006; Frasa et al, 2012; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014).
Newly synthesized RABs are bound by a RAB escort protein, CHM (also known as REP1) or CHML (REP2) (Alexandrov et al, 1994; Shen and Seabra, 1996). CHM/REP proteins are the substrate-binding component of the trimeric RAB geranylgeranyltransferase enzyme (GGTaseII) along with the two catalytic subunits RABGGTA and RABGGTB (reviewed in Gutkowska and Swiezewska, 2012; Palsuledesai and Distefano, 2015). REP proteins recruit the unmodified RAB in its GDP-bound state to the GGTase for sequential geranylgeranylation at one or two C-terminal cysteine residues (Alexandrov et al, 1994; Seabra et al 1996; Shen and Seabra, 1996; Baron and Seabra, 2008). After geranylgeranylation, CHM/REP proteins remain in complex with the geranylgeranylated RAB and escort it to its target membrane, where its activity is regulated by GAPs, GEFs, GDIs and membrane-bound GDI displacement factors (GDFs) (Sivars et al, 2003; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 8873719
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Andres DA, Seabra MC, Brown MS, Armstrong SA, Smeland TE, Cremers FP, Goldstein JL.; ''cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein.''; PubMed Europe PMC Scholia
  2. Si X, Zeng Q, Ng CH, Hong W, Pallen CJ.; ''Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II.''; PubMed Europe PMC Scholia
  3. Ullrich O, Stenmark H, Alexandrov K, Huber LA, Kaibuchi K, Sasaki T, Takai Y, Zerial M.; ''Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins.''; PubMed Europe PMC Scholia
  4. Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA.; ''Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A.''; PubMed Europe PMC Scholia
  5. Overmeyer JH, Wilson AL, Maltese WA.; ''Membrane targeting of a Rab GTPase that fails to associate with Rab escort protein (REP) or guanine nucleotide dissociation inhibitor (GDI).''; PubMed Europe PMC Scholia
  6. Thomä NH, Iakovenko A, Goody RS, Alexandrov K.; ''Phosphoisoprenoids modulate association of Rab geranylgeranyltransferase with REP-1.''; PubMed Europe PMC Scholia
  7. Shen F, Seabra MC.; ''Mechanism of digeranylgeranylation of Rab proteins. Formation of a complex between monogeranylgeranyl-Rab and Rab escort protein.''; PubMed Europe PMC Scholia
  8. Thomä NH, Iakovenko A, Kalinin A, Waldmann H, Goody RS, Alexandrov K.; ''Allosteric regulation of substrate binding and product release in geranylgeranyltransferase type II.''; PubMed Europe PMC Scholia
  9. Wandinger-Ness A, Zerial M.; ''Rab proteins and the compartmentalization of the endosomal system.''; PubMed Europe PMC Scholia
  10. Khosravi-Far R, Lutz RJ, Cox AD, Conroy L, Bourne JR, Sinensky M, Balch WE, Buss JE, Der CJ.; ''Isoprenoid modification of rab proteins terminating in CC or CXC motifs.''; PubMed Europe PMC Scholia
  11. Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirota FL, Eisenhaber F.; ''Towards complete sets of farnesylated and geranylgeranylated proteins.''; PubMed Europe PMC Scholia
  12. Leung KF, Baron R, Seabra MC.; ''Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases.''; PubMed Europe PMC Scholia
  13. Seabra MC.; ''Nucleotide dependence of Rab geranylgeranylation. Rab escort protein interacts preferentially with GDP-bound Rab.''; PubMed Europe PMC Scholia
  14. Gutkowska M, Swiezewska E.; ''Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein.''; PubMed Europe PMC Scholia
  15. Leung KF, Baron R, Ali BR, Magee AI, Seabra MC.; ''Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation.''; PubMed Europe PMC Scholia
  16. Stenmark H.; ''Rab GTPases as coordinators of vesicle traffic.''; PubMed Europe PMC Scholia
  17. Wilson AL, Sheridan KM, Erdman RA, Maltese WA.; ''Prenylation of a Rab1B mutant with altered GTPase activity is impaired in cell-free systems but not in intact mammalian cells.''; PubMed Europe PMC Scholia
  18. Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL.; ''Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence.''; PubMed Europe PMC Scholia
  19. Sivars U, Aivazian D, Pfeffer SR.; ''Yip3 catalyses the dissociation of endosomal Rab-GDI complexes.''; PubMed Europe PMC Scholia
  20. Pan X, Eathiraj S, Munson M, Lambright DG.; ''TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.''; PubMed Europe PMC Scholia
  21. Palsuledesai CC, Distefano MD.; ''Protein prenylation: enzymes, therapeutics, and biotechnology applications.''; PubMed Europe PMC Scholia
  22. Joberty G, Tavitian A, Zahraoui A.; ''Isoprenylation of Rab proteins possessing a C-terminal CaaX motif.''; PubMed Europe PMC Scholia
  23. Soldati T, Shapiro AD, Svejstrup AB, Pfeffer SR.; ''Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange.''; PubMed Europe PMC Scholia
  24. Gavriljuk K, Itzen A, Goody RS, Gerwert K, Kötting C.; ''Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy.''; PubMed Europe PMC Scholia
  25. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M.; ''Hypervariable C-terminal domain of rab proteins acts as a targeting signal.''; PubMed Europe PMC Scholia
  26. Alexandrov K, Horiuchi H, Steele-Mortimer O, Seabra MC, Zerial M.; ''Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes.''; PubMed Europe PMC Scholia
  27. Ioannou MS, Girard M, McPherson PS.; ''Rab13 Traffics on Vesicles Independent of Prenylation.''; PubMed Europe PMC Scholia
  28. Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA.; ''Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors.''; PubMed Europe PMC Scholia
  29. Wu X, Bradley MJ, Cai Y, Kümmel D, De La Cruz EM, Barr FA, Reinisch KM.; ''Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate.''; PubMed Europe PMC Scholia
  30. Baron RA, Seabra MC.; ''Rab geranylgeranylation occurs preferentially via the pre-formed REP-RGGT complex and is regulated by geranylgeranyl pyrophosphate.''; PubMed Europe PMC Scholia
  31. Wu YW, Oesterlin LK, Tan KT, Waldmann H, Alexandrov K, Goody RS.; ''Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes.''; PubMed Europe PMC Scholia
  32. Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM.; ''Illuminating the functional and structural repertoire of human TBC/RABGAPs.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114653view16:12, 25 January 2021ReactomeTeamReactome version 75
113101view11:16, 2 November 2020ReactomeTeamReactome version 74
112335view15:26, 9 October 2020ReactomeTeamReactome version 73
101235view11:13, 1 November 2018ReactomeTeamreactome version 66
100774view20:40, 31 October 2018ReactomeTeamreactome version 65
100318view19:17, 31 October 2018ReactomeTeamreactome version 64
99863view16:00, 31 October 2018ReactomeTeamreactome version 63
99420view14:36, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93401view11:22, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
CHM ProteinP24386 (Uniprot-TrEMBL)
CHML ProteinP26374 (Uniprot-TrEMBL)
CHMs:GGC-RABs:GDPComplexR-HSA-8870447 (Reactome)
CHMsComplexR-HSA-8870446 (Reactome)
FarC-PTP4A2 ProteinQ12974 (Uniprot-TrEMBL)
FarC-PTP4A2:RABGGTBComplexR-HSA-8870455 (Reactome)
FarC-PTP4A2ProteinQ12974 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GGC-RAB10 ProteinP61026 (Uniprot-TrEMBL)
GGC-RAB11A ProteinP62491 (Uniprot-TrEMBL)
GGC-RAB11B ProteinQ15907 (Uniprot-TrEMBL)
GGC-RAB12 ProteinQ6IQ22 (Uniprot-TrEMBL)
GGC-RAB13 ProteinP51153 (Uniprot-TrEMBL)
GGC-RAB14 ProteinP61106 (Uniprot-TrEMBL)
GGC-RAB15 ProteinP59190 (Uniprot-TrEMBL)
GGC-RAB17 ProteinQ9H0T7 (Uniprot-TrEMBL)
GGC-RAB18 ProteinQ9NP72 (Uniprot-TrEMBL)
GGC-RAB19 ProteinA4D1S5 (Uniprot-TrEMBL)
GGC-RAB1A ProteinP62820 (Uniprot-TrEMBL)
GGC-RAB1B ProteinQ9H0U4 (Uniprot-TrEMBL)
GGC-RAB20 ProteinQ9NX57 (Uniprot-TrEMBL)
GGC-RAB21 ProteinQ9UL25 (Uniprot-TrEMBL)
GGC-RAB22A ProteinQ9UL26 (Uniprot-TrEMBL)
GGC-RAB23 ProteinQ9ULC3 (Uniprot-TrEMBL)
GGC-RAB24 ProteinQ969Q5 (Uniprot-TrEMBL)
GGC-RAB25 ProteinP57735 (Uniprot-TrEMBL)
GGC-RAB26 ProteinQ9ULW5 (Uniprot-TrEMBL)
GGC-RAB27A ProteinP51159 (Uniprot-TrEMBL)
GGC-RAB27B ProteinO00194 (Uniprot-TrEMBL)
GGC-RAB29 ProteinO14966 (Uniprot-TrEMBL)
GGC-RAB2A ProteinP61019 (Uniprot-TrEMBL)
GGC-RAB2B ProteinQ8WUD1 (Uniprot-TrEMBL)
GGC-RAB30 ProteinQ15771 (Uniprot-TrEMBL)
GGC-RAB31 ProteinQ13636 (Uniprot-TrEMBL)
GGC-RAB32 ProteinQ13637 (Uniprot-TrEMBL)
GGC-RAB33A ProteinQ14088 (Uniprot-TrEMBL)
GGC-RAB33B ProteinQ9H082 (Uniprot-TrEMBL)
GGC-RAB34 ProteinQ9BZG1 (Uniprot-TrEMBL)
GGC-RAB35 ProteinQ15286 (Uniprot-TrEMBL)
GGC-RAB36 ProteinO95755 (Uniprot-TrEMBL)
GGC-RAB37 ProteinQ96AX2 (Uniprot-TrEMBL)
GGC-RAB38 ProteinP57729 (Uniprot-TrEMBL)
GGC-RAB39A ProteinQ14964 (Uniprot-TrEMBL)
GGC-RAB39B ProteinQ96DA2 (Uniprot-TrEMBL)
GGC-RAB3A ProteinP20336 (Uniprot-TrEMBL)
GGC-RAB3B ProteinP20337 (Uniprot-TrEMBL)
GGC-RAB3C ProteinQ96E17 (Uniprot-TrEMBL)
GGC-RAB3D ProteinO95716 (Uniprot-TrEMBL)
GGC-RAB40A ProteinQ8WXH6 (Uniprot-TrEMBL)
GGC-RAB40B ProteinQ12829 (Uniprot-TrEMBL)
GGC-RAB40C ProteinQ96S21 (Uniprot-TrEMBL)
GGC-RAB41 ProteinQ5JT25 (Uniprot-TrEMBL)
GGC-RAB42 ProteinQ8N4Z0 (Uniprot-TrEMBL)
GGC-RAB43 ProteinQ86YS6 (Uniprot-TrEMBL)
GGC-RAB44 ProteinQ7Z6P3 (Uniprot-TrEMBL)
GGC-RAB4A ProteinP20338 (Uniprot-TrEMBL)
GGC-RAB4B ProteinP61018 (Uniprot-TrEMBL)
GGC-RAB5A ProteinP20339 (Uniprot-TrEMBL)
GGC-RAB5B ProteinP61020 (Uniprot-TrEMBL)
GGC-RAB5C ProteinP51148 (Uniprot-TrEMBL)
GGC-RAB6A ProteinP20340 (Uniprot-TrEMBL)
GGC-RAB6B ProteinQ9NRW1 (Uniprot-TrEMBL)
GGC-RAB7A ProteinP51149 (Uniprot-TrEMBL)
GGC-RAB7B ProteinQ96AH8 (Uniprot-TrEMBL)
GGC-RAB8A ProteinP61006 (Uniprot-TrEMBL)
GGC-RAB8B ProteinQ92930 (Uniprot-TrEMBL)
GGC-RAB9A ProteinP51151 (Uniprot-TrEMBL)
GGC-RAB9B ProteinQ9NP90 (Uniprot-TrEMBL)
PPi(3-)MetaboliteCHEBI:33019 (ChEBI)
RAB10 ProteinP61026 (Uniprot-TrEMBL)
RAB11A ProteinP62491 (Uniprot-TrEMBL)
RAB11B ProteinQ15907 (Uniprot-TrEMBL)
RAB12 ProteinQ6IQ22 (Uniprot-TrEMBL)
RAB13 ProteinP51153 (Uniprot-TrEMBL)
RAB14 ProteinP61106 (Uniprot-TrEMBL)
RAB15 ProteinP59190 (Uniprot-TrEMBL)
RAB17 ProteinQ9H0T7 (Uniprot-TrEMBL)
RAB18 ProteinQ9NP72 (Uniprot-TrEMBL)
RAB19 ProteinA4D1S5 (Uniprot-TrEMBL)
RAB1A ProteinP62820 (Uniprot-TrEMBL)
RAB1B ProteinQ9H0U4 (Uniprot-TrEMBL)
RAB20 ProteinQ9NX57 (Uniprot-TrEMBL)
RAB21 ProteinQ9UL25 (Uniprot-TrEMBL)
RAB22A ProteinQ9UL26 (Uniprot-TrEMBL)
RAB23 ProteinQ9ULC3 (Uniprot-TrEMBL)
RAB24 ProteinQ969Q5 (Uniprot-TrEMBL)
RAB25 ProteinP57735 (Uniprot-TrEMBL)
RAB26 ProteinQ9ULW5 (Uniprot-TrEMBL)
RAB27A ProteinP51159 (Uniprot-TrEMBL)
RAB27B ProteinO00194 (Uniprot-TrEMBL)
RAB29 ProteinO14966 (Uniprot-TrEMBL)
RAB2A ProteinP61019 (Uniprot-TrEMBL)
RAB2B ProteinQ8WUD1 (Uniprot-TrEMBL)
RAB30 ProteinQ15771 (Uniprot-TrEMBL)
RAB31 ProteinQ13636 (Uniprot-TrEMBL)
RAB32 ProteinQ13637 (Uniprot-TrEMBL)
RAB33A ProteinQ14088 (Uniprot-TrEMBL)
RAB33B ProteinQ9H082 (Uniprot-TrEMBL)
RAB34 ProteinQ9BZG1 (Uniprot-TrEMBL)
RAB35 ProteinQ15286 (Uniprot-TrEMBL)
RAB36 ProteinO95755 (Uniprot-TrEMBL)
RAB37 ProteinQ96AX2 (Uniprot-TrEMBL)
RAB38 ProteinP57729 (Uniprot-TrEMBL)
RAB39A ProteinQ14964 (Uniprot-TrEMBL)
RAB39B ProteinQ96DA2 (Uniprot-TrEMBL)
RAB3A ProteinP20336 (Uniprot-TrEMBL)
RAB3B ProteinP20337 (Uniprot-TrEMBL)
RAB3C ProteinQ96E17 (Uniprot-TrEMBL)
RAB3D ProteinO95716 (Uniprot-TrEMBL)
RAB40A ProteinQ8WXH6 (Uniprot-TrEMBL)
RAB40B ProteinQ12829 (Uniprot-TrEMBL)
RAB40C ProteinQ96S21 (Uniprot-TrEMBL)
RAB41 ProteinQ5JT25 (Uniprot-TrEMBL)
RAB42 ProteinQ8N4Z0 (Uniprot-TrEMBL)
RAB43 ProteinQ86YS6 (Uniprot-TrEMBL)
RAB44 ProteinQ7Z6P3 (Uniprot-TrEMBL)
RAB4A ProteinP20338 (Uniprot-TrEMBL)
RAB4B ProteinP61018 (Uniprot-TrEMBL)
RAB5A ProteinP20339 (Uniprot-TrEMBL)
RAB5B ProteinP61020 (Uniprot-TrEMBL)
RAB5C ProteinP51148 (Uniprot-TrEMBL)
RAB6A ProteinP20340 (Uniprot-TrEMBL)
RAB6B ProteinQ9NRW1 (Uniprot-TrEMBL)
RAB7A ProteinP51149 (Uniprot-TrEMBL)
RAB7B ProteinQ96AH8 (Uniprot-TrEMBL)
RAB8A ProteinP61006 (Uniprot-TrEMBL)
RAB8B ProteinQ92930 (Uniprot-TrEMBL)
RAB9A ProteinP51151 (Uniprot-TrEMBL)
RAB9B ProteinQ9NP90 (Uniprot-TrEMBL)
RABGGTA ProteinQ92696 (Uniprot-TrEMBL)
RABGGTA:RABGGTB:CHMs:GGPPComplexR-HSA-8870462 (Reactome)
RABGGTA:RABGGTBComplexR-HSA-8870460 (Reactome)
RABGGTAProteinQ92696 (Uniprot-TrEMBL)
RABGGTB ProteinP53611 (Uniprot-TrEMBL)
RABGGTBProteinP53611 (Uniprot-TrEMBL)
RABs:GDPComplexR-HSA-8875311 (Reactome)
RGGT:CHMs:RABs:GDPComplexR-HSA-8870467 (Reactome)
RGGTA:RGGTB:GGPPComplexR-HSA-8936087 (Reactome)
geranylgeranyl diphosphateMetaboliteCHEBI:48861 (ChEBI)
geranylgeranyl diphosphate MetaboliteCHEBI:48861 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
CHMs:GGC-RABs:GDPArrowR-HSA-8870469 (Reactome)
CHMsR-HSA-8870465 (Reactome)
FarC-PTP4A2:RABGGTBArrowR-HSA-8870457 (Reactome)
FarC-PTP4A2:RABGGTBTBarR-HSA-8870461 (Reactome)
FarC-PTP4A2R-HSA-8870457 (Reactome)
PPi(3-)ArrowR-HSA-8870469 (Reactome)
R-HSA-8870457 (Reactome) PTP4A2, also known as PRL2, is a member of the protein tyrosine phosphatase family. Farnesylated PTP4A2 interacts with RABGGTB, one of the two catalytic subunits of the RAB geranylgeranyl transferase complex and prevents its association with the other catalytic subunit RABGBTA (Si et al, 2001). In this way, binding of PTP4A2 acts as a negative regulator of RAB geranylgeranylation (reviewed in Gutkowska and Swiezewska, 2012).
R-HSA-8870461 (Reactome) RABGGTA and RABGGTB are the two catalytic subunits of a trimeric RAB geranylgeranyl transferase complex (GGTase); the third subunit is the RAB binding subunit CHM or CHML (reviewed in Leung et al, 2006; Gutkowska and Swiezewska, 2012). RABGGTB also interacts in a mutually exclusive way with PTP4A2, preventing formation of a functional gernanylgeranyl transferase complex (Si et al, 2001; Baron and Seabra, 2008). Newly synthesized RAB proteins are singly or more commonly doubly geranylgeranylated near their C-termini by the GGTase. Geranylgeranylation promotes association of active RAB proteins with membranes. Membrane association is additionally modulated by the nucleotide state of the GTPase through regulatory proteins such as guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and GDP Dissocation Inhibitors (GDIs), among others (reviewed in Stenmark et al, 2009; Wandinger-Ness and Zerial, 2014). An exception to this is RAB13, which has recently been shown to be membrane-associated even in the inactive state and to traffic on vesicles independently of geranylgeranylation (Ioannou et al, 2016).
R-HSA-8870465 (Reactome) The catalytic dimer of RGGTA and B interacts with RAB-escorting proteins 1 or 2 (CHM and CHML, also known as REP-1 and REP-2) to form a functional trimeric RAB geranylgeranyl transferase complex that is capable of binding and geranylgeranylating newly synthesized RAB proteins (Baron and Seabra, 2008; reviewed in Leung et al, 2006; Gutkowska and Swiezewska, 2012). There are two models for the formation of a functional enzyme:substrate complex. In the classical model, unprenylated RAB first binds to REP and is subsequently presented to the catalytic subunits of the GGTase. Incorporation of geranylgeranyl pyrophosphate (GGPP) strengthens the interaction between enzyme and substrate (Andres et al, 1993; Thoma et al, 2001a). In the alternate route, which is depicted in this pathway, RGGTA and RGGTB first bind to REP in a GGPP-dependent manner in the absence of the RAB substrate. Unprenylated RABs then bind to the fully formed GGTase for geranylgeranylation (Thoma et al, 2001b; Baron and Seabra, 2008).
R-HSA-8870466 (Reactome) CHM and CHML are the substrate-binding subunits of the RAB geranylgeranyltransferase (GGTase) complex. CHMs, also known as RAB escort proteins (REPs) bind to unprenylated RAB proteins in the GDP bound state (Seabra, 1996). In the classical model of RAB recruitment, CHM proteins first bind the unprenylated RAB alone and then present it to the catalytic dimer of the RAB GGTase, while in the alternative model, depicted here, RAB recruitment occurs after the GGPP-dependent formation of a highly stable trimeric GGTase complex (Andres et al, 1993; Thoma et al, 2001a; Thoma et al 2001b; Baron and Seabra, 2008). After geranylgeranylation, binding of additional GGPP to the GGTase promotes release of the CHM:RAB complex, possibly through an allosteric mechanism (Baron and Seabra, 2008). CHM proteins remain in complex with the RABs after geranylgeranylation, dissociating after the RAB has been transferred to the target membrane (Alexandrov et al, 1994; Shen and Seabra, 1996; Baron and Seabra, 2008).
R-HSA-8870469 (Reactome) RAB geranylgeranyltransferase (GGTase) recognizes and geranylgeranylates cysteine residues in -CXCX, -CCXX or -XXCC motifs in the C-termini of RAB proteins. Most RAB proteins are doubly geranylgeranylated, most likely in a sequential fashion, but some are only singly modified (Baron and Seabra, 2008; Farnsworth et al 1994; Wilson et al, 1996; Overmeyer et al, 2000; Khosravi-Far et al, 1991; Joberty et al, 1993; Catherman et al, 2013; Leung et al, 2007; Maurer-Stroh et al, 2007). In most cases, geranylgeranylation is required for proper localization and function of the RAB proteins. After geranylgeranylation, RABs remain associated with the RAB escort protein CHM or CHML, which dissociates when the GTPase reaches its target membrane (Alexandrov et al, 1994; Seabra et al, 1996; Shen and Seabra, 1996). Release of the geranylgeranyl RAB:CHM complex from the catalytic subunits is promoted by the binding of additional GGPP to the enzyme (Baron and Seabra, 2008). Once prenylated, RABs cycle between active GTP bound forms that are membrane associated, and inactive GDP bound forms that are cytosolic and associated with RAB GDP dissociation inhibitor (GDI) proteins. Conversion between these states is governed by the activities of guanine nucleotide exchange factors (GEFs), which promote the exchange of GDP for GTP, and GTPase activating proteins (GAPs), which stimulate the intrinsic GTPase activity of RABs (Ullrich et al, 1993; Soldati et al, 1994; reviewed in Wandinger-Ness and Zerial, 2014; Stenmark, 2009).
RABGGTA:RABGGTB:CHMs:GGPPArrowR-HSA-8870465 (Reactome)
RABGGTA:RABGGTB:CHMs:GGPPR-HSA-8870466 (Reactome)
RABGGTA:RABGGTBArrowR-HSA-8870461 (Reactome)
RABGGTA:RABGGTBR-HSA-8870465 (Reactome)
RABGGTAR-HSA-8870461 (Reactome)
RABGGTBR-HSA-8870457 (Reactome)
RABGGTBR-HSA-8870461 (Reactome)
RABs:GDPR-HSA-8870466 (Reactome)
RGGT:CHMs:RABs:GDPArrowR-HSA-8870466 (Reactome)
RGGT:CHMs:RABs:GDPR-HSA-8870469 (Reactome)
RGGT:CHMs:RABs:GDPmim-catalysisR-HSA-8870469 (Reactome)
RGGTA:RGGTB:GGPPArrowR-HSA-8870469 (Reactome)
geranylgeranyl diphosphateR-HSA-8870465 (Reactome)
geranylgeranyl diphosphateR-HSA-8870469 (Reactome)
Personal tools