SIDS susceptibility pathways (Bos taurus)

From WikiPathways

Revision as of 11:38, 21 May 2021 by Eweitz (Talk | contribs)
Jump to: navigation, search
62911246975614104704431, 41, 9695109833631316, 8752, 712411410686889661860201819201217920794011, 36, 828391181860715262010184010537921212121, 9475379329, 439321, 9475937375119937575177575757537755993Increased brainstem hypoplasia with SIDSdepressioncircadian2+SPhIncreased relative SIDS expressionSerotonin SignalingC825TG2989TPutative TRSph: SIDS Phenotype Animal ModelG-proteinDecreased relative SIDS expressionMiscelaneous SIDS AssociatedOtherPutative TRs BrownAdiposeBrainNa+ThermoregulationRapidly-activating K+ CurrentPutative TRsAssociated with Infection and SIDSHOSleepTRrPutative TRPutative TRsNucleusSPhSerotoninTransporterGs signalingHeartTR: Transcriptional RegulationPutative TRPutative TRSIDS Susceptibility PathwaysPutative TRSPh4R/4Rrs2856966NHSoma MembraneVagal ToneCaFocal AdhesionsPutative TRs Slowly-Activating K+ CurrentIVS-191_190insAStabilizationSerotonin Synthesis and MetabolismInfant (<1 year in age)Cardiac myocyteK+SPhNucleusTRrPutative TRsBrainstem neuronAssociated with Energy Metabolism and SIDSBradycardiaG5477ASarcoplasmic ReticulumSIDS associated polymorphismsIncreased long-QT with SIDSp+Gi signalingPutative TRPutative TRHNGq signaling2Putative TRsNerve TerminalCell MembranePutative TRsK+5076122428510145651221111DDCbta-mir-130abta-mir-210NFYAIL10ADCYAP1ALDOATCF3CREB15-HIAARYR2GR-ANFKB15HTR1ATPH2ECE1NKX3-1ACADM5-HTSP1RUNX3TPH1BHLHE40CAV3MAZGNB3NEUROD1PKNOX1TNFRORAHIF1ANKX2-2Glial Cell DifferentiationEP300SCN5ATPH2FEVCTCFFOXM1HADHAEGR1L-TryptophanPPARGC1A5-HTJUNC4AGATA3SP3CREBBPPHOX2BRYR2PBX1ADCYAP1CAV3ASCL1YBX1VIPR2HES1RETHES5bta-mir-16aMGC157163PHOX2A5-HTPPARGC1BADCYAP1R1CREB1MAOATHRBIL6HSPD1AVPKCNQ1NFKB1HIF1ACHRNB4CDCA7LTP73MGC157163FluoxetineMAOAPOU3F2DEAF1SSTR2HES1NicotineVIPR15HTR1ASLC6A4GATA2TPH1HTR2ACREB1SP1SP1MGC157163POU3F2CXCL8NK1RCC2D1ACHRNA4ARDLX2EN1KCNH2GR-AKCNQ1IL6RPLP1MEF2CLMX1BSP1KCNH2SP1MGC157163TLX3ESR2NGFFEVSSTR15-HTPDDCMGC157163C4B18961006469576857113107809222, 1212343555461717811625899149033123205152158177Putative TRsCTNNB1SOX2NANOGPOU5F177MAPK pathway21BDNFNTRK2Gi signalingGABAGABRA110366CHRM2GJA158SNTA1Na+H+28K+KCNJ8GJA1PKC inhibitor 14-3-3Protein Kinase APRKAR2BYWHAEYWHAZPRKAR1BPRKAR2AYWHAQYWHAGPRKAR1AYWHAHYWHABPRKACBPRKACAActivation102GAP JunctionSLC9A3CASP3FMO3124G6PCGCK2GPD1L38GRIN1HADHBHTR3A49SCN3BSCN4BSSTNa+Cardiac VagalExcitation1175-HTGlutamateCa2+32H2OH2OAQP4ApoptosisCPT1AIL1A1IL1B6767IL1RN35IL1372TSPYL198VEGFASCN5A105115DopaminePhenylalanineCHATL-DOPAPAHAcetylcholineCholineTHTyrosineDDCNOS1AP125Gq signalingMAP-2TAC1104MicrotubleStabilizationSLC1A3SLC25A4GlutamateSNAP25Synaptic Vesicle ReleaseGlutamateSST104104TAC1HTR3A112TH9CHAT59119SLC9A3BDNF21NTRK2AQP432GRIN156SP1NFKB2111JUNHDAC9108MYB34CEBPB97SNTA158GPD1LSP1JUNGR-A44MGC15716399JUNCREB1POU2F227CREMMGC157163NFKB1CHRNB2CHRNA7Serotonergic NeuronsHDAC1MBD1MECP2NFKB1CREBBPTRrTRrGABRA1103CREB130VAMP2Extracellular SpacePutative TRsPutative TRsPutative TRsPutative TRsPutative TRsPutative TRsPutative TRsPutative TRsPutative TRsTPPPATP1A3GAPDHHSP90B1TFSPTBN1YWHAGHIF1APutative TRs11820Chronichypoxia


Description

In this model, we provide an integrated view of Sudden Infant Death Syndrome (SIDS) at the level of implicated tissues, signaling networks and genetics. The purpose of this model is to serve as an overview of research in this field and recommend new candidates for more focused or genome wide analyses. SIDS is the sudden and unexpected death of an infant (less than 1 year of age), almost always during deep sleep, where no cause of death can be found by autopsy. Factors that mediate SIDS are likely to be both biological and behavioral, such as sleeping position, environment and stress during a critical phase of infant development (http://www.nichd.nih.gov/health/topics/Sudden_Infant_Death_Syndrome.cfm). While no clear diagnostic markers currently exist, several polymorphisms have been identified which are significantly over-represented in distinct SIDS ethnic population. The large majority of these polymorphisms exist in genes associated with neuronal signaling, cardiac contraction and inflammatory response. These and other lines of evidence suggest that SIDS has a strong autonomic nervous system component (PMID:12350301, PMID: 20124538). One of the neuronal nuclei most strongly implicated in SIDS has been the raphe nucleus of the brain stem. In this nuclei there are ultrastructural, cellular and molecular changes associated with SIDS relative to controls (PMID:19342987, PMID: 20124538). This region of the brain is responsible for the large majority of neuronal serotonin produced and is functionally important in the regulation of normal cardiopulmonary activity, sleep and thermoregulation (see associated references).

Genes associated with serotonin synthesis and receptivity have some of the strongest genetic association with SIDS. Principle among these genes the serotonin biosynthetic enzyme TPH2, the serotonin transporter SLC6A4 and the serotonin receptor HTR1A. SLC6A4 exhibits decreased expression in the raphe nucleus of the medulla oblongata and polymorphisms specifically associated with SIDS (PMID:19342987). In 75% of infants with SIDS, there is decreased HTR1A expression relative to controls along with an increase in the number of raphe serotonin neurons (PMID:19342987). Over-expression of the mouse orthologue of the HTR1A gene in the juvenile mouse medulla produces an analogous phenotype to SIDS with death due to bradycardia and hypothermia (PMID:18599790). These genes as well as those involved in serotonin synthesis are predicted to be transcriptionally regulated by a common factor, FEV (human orthologue of PET-1). PET-1 knock-out results in up to a 90% loss of serotonin neurons (PMID:12546819), while polymorphisms in FEV are over-represented in African American infants with SIDS. In addition to FEV, other transcription factors implicated in the regulation of these genes (Putative transcriptional regulators (TRs)) and FEV are also listed (see associated references). In addition to serotonin, vasopressin signaling and its regulation by serotonin appear to be important in a common pathway of cardiopulmonary regulation (PMID:2058745). A protein that associates with vasopressin signaling, named pituitary adenylate cyclase-activating polypeptide (ADCYAP1), results in a SIDS like phenotype, characterized by a high increase in spontaneous neonatal death, exacerbated by hypothermia and hypoxia (PMID:14608012), when disrupted in mice. Protein for this gene is widely distributed throughout the central nervous system (CNS), including autonomic control centers (PMID:12389210). ADCYAP1 and HTR1A are both predicted to be transcriptionally regulated by REST promoter binding. Regulation of G-protein coupled signaling pathways is illustrated for these genes, however, it is not clear whether ADCYAP1 acts directly upon raphe serotonin neurons.

Another potentially important class of receptors in SIDS is nicotine. Receptors for nicotine are expressed in serotonin neurons of the raphe throughout development (PMID:18986852). Application of nicotine or cigarette smoke is sufficient to inhibit electrical activity of raphe serotonin neurons (PMID:17515803) and chronic nicotine infusion in rats decreases expression of SLC6A4 (PMID:18778441). Furthermore, nicotine exposure reduces both HTR1A and HTR2A immunoreactivity in several nuclei of the brainstem (PMID:17451658).

In addition to CNS abnormalities, several studies have identified a critical link between cardiac arrhythmia (long QT syndrome) and SIDS (PMID:18928334). A number of genetic association studies identified functionally modifying mutations in critical cardiac channels in as many as 10% of all SIDS cases (PMID:18928334). These mutations have been predicted to predispose infants for long QT syndrome and sudden death. The highest proportion of SIDS associated mutations (both inherited and sporadic) is found in the sodium channel gene SCN5A. Examination of putative transcriptional regulators for these genes, highlights a diverse set of factors as well as a relatively common one (SP1).

Finally, several miscellaneous mutations have been identified in genes associated with inflammatory response and thermoregulation. Infection is considered a significant risk factor for SIDS (PMID:19114412). For inflammatory associated genes, such as TNF alpha, interleukin 10 and complement component 4, many of these mutations are only significant in the presence of infection and SIDS. In addition to these mutations, cerebrospinal fluid levels of IL6 are increased in SIDS cases as well as IL6R levels in the arcuate nucleus of the brain, another major site of serotonin synthesis (PMID:19396608). Genes such as ILR6 and ADCYAP1 are also associated with autoimmune disorders, thus SIDS may also be associated with autoinflammation of autonomic centers in the brain. Regulation of thermogenesis by brown adipose tissue has been proposed be an important component of SIDS, given that SIDS incidence is highest in the winter time and that animal models of SIDS demonstrate variation in body temperature. Interestingly, activation of raphe HTR1A decreases both shivering and peripheral vasoconstriction in piglets (18094064). Although a putative significant polymorphism was identified in the thermoregulator gene HSP60, this only occurred in one SIDS case. It is important to note that in the large majority of all these studies, sleeping position and smoking were among the most significant risk factors for SIDS.

In loving memory of Milo Salomonis (http://www.milosalomonis.org).

Comments

HomologyConvert 
This pathway was inferred from Homo sapiens pathway WP706(80056) with a 98.0% conversion rate.

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Gessner BD, Gillingham MB, Birch S, Wood T, Koeller DM; ''Evidence for an association between infant mortality and a carnitine palmitoyltransferase 1A genetic variant.''; Pediatrics, 2010 PubMed Europe PMC Scholia
  2. Forsyth L, Scott HM, Howatson A, Busuttil A, Hume R, Burchell A; ''Genetic variation in hepatic glucose-6-phosphatase system genes in cases of sudden infant death syndrome.''; J Pathol, 2007 PubMed Europe PMC Scholia
  3. Goudet G, Delhalle S, Biemar F, Martial JA, Peers B; ''Functional and cooperative interactions between the homeodomain PDX1, Pbx, and Prep1 factors on the somatostatin promoter.''; J Biol Chem, 1999 PubMed Europe PMC Scholia
  4. Perskvist N, Skoglund K, Edston E, Bäckström G, Lodestad I, Palm U; ''TNF-alpha and IL-10 gene polymorphisms versus cardioimmunological responses in sudden infant death.''; Fetal Pediatr Pathol, 2008 PubMed Europe PMC Scholia
  5. Fukuchi M, Fujii H, Takachi H, Ichinose H, Kuwana Y, Tabuchi A, Tsuda M; ''Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca(2+) signals evoked via the N-methyl-D-aspartate (NMDA) receptor.''; Brain Res, 2010 PubMed Europe PMC Scholia
  6. Tian F, Hu XZ, Wu X, Jiang H, Pan H, Marini AM, Lipsky RH; ''Dynamic chromatin remodeling events in hippocampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1.''; J Neurochem, 2009 PubMed Europe PMC Scholia
  7. Weese-Mayer DE, Berry-Kravis EM, Maher BS, Silvestri JM, Curran ME, Marazita ML; ''Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene.''; Am J Med Genet A, 2003 PubMed Europe PMC Scholia
  8. Echetebu CO, Ali M, Izban MG, MacKay L, Garfield RE; ''Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene.''; Mol Hum Reprod, 1999 PubMed Europe PMC Scholia
  9. Mallard C, Tolcos M, Leditschke J, Campbell P, Rees S; ''Reduction in choline acetyltransferase immunoreactivity but not muscarinic-m2 receptor immunoreactivity in the brainstem of SIDS infants.''; J Neuropathol Exp Neurol, 1999 PubMed Europe PMC Scholia
  10. Winge I, McKinney JA, Ying M, D'Santos CS, Kleppe R, Knappskog PM, Haavik J; ''Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding.''; Biochem J, 2008 PubMed Europe PMC Scholia
  11. ''''; , PubMed Europe PMC Scholia
  12. Inoue A, Ohnishi M, Fukutomi C, Kanoh M, Miyauchi M, Takata T, Tsuchiya D, Nishio H; ''Protein Kinase A-Dependent Substance P Expression by Pituitary Adenylate Cyclase-Activating Polypeptide in Rat Sensory Neuronal Cell Line ND7/23 Cells.''; J Mol Neurosci, 2012 PubMed Europe PMC Scholia
  13. Machaalani R, Say M, Waters KA; ''Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem.''; Toxicol Appl Pharmacol, 2011 PubMed Europe PMC Scholia
  14. Machaalani R, Waters KA; ''Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors.''; Brain, 2008 PubMed Europe PMC Scholia
  15. Adams ME, Dwyer TM, Dowler LL, White RA, Froehner SC; ''Mouse alpha 1- and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain.''; J Biol Chem, 1995 PubMed Europe PMC Scholia
  16. Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX; ''Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling.''; Mol Cell Biol, 2010 PubMed Europe PMC Scholia
  17. Opdal SH, Vege A, Stave AK, Rognum TO; ''The complement component C4 in sudden infant death.''; Eur J Pediatr, 1999 PubMed Europe PMC Scholia
  18. Ou XM, Chen K, Shih JC; ''Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1.''; J Biol Chem, 2006 PubMed Europe PMC Scholia
  19. Semba J, Wakuta M; ''Chronic effect of nicotine on serotonin transporter mRNA in the raphe nucleus of rats: reversal by co-administration of bupropion.''; Psychiatry Clin Neurosci, 2008 PubMed Europe PMC Scholia
  20. Hendricks T, Francis N, Fyodorov D, Deneris ES; ''The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes.''; J Neurosci, 1999 PubMed Europe PMC Scholia
  21. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC; ''''; , PubMed Europe PMC Scholia
  22. Luo X, Xiao J, Lin H, Lu Y, Yang B, Wang Z; ''Genomic structure, transcriptional control, and tissue distribution of HERG1 and KCNQ1 genes.''; Am J Physiol Heart Circ Physiol, 2008 PubMed Europe PMC Scholia
  23. Galehdari H, Pooryasin A, Foroughmand A, Daneshmand S, Saadat M; ''Association between the G1001C polymorphism in the GRIN1 gene promoter and schizophrenia in the Iranian population.''; J Mol Neurosci, 2009 PubMed Europe PMC Scholia
  24. Queiroz-Leite GD, Peruzzetto MC, Neri EA, Rebouças NA; ''Transcriptional regulation of the Na�/H� exchanger NHE3 by chronic exposure to angiotensin II in renal epithelial cells.''; Biochem Biophys Res Commun, 2011 PubMed Europe PMC Scholia
  25. Jiang X, Tian F, Du Y, Copeland NG, Jenkins NA, Tessarollo L, Wu X, Pan H, Hu XZ, Xu K, Kenney H, Egan SE, Turley H, Harris AL, Marini AM, Lipsky RH; ''BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability.''; J Neurosci, 2008 PubMed Europe PMC Scholia
  26. Dergacheva O, Griffioen KJ, Wang X, Kamendi H, Gorini C, Mendelowitz D; ''5-HT(2) receptor subtypes mediate different long-term changes in GABAergic activity to parasympathetic cardiac vagal neurons in the nucleus ambiguus.''; Neuroscience, 2007 PubMed Europe PMC Scholia
  27. Dawson SJ, Yoon SO, Chikaraishi DM, Lillycrop KA, Latchman DS; ''The Oct-2 transcription factor represses tyrosine hydroxylase expression via a heptamer TAATGARAT-like motif in the gene promoter.''; Nucleic Acids Res, 1994 PubMed Europe PMC Scholia
  28. Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ; ''Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome.''; Circ Cardiovasc Genet, 2011 PubMed Europe PMC Scholia
  29. Klintschar M, Heimbold C; ''Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome.''; Pediatrics, 2012 PubMed Europe PMC Scholia
  30. Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ; ''Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor.''; J Biol Chem, 2008 PubMed Europe PMC Scholia
  31. Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR; ''Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism.''; J Neurosci, 2006 PubMed Europe PMC Scholia
  32. Opdal SH, Vege A, Stray-Pedersen A, Rognum TO; ''Aquaporin-4 gene variation and sudden infant death syndrome.''; Pediatr Res, 2010 PubMed Europe PMC Scholia
  33. Martens LK, Kirschner KM, Warnecke C, Scholz H; ''Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  34. Aizawa S, Teramoto K, Yamamuro Y; ''Histone deacetylase 9 as a negative regulator for choline acetyltransferase gene in NG108-15 neuronal cells.''; Neuroscience, 2012 PubMed Europe PMC Scholia
  35. Highet AR, Gibson CS, Goldwater PN; ''Variant interleukin 1 receptor antagonist gene alleles in sudden infant death syndrome.''; Arch Dis Child, 2010 PubMed Europe PMC Scholia
  36. Pérgola PE, Alper RH; ''Vasopressin and autonomic mechanisms mediate cardiovascular actions of central serotonin.''; Am J Physiol, 1991 PubMed Europe PMC Scholia
  37. Yang Z, Lantz PE, Ibdah JA; ''''; , PubMed Europe PMC Scholia
  38. Forsyth L, Hume R, Howatson A, Busuttil A, Burchell A; ''Identification of novel polymorphisms in the glucokinase and glucose-6-phosphatase genes in infants who died suddenly and unexpectedly.''; J Mol Med (Berl), 2005 PubMed Europe PMC Scholia
  39. Maddodi N, Bhat KM, Devi S, Zhang SC, Setaluri V; ''Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1.''; J Biol Chem, 2010 PubMed Europe PMC Scholia
  40. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O; ''miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants.''; Science, 2010 PubMed Europe PMC Scholia
  41. Le François B, Czesak M, Steubl D, Albert PR; ''Transcriptional regulation at a HTR1A polymorphism associated with mental illness.''; Neuropharmacology, 2008 PubMed Europe PMC Scholia
  42. Gallego J, Dauger S; ''PHOX2B mutations and ventilatory control.''; Respir Physiol Neurobiol, 2008 PubMed Europe PMC Scholia
  43. Filonzi L, Magnani C, Lavezzi AM, Rindi G, Parmigiani S, Bevilacqua G, Matturri L, Nonnis Marzano F; ''Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis.''; Neurogenetics, 2009 PubMed Europe PMC Scholia
  44. Bai G, Hoffman PW; ''Transcriptional Regulation of NMDA Receptor Expression''; , 2009 PubMed Europe PMC Scholia
  45. Hauge Opdal S, Melien Ø, Rootwelt H, Vege A, Arnestad M, Ole Rognum T; ''The G protein beta3 subunit 825C allele is associated with sudden infant death due to infection.''; Acta Paediatr, 2006 PubMed Europe PMC Scholia
  46. Sawaguchi T, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Nishida H, Kahn A; ''The correlation between microtubule-associated protein 2 in the brainstem of SIDS victims and physiological data on sleep apnea.''; Early Hum Dev, 2003 PubMed Europe PMC Scholia
  47. Gronli JO, Santucci BA, Leurgans SE, Berry-Kravis EM, Weese-Mayer DE; ''Congenital central hypoventilation syndrome: PHOX2B genotype determines risk for sudden death.''; Pediatr Pulmonol, 2008 PubMed Europe PMC Scholia
  48. Rand CM, Berry-Kravis EM, Fan W, Weese-Mayer DE; ''HTR2A variation and sudden infant death syndrome: a case-control analysis.''; Acta Paediatr, 2009 PubMed Europe PMC Scholia
  49. Orii KE, Aoyama T, Wakui K, Fukushima Y, Miyajima H, Yamaguchi S, Orii T, Kondo N, Hashimoto T; ''Genomic and mutational analysis of the mitochondrial trifunctional protein beta-subunit (HADHB) gene in patients with trifunctional protein deficiency.''; Hum Mol Genet, 1997 PubMed Europe PMC Scholia
  50. Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF, Zimmer L, Costes N, Mulligan R, Reutens D; ''Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy.''; Neuroimage, 2006 PubMed Europe PMC Scholia
  51. Rahim RA, Boyd PA, Ainslie Patrick WJ, Burdon RH; ''Human heat shock protein gene polymorphisms and sudden infant death syndrome.''; Arch Dis Child, 1996 PubMed Europe PMC Scholia
  52. Raynal JF, Dugast C, Le Van Thaï A, Weber MJ; ''Winged helix hepatocyte nuclear factor 3 and POU-domain protein brn-2/N-oct-3 bind overlapping sites on the neuronal promoter of human aromatic L-amino acid decarboxylase gene.''; Brain Res Mol Brain Res, 1998 PubMed Europe PMC Scholia
  53. Teerawatanasuk N, Carr LG; ''CBF/NF-Y activates transcription of the human tryptophan hydroxylase gene through an inverted CCAAT box.''; Brain Res Mol Brain Res, 1998 PubMed Europe PMC Scholia
  54. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P, Heinz A, Walther DJ, Priller J; ''Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons.''; Biol Psychiatry, 2007 PubMed Europe PMC Scholia
  55. Kingsbury TJ, Krueger BK; ''Ca2+, CREB and krüppel: a novel KLF7-binding element conserved in mouse and human TRKB promoters is required for CREB-dependent transcription.''; Mol Cell Neurosci, 2007 PubMed Europe PMC Scholia
  56. Machaalani R, Waters KA; ''NMDA receptor 1 expression in the brainstem of human infants and its relevance to the sudden infant death syndrome (SIDS).''; J Neuropathol Exp Neurol, 2003 PubMed Europe PMC Scholia
  57. Rognum IJ, Haynes RL, Vege A, Yang M, Rognum TO, Kinney HC; ''Interleukin-6 and the serotonergic system of the medulla oblongata in the sudden infant death syndrome.''; Acta Neuropathol, 2009 PubMed Europe PMC Scholia
  58. Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan BH, Ye B, Kroboth S, Vatta M, Tester DJ, January CT, Makielski JC, Ackerman MJ; ''Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current.''; Circ Arrhythm Electrophysiol, 2009 PubMed Europe PMC Scholia
  59. Wiemann M, Frede S, Tschentscher F, Kiwull-Schöne H, Kiwull P, Bingmann D, Brinkmann B, Bajanowski T; ''NHE3 in the human brainstem: implication for the pathogenesis of the sudden infant death syndrome (SIDS)?''; Adv Exp Med Biol, 2008 PubMed Europe PMC Scholia
  60. Brown JW, Sirlin EA, Benoit AM, Hoffman JM, Darnall RA; ''Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet.''; Am J Physiol Regul Integr Comp Physiol, 2008 PubMed Europe PMC Scholia
  61. Lemonde S, Rogaeva A, Albert PR; ''Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene.''; J Neurochem, 2004 PubMed Europe PMC Scholia
  62. Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, Berry-Kravis EM, Tobias R, Goldie C, Bech-Hansen NT, Wilson RJ; ''Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP).''; Acta Paediatr, 2009 PubMed Europe PMC Scholia
  63. Bhat KM, Maddodi N, Shashikant C, Setaluri V; ''Transcriptional regulation of human MAP2 gene in melanoma: role of neuronal bHLH factors and Notch1 signaling.''; Nucleic Acids Res, 2006 PubMed Europe PMC Scholia
  64. Ferrante L, Opdal SH, Vege A, Rognum TO; ''TNF-alpha promoter polymorphisms in sudden infant death.''; Hum Immunol, 2008 PubMed Europe PMC Scholia
  65. Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE; ''Sudden infant death syndrome: rare mutation in the serotonin system FEV gene.''; Pediatr Res, 2007 PubMed Europe PMC Scholia
  66. Livolsi A, Niederhoffer N, Dali-Youcef N, Rambaud C, Olexa C, Mokni W, Gies JP, Bousquet P; ''Cardiac muscarinic receptor overexpression in sudden infant death syndrome.''; PLoS One, 2010 PubMed Europe PMC Scholia
  67. Ferrante L, Opdal SH, Vege A, Rognum TO; ''IL-1 gene cluster polymorphisms and sudden infant death syndrome.''; Hum Immunol, 2010 PubMed Europe PMC Scholia
  68. Pedraza N, Rafel M, Navarro I, Encinas M, Aldea M, Gallego C; ''Mixed lineage kinase phosphorylates transcription factor E47 and inhibits TrkB expression to link neuronal death and survival pathways.''; J Biol Chem, 2009 PubMed Europe PMC Scholia
  69. Shang LL, Sanyal S, Pfahnl AE, Jiao Z, Allen J, Liu H, Dudley SC Jr; ''NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II.''; Am J Physiol Cell Physiol, 2008 PubMed Europe PMC Scholia
  70. Lau P, Nixon SJ, Parton RG, Muscat GE; ''RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR.''; J Biol Chem, 2004 PubMed Europe PMC Scholia
  71. Dugast-Darzacq C, Egloff S, Weber MJ; ''Cooperative dimerization of the POU domain protein Brn-2 on a new motif activates the neuronal promoter of the human aromatic L-amino acid decarboxylase gene.''; Brain Res Mol Brain Res, 2004 PubMed Europe PMC Scholia
  72. Ferrante L, Opdal SH, Vege A, Rognum T; ''Cytokine gene polymorphisms and sudden infant death syndrome.''; Acta Paediatr, 2010 PubMed Europe PMC Scholia
  73. Rand CM, Weese-Mayer DE, Zhou L, Maher BS, Cooper ME, Marazita ML, Berry-Kravis EM; ''Sudden infant death syndrome: Case-control frequency differences in paired like homeobox (PHOX) 2B gene.''; Am J Med Genet A, 2006 PubMed Europe PMC Scholia
  74. Morley ME, Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE; ''Genetic variation in the HTR1A gene and sudden infant death syndrome.''; Am J Med Genet A, 2008 PubMed Europe PMC Scholia
  75. Tester DJ, Ackerman M; ''Cardiomyopathic and Channelopathic Causes of Sudden, Unexpected Death in Infants and Children.''; Annu Rev Med, 2008 PubMed Europe PMC Scholia
  76. Cummings KJ, Pendlebury JD, Sherwood NM, Wilson RJ; ''Sudden neonatal death in PACAP-deficient mice is associated with reduced respiratory chemoresponse and susceptibility to apnoea.''; J Physiol, 2004 PubMed Europe PMC Scholia
  77. Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, Saffitz JE, Duffy HS, Ackerman MJ; ''Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death.''; Circulation, 2012 PubMed Europe PMC Scholia
  78. Van Hoecke M, Prigent-Tessier AS, Garnier PE, Bertrand NM, Filomenko R, Bettaieb A, Marie C, Beley AG; ''Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia.''; Mol Cell Neurosci, 2007 PubMed Europe PMC Scholia
  79. Lin H, Xiao J, Luo X, Wang H, Gao H, Yang B, Wang Z; ''Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1.''; J Cell Physiol, 2007 PubMed Europe PMC Scholia
  80. Pombo PM, Barettino D, Espliguero G, Metsis M, Iglesias T, Rodriguez-Pena A; ''Transcriptional repression of neurotrophin receptor trkB by thyroid hormone in the developing rat brain.''; J Biol Chem, 2000 PubMed Europe PMC Scholia
  81. Ferrante L, Opdal SH, Vege A, Rognum TO; ''Cytokine gene polymorphisms and sudden infant death syndrome.''; Acta Paediatr, 2009 PubMed Europe PMC Scholia
  82. Cummings KJ, Commons KG, Fan KC, Li A, Nattie EE; ''Severe spontaneous bradycardia associated with respiratory disruptions in rat pups with fewer brainstem 5-HT neurons.''; Am J Physiol Regul Integr Comp Physiol, 2009 PubMed Europe PMC Scholia
  83. Duncan JR, Garland M, Myers MM, Fifer WP, Yang M, Kinney HC, Stark RI; ''Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome.''; J Appl Physiol, 2009 PubMed Europe PMC Scholia
  84. Cargnin F, Flora A, Di Lascio S, Battaglioli E, Longhi R, Clementi F, Fornasari D; ''PHOX2B regulates its own expression by a transcriptional auto-regulatory mechanism.''; J Biol Chem, 2005 PubMed Europe PMC Scholia
  85. Sullivan GM, Ogden RT, Oquendo MA, Kumar JS, Simpson N, Huang YY, Mann JJ, Parsey RV; ''Positron Emission Tomography Quantification of Serotonin-1A Receptor Binding in Medication-Free Bipolar Depression.''; Biol Psychiatry, 2009 PubMed Europe PMC Scholia
  86. Greco SJ, Smirnov SV, Murthy RG, Rameshwar P; ''Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  87. Player A, Wang Y, Bhattacharya B, Rao M, Puri RK, Kawasaki ES; ''Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines.''; Stem Cells Dev, 2006 PubMed Europe PMC Scholia
  88. Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, Klenova E, Quinn JP; ''Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat.''; J Neurosci, 2007 PubMed Europe PMC Scholia
  89. Miyata A, Sugawara H, Iwata S, Shimizu T, Kangawa K; ''[The regulatory mechanism for neuron specific expression of PACAP gene]''; Nippon Yakurigaku Zasshi, 2004 PubMed Europe PMC Scholia
  90. Inoue K, Ito K, Osato M, Lee B, Bae SC, Ito Y; ''The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  91. Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K; ''MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter.''; J Biol Chem, 2012 PubMed Europe PMC Scholia
  92. Donner N, Handa RJ; ''Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei.''; Neuroscience, 2009 PubMed Europe PMC Scholia
  93. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, Marazita ML; ''Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development.''; Pediatr Res, 2004 PubMed Europe PMC Scholia
  94. Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, Krous HF, Haas EA, Stanley C, Nattie EE, Trachtenberg FL, Kinney HC; ''Brainstem serotonergic deficiency in sudden infant death syndrome.''; JAMA, 2010 PubMed Europe PMC Scholia
  95. Sudhakar C, Jain N, Swarup G; ''Sp1-like sequences mediate human caspase-3 promoter activation by p73 and cisplatin.''; FEBS J, 2008 PubMed Europe PMC Scholia
  96. Scott MM, Krueger KC, Deneris ES; ''A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development.''; J Neurosci, 2005 PubMed Europe PMC Scholia
  97. Valdivia CR, Ueda K, Ackerman MJ, Makielski JC; ''GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A.''; Am J Physiol Heart Circ Physiol, 2009 PubMed Europe PMC Scholia
  98. Puffenberger EG, Hu-Lince D, Parod JM, Craig DW, Dobrin SE, Conway AR, Donarum EA, Strauss KA, Dunckley T, Cardenas JF, Melmed KR, Wright CA, Liang W, Stafford P, Flynn CR, Morton DH, Stephan DA; ''Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function.''; Proc Natl Acad Sci U S A, 2004 PubMed Europe PMC Scholia
  99. Kim SM, Yang JW, Park MJ, Lee JK, Kim SU, Lee YS, Lee MA; ''Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor.''; Biochem Biophys Res Commun, 2006 PubMed Europe PMC Scholia
  100. Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, Ackerman MJ; ''A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors.''; Heart Rhythm, 2007 PubMed Europe PMC Scholia
  101. Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, Berry-Kravis EM, Tobias R, Goldie C, Bech-Hansen NT, Wilson RJ; ''Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP).''; Acta Paediatr, 2009 PubMed Europe PMC Scholia
  102. Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, Stapels MD, Borenstein NS, Belliveau RA, Haas EA, Stanley C, Krous HF, Steen H, Kinney HC; ''Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome.''; Mol Cell Proteomics, 2012 PubMed Europe PMC Scholia
  103. Broadbelt KG, Paterson DS, Belliveau RA, Trachtenberg FL, Haas EA, Stanley C, Krous HF, Kinney HC; ''Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome.''; J Neuropathol Exp Neurol, 2011 PubMed Europe PMC Scholia
  104. Lavezzi AM, Ottaviani G, Matturri L; ''Role of somatostatin and apoptosis in breathing control in sudden perinatal and infant unexplained death.''; Clin Neuropathol, 2004 PubMed Europe PMC Scholia
  105. Dashash M, Pravica V, Hutchinson IV, Barson AJ, Drucker DB; ''Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms.''; Hum Immunol, 2006 PubMed Europe PMC Scholia
  106. Nagamoto-Combs K, Piech KM, Best JA, Sun B, Tank AW; ''Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic amp-responsive element binding protein-independent regulation.''; J Biol Chem, 1997 PubMed Europe PMC Scholia
  107. Kelly TJ, Souza AL, Clish CB, Puigserver P; ''A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like.''; Mol Cell Biol, 2011 PubMed Europe PMC Scholia
  108. Schmitt M, Bausero P, Simoni P, Queuche D, Geoffroy V, Marschal C, Kempf J, Quirin-Stricker C; ''Positive and negative effects of nuclear receptors on transcription activation by AP-1 of the human choline acetyltransferase proximal promoter.''; J Neurosci Res, 1995 PubMed Europe PMC Scholia
  109. Toliver-Kinsky T, Wood T, Perez-Polo JR; ''Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells.''; J Neurochem, 2000 PubMed Europe PMC Scholia
  110. Alenina N, Bashammakh S, Bader M; ''Specification and differentiation of serotonergic neurons.''; Stem Cell Rev, 2006 PubMed Europe PMC Scholia
  111. Umenishi F, Verkman AS; ''Isolation and functional analysis of alternative promoters in the human aquaporin-4 water channel gene.''; Genomics, 1998 PubMed Europe PMC Scholia
  112. Klintschar M, Reichenpfader B, Saternus KS; ''A functional polymorphism in the tyrosine hydroxylase gene indicates a role of noradrenalinergic signaling in sudden infant death syndrome.''; J Pediatr, 2008 PubMed Europe PMC Scholia
  113. Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MV, Zukin RS; ''Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death.''; Proc Natl Acad Sci U S A, 2012 PubMed Europe PMC Scholia
  114. Robert I, Sutter A, Quirin-Stricker C; ''Synergistic activation of the human choline acetyltransferase gene by c-Myb and C/EBPbeta.''; Brain Res Mol Brain Res, 2002 PubMed Europe PMC Scholia
  115. Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, Makielski JC, Ackerman MJ; ''Sudden infant death syndrome-associated mutations in the sodium channel beta subunits.''; Heart Rhythm, 2010 PubMed Europe PMC Scholia
  116. Patel PD, Bochar DA, Turner DL, Meng F, Mueller HM, Pontrello CG; ''Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  117. Dergacheva O, Kamendi H, Wang X, Pinol RM, Frank J, Jameson H, Gorini C, Mendelowitz D; ''The role of 5-HT3 and other excitatory receptors in central cardiorespiratory responses to hypoxia: implications for sudden infant death syndrome.''; Pediatr Res, 2009 PubMed Europe PMC Scholia
  118. Côté F, Schussler N, Boularand S, Peirotes A, Thévenot E, Mallet J, Vodjdani G; ''Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH ) gene in the pineal gland.''; J Neurochem, 2002 PubMed Europe PMC Scholia
  119. Poetsch M, Nottebaum BJ, Wingenfeld L, Frede S, Vennemann M, Bajanowski T; ''Impact of Sodium/Proton Exchanger 3 Gene Variants on Sudden Infant Death Syndrome.''; J Pediatr, 2009 PubMed Europe PMC Scholia
  120. Narita N, Narita M, Takashima S, Nakayama M, Nagai T, Okado N; ''Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population.''; Pediatrics, 2001 PubMed Europe PMC Scholia
  121. Nishida K, Otsu K, Hori M, Kuzuya T, Tada M; ''Cloning and characterization of the 5'-upstream regulatory region of the Ca(2+)-release channel gene of cardiac sarcoplasmic reticulum.''; Eur J Biochem, 1996 PubMed Europe PMC Scholia
  122. Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L; ''Sudden Infant Death Syndrome and Sudden Intrauterine Unexplained Death: Correlation Between Hypoplasia of raphé Nuclei and Serotonin Transporter Gene Promoter Polymorphism.''; Pediatr Res, 2009 PubMed Europe PMC Scholia
  123. Fukuchi M, Tabuchi A, Tsuda M; ''Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons.''; J Pharmacol Sci, 2005 PubMed Europe PMC Scholia
  124. Poetsch M, Czerwinski M, Wingenfeld L, Vennemann M, Bajanowski T; ''A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS).''; Int J Legal Med, 2010 PubMed Europe PMC Scholia
  125. Osawa M, Kimura R, Hasegawa I, Mukasa N, Satoh F; ''SNP association and sequence analysis of the NOS1AP gene in SIDS.''; Leg Med (Tokyo), 2009 PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
128758view13:03, 21 February 2024EweitzUpdate disease node
117605view11:38, 21 May 2021EweitzModified title
105981view11:51, 16 August 2019MaintBotHMDB identifier normalization
101986view21:16, 21 November 2018EgonwRemoved whitespace in PubMed identifiers.
92922view11:38, 17 July 2017EgonwReplaced a CAS of a salt with that of the parent compound.
80686view15:22, 30 June 2015MkutmonNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
5-HIAAMetaboliteHMDB0000763 (HMDB)
5-HTMetaboliteHMDB0000259 (HMDB)
5-HTPMetaboliteHMDB0000472 (HMDB)
5HTR1AGeneProductENSBTAG00000040439 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3350
ACADMGeneProductENSBTAG00000024240 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:34
ADCYAP1GeneProductENSBTAG00000020650 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:116
ADCYAP1R1GeneProductENSBTAG00000020247 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:117
ALDOAGeneProductENSBTAG00000012927 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000149925
AQP4GeneProductENSBTAG00000019037 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000171885
ARGeneProductENSBTAG00000022255 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:367
ASCL1GeneProductENSBTAG00000016227 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:429
ATP1A3GeneProductENSBTAG00000018635 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000105409
AVPGeneProductENSBTAG00000008027 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:551
AcetylcholineMetabolite51-84-3 (CAS)
BDNFGeneProductENSBTAG00000008134 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000176697
BHLHE40GeneProductENSBTAG00000009863 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000134107
C4AGeneProductENSBTAG00000006864 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:720
C4BGeneProductENSBTAG00000006864 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:721
CASP3GeneProductENSBTAG00000015874 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000164305
CAV3GeneProductENSBTAG00000022699 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:859
CC2D1AGeneProductENSBTAG00000006068 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:54862
CDCA7LGeneProductENSBTAG00000004976 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:55536
CEBPBGeneProduct
CHATGeneProductENSBTAG00000016814 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000070748
CHRM2GeneProductENSBTAG00000014674 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1129
CHRNA4GeneProductENSBTAG00000017198 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1137
CHRNA7GeneProductENSBTAG00000015775 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000175344
CHRNB2GeneProductENSBTAG00000007517 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1141
CHRNB4GeneProductENSBTAG00000003132 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1143
CPT1AGeneProductENSBTAG00000021999 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000110090
CREB1GeneProductENSBTAG00000005474 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000118260
CREBBPGeneProductENSBTAG00000026403 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000005339
CREMGeneProductENSBTAG00000016060 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000095794
CTCFGeneProductENSBTAG00000013757 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10664
CTNNB1GeneProductENSBTAG00000016420 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000168036
CXCL8GeneProductENSBTAG00000019716 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3576
CholineMetabolite62-49-7 (CAS)
Chronic hypoxiaQ105688 (Wikidata)
DDCGeneProductENSBTAG00000020869 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1644
DEAF1GeneProduct
DLX2GeneProductENSBTAG00000005741 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115844
DopamineMetabolite62-31-7 (CAS)
ECE1GeneProductENSBTAG00000002977 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1889
EGR1GeneProductENSBTAG00000010069 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000120738
EN1GeneProductENSBTAG00000021494 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2019
EP300GeneProductENSBTAG00000016198 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2033
ESR2GeneProductENSBTAG00000004498 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2100
FEVGeneProductENSBTAG00000020191 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:54738
FMO3GeneProductENSBTAG00000020597 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000007933
FOXM1GeneProductENSBTAG00000015875 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2305
FluoxetineMetabolite54910-89-3 (CAS)
G6PCGeneProductENSBTAG00000010184 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000131482
GABAMetaboliteHMDB0000112 (HMDB)
GABRA1GeneProductENSBTAG00000030286 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2554
GAPDHGeneProductENSBTAG00000018554 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000111640
GATA2GeneProductENSBTAG00000019707 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2624
GATA3GeneProductENSBTAG00000017243 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2625
GCKGeneProductENSBTAG00000032288 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000106633
GJA1GeneProductENSBTAG00000001835 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000152661
GNB3GeneProductENSBTAG00000016043 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2784
GPD1LGeneProductENSBTAG00000009826 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000152642
GR-AGeneProductENSBTAG00000019472 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000113580
GRIN1GeneProductENSBTAG00000047202 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000176884
Glial Cell DifferentiationPathwayWP2276 (WikiPathways)
GlutamateMetaboliteHMDB0004135 (HMDB)
HADHAGeneProductENSBTAG00000015038 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3030
HADHBGeneProductENSBTAG00000010083 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000138029
HDAC1GeneProductENSBTAG00000012698 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000116478
HDAC9GeneProductENSBTAG00000003808 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000048052
HES1GeneProductENSBTAG00000000569 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000114315
HES5GeneProductENSBTAG00000002483 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:388585
HIF1AGeneProductENSBTAG00000020935 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000100644
HSP90B1GeneProductENSBTAG00000003362 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166598
HSPD1GeneProductENSBTAG00000012586 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3329
HTR2AGeneProductENSBTAG00000013498 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3356
HTR3AGeneProductENSBTAG00000010791 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166736
IL10GeneProductENSBTAG00000006685 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3586
IL13GeneProductENSBTAG00000015953 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000169194
IL1AGeneProductENSBTAG00000010349 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115008
IL1BGeneProductENSBTAG00000001321 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000125538
IL1RNGeneProductENSBTAG00000019665 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000136689
IL6GeneProductENSBTAG00000014921 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3569
IL6RGeneProductENSBTAG00000018474 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3570
JUNGeneProductENSBTAG00000004037 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000177606
KCNH2GeneProductENSBTAG00000004078 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3757
KCNJ8GeneProductENSBTAG00000002551 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3764
KCNQ1GeneProductENSBTAG00000010986 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3784
L-DOPAMetabolite59-92-7 (CAS)
L-TryptophanMetaboliteHMDB0000929 (HMDB)
LMX1BGeneProductENSBTAG00000010228 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4010
MAOAGeneProductENSBTAG00000016206 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4128
MAP-2GeneProductENSBTAG00000018130 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000078018
MAZGeneProduct
MBD1GeneProductENSBTAG00000003801 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000141644
MECP2GeneProductENSBTAG00000047855 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000169057
MEF2CGeneProductENSBTAG00000020701 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000081189
MGC157163GeneProductENSBTAG00000011789 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000084093
MYBGeneProductENSBTAG00000012074 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000118513
NANOGGeneProductENSBTAG00000020916 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000111704
NEUROD1GeneProductENSBTAG00000001755 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000162992
NFKB1GeneProductENSBTAG00000020270 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000109320
NFKB2GeneProductENSBTAG00000006017 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000077150
NFYAGeneProductENSBTAG00000009905 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4800
NGFGeneProductENSBTAG00000007446 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000134259
NK1RGeneProductENSBTAG00000015575 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115353
NKX2-2GeneProductENSBTAG00000010277 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4821
NKX3-1GeneProductENSBTAG00000001221 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4824
NOS1APGeneProductENSBTAG00000010158 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000198929
NTRK2GeneProductENSBTAG00000010647 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4915
NicotineMetaboliteHMDB0001934 (HMDB)
PAHGeneProductENSBTAG00000012794 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5053
PBX1GeneProductENSBTAG00000013801 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000185630
PHOX2AGeneProductENSBTAG00000019168 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:401
PHOX2BGeneProductENSBTAG00000044166 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:8929
PKNOX1GeneProductENSBTAG00000014153 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000160199
PLP1GeneProductENSBTAG00000006977 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000123560
POU2F2GeneProductENSBTAG00000008556 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000028277
POU3F2GeneProductENSBTAG00000024773 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5454
POU5F1GeneProductENSBTAG00000001873 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000204531
PPARGC1AGeneProductENSBTAG00000017024 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10891
PPARGC1BGeneProductENSBTAG00000012943 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:133522
PRKACAGeneProductENSBTAG00000006642 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5566
PRKACBGeneProductENSBTAG00000011953 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5567
PRKAR1AGeneProductENSBTAG00000008621 (Ensembl)
  • KAP0 HUMAN
  • HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5573
PRKAR1BGeneProductENSBTAG00000046142 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5575
PRKAR2AGeneProductENSBTAG00000014205 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5576
PRKAR2BGeneProductENSBTAG00000014958 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5577
PhenylalanineMetabolite63-91-2 (CAS)
RETGeneProductENSBTAG00000000570 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5979
RORAGeneProductENSBTAG00000015904 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6095
RUNX3GeneProductENSBTAG00000019800 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000020633
RYR2GeneProductENSBTAG00000022886 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6262
SCN3BGeneProductENSBTAG00000016768 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166257
SCN4BGeneProductENSBTAG00000039340 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000177098
SCN5AGeneProductENSBTAG00000009155 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6331
SLC1A3GeneProductENSBTAG00000018245 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000079215
SLC25A4GeneProductENSBTAG00000013208 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000151729
SLC6A4GeneProductENSBTAG00000019349 (Ensembl)
  • Contains an alternative promoter in the first and possibly second intron.
  • HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6532
SLC9A3GeneProductENSBTAG00000004629 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6550
SNAP25GeneProductENSBTAG00000008323 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000132639
SNTA1GeneProductENSBTAG00000000512 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6640
SOX2GeneProductENSBTAG00000011598 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000181449
SP1GeneProductENSBTAG00000003021 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000185591
SP3GeneProductENSBTAG00000000176 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000172845
SPTBN1GeneProductENSBTAG00000006995 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115306
SSTGeneProductENSBTAG00000017312 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000157005
SSTR1GeneProductENSBTAG00000006582 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000139874
SSTR2GeneProductENSBTAG00000017136 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000180616
TAC1GeneProductENSBTAG00000015356 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000006128
TCF3GeneProductENSBTAG00000008695 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000071564
TFGeneProductENSBTAG00000007273 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000091513
THGeneProductENSBTAG00000026768 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000180176
THRBGeneProductENSBTAG00000017802 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000151090
TLX3GeneProductENSBTAG00000010003 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:30012
TNFGeneProductENSBTAG00000025471 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7124
TP73GeneProductENSBTAG00000005812 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000078900
TPH1GeneProductENSBTAG00000005343 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7166
TPH2GeneProductENSBTAG00000020792 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:121278
TPPPGeneProductENSBTAG00000047116 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000171368
TSPYL1GeneProductENSBTAG00000010885 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000189241
TyrosineMetabolite60-18-4 (CAS)
VAMP2GeneProductENSBTAG00000003891 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000220205
VEGFAGeneProductENSBTAG00000047561 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000112715
VIPR1GeneProductENSBTAG00000006567 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7433
VIPR2GeneProductENSBTAG00000037649 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7434
YBX1GeneProductENSBTAG00000017368 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4904
YWHABGeneProductENSBTAG00000016846 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7529
YWHAEGeneProductENSBTAG00000005664 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7531
YWHAGGeneProductENSBTAG00000004077 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000170027
YWHAHGeneProductENSBTAG00000011631 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7533
YWHAQGeneProductENSBTAG00000002108 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10971
YWHAZGeneProductENSBTAG00000000236 (Ensembl)
  • PMID: 9861170 PMID: 1317796
  • HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7534
bta-mir-130aGeneProductENSBTAG00000030122 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000208009
bta-mir-16aGeneProductENSBTAG00000036389 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:406950
bta-mir-210GeneProductENSBTAG00000046437 (Ensembl) HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000199038

Annotated Interactions

No annotated interactions
Personal tools