Sudden infant death syndrome (SIDS) susceptibility pathways (Homo sapiens)

From WikiPathways

Revision as of 18:18, 13 December 2012 by Nsalomonis (Talk | contribs)
Jump to: navigation, search
342011257164112921, 29, 97248743117279312283461018, 10472971241, 40613121421234, 85, 1205928123473742777841218442121426271237979115110121173, 10310381455103551552510559696570, 10096551035525969673, 103SPhK+Vagal Tone2+Thermoregulation Slowly-Activating K+ CurrentSIDS Susceptibility PathwaysPutative TRNHStabilizationNucleusSoma MembraneG2989TPutative TRsSerotonin SignalingPutative TRsSerotoninTransporterSIDS associated polymorphismsTRrBrainCaHeartNerve TerminalCardiac myocyteHNdepressionPutative TRs4R/4R2Miscelaneous SIDS AssociatedPutative TRsG5477APutative TRsIncreased long-QT with SIDSC825TCell MembraneK+IVS-191_190insANucleusGi signalingPutative TRp+ BrownAdiposeSerotonin Synthesis and MetabolismOtherNa+Putative TRsSleepRapidly-activating K+ CurrentSarcoplasmic ReticulumPutative TRrs2856966SPhIncreased brainstem hypoplasia with SIDSAssociated with Energy Metabolism and SIDSPutative TRPutative TRsBradycardiaSph: SIDS Phenotype Animal ModelGs signalingHOIncreased relative SIDS expressionBrainstem neuronAssociated with Infection and SIDSG-proteincircadianSPhSPhPutative TRTR: Transcriptional RegulationGq signalingFocal AdhesionsTRrPutative TRInfant (<1 year in age)Putative TRDecreased relative SIDS expression3598536985118119414110685RYR2CAV3MAOARESTPHOX2ANKX2-2RESTMAZCAV3ADCYAP1DLX2CDCA7LRESTHIF1AIL10HES5ALDOAAVPDDCYBX1EP300ADCYAP1R1TPH1SP1C4BPBX1CREB1GNB3POU3F2NKX3-1RUNX3NFKB1HTR2AFOXM1HTR1AHADHASSTR2KCNQ1NR3C1MAOACREB1KCNH2L-TryptophanARSP1TPH2TLX3CC2D1AHES1HIF1ABHLHE40HES1IL6CTCFECE1IL6RTNFSP1RESTGATA2FEVC4ASP1HSPD1POU3F2NFKB1PKNOX1NR3C1RETFluoxetineLMX1BSP3NFYATPH1MIR16-1JUNHTR1ACREBBP5-HTCHRNA4TP73SCN5ACHRNB4RYR2ACADMEN1MEF2CIL85-HT5-HIAARORASLC6A4Glial Cell DifferentiationESR2KCNH2 SSTR1SP1PPARGC1APPARGC1BMIR13AVIPR25-HTADCYAP1CREB15-HTPMIR210PHOX2BGATA3RESTDDCDEAF1VIPR1EGR1THRBTCF3NicotineTPH2PLP1TACR1FEVNEUROD1NGFKCNQ1ASCL1125744037, 1116555397511330892323954210994331100499726644108121141610921021143Putative TRsCTNNB1SOX2NANOGPOU5F13MAPK pathway103BDNFNTRK2Gi signalingGABAGABRA1116CHRM276GJA150SNTA1Na+H+58K+KCNJ8GJA1PKC inhibitor 14-3-3Protein Kinase APRKAR2BYWHAEYWHAZPRKAR1BPRKAR2AYWHAQYWHAGPRKAR1AYWHAHYWHABPRKACBPRKACAActivation48GAP JunctionSLC9A3CASP3FMO3G6PC1219GCK61GPD1LGRIN1HADHB36HTR3ASCN3BSCN4BSSTNa+Cardiac VagalExcitationChronicHypoxia565-HTGlutamateCa2+68H20H20AQP4ApoptosisCPT1AIL1A80IL1B91IL1RN91IL135782TSPYL1VEGFA90SCN5A3288DopaminePhenylalanineCHATL-DOPAPAHAcetylcholineCholineTHTyrosineDDC99NOS1APGq signalingMAP2TAC19MicrotubleStabilizationSLC1A3SLC25A4GlutamateSNAP25Synaptic Vesicle ReleaseGlutamate9SST9TAC1HTR3A11TH20CHAT1581SLC9A3BDNFNTRK2103AQP468GRIN164SP1NFKB254JUNHDAC96360MYBCEBPB71SNTA150GPD1LSP1JUNNR3C1REST93107JUNCREB1POU2F218CREMRESTNFKB1CHRNB2CHRNA7Serotinergic NeuronsHDAC1MBD1MECP2NFKB1CREBBPTRrTRr116GABRA1CREB178VAMP2Extracellular SpacePutative TRsPutative TRsPutative TRsPutative TRsPutative TRsPutative TRsPutative TRsPutative TRsPutative TRsTPPPATP1A3GAPDHHSP90B1TFSPTBN1YWHAGHIF1APutative TRs62121


Description

In this model, we provide an integrated view of Sudden Infant Death Syndrome (SIDS) at the level of implicated tissues, signaling networks and genetics. The purpose of this model is to serve as an overview of research in this field and recommend new candidates for more focused or genome wide analyses. SIDS is the sudden and unexpected death of an infant (less than 1 year of age), almost always during deep sleep, where no cause of death can be found by autopsy. Factors that mediate SIDS are likely to be both biological and behavioral, such as sleeping position, environment and stress during a critical phase of infant development (http://www.nichd.nih.gov/health/topics/Sudden_Infant_Death_Syndrome.cfm). While no clear diagnostic markers currently exist, several polymorphisms have been identified which are significantly over-represented in distinct SIDS ethnic population. The large majority of these polymorphisms exist in genes associated with neuronal signaling, cardiac contraction and inflammatory response. These and other lines of evidence suggest that SIDS has a strong autonomic nervous system component (PMID:12350301, PMID: 20124538). One of the neuronal nuclei most strongly implicated in SIDS has been the raphe nucleus of the brain stem. In this nuclei there are ultrastructural, cellular and molecular changes associated with SIDS relative to controls (PMID:19342987, PMID: 20124538). This region of the brain is responsible for the large majority of neuronal serotonin produced and is functionally important in the regulation of normal cardiopulmonary activity, sleep and thermoregulation (see associated references).

Genes associated with serotonin synthesis and receptivity have some of the strongest genetic association with SIDS. Principle among these genes the serotonin biosynthetic enzyme TPH2, the serotonin transporter SLC6A4 and the serotonin receptor HTR1A. SLC6A4 exhibits decreased expression in the raphe nucleus of the medulla oblongata and polymorphisms specifically associated with SIDS (PMID:19342987). In 75% of infants with SIDS, there is decreased HTR1A expression relative to controls along with an increase in the number of raphe serotonin neurons (PMID:19342987). Over-expression of the mouse orthologue of the HTR1A gene in the juvenile mouse medulla produces an analogous phenotype to SIDS with death due to bradycardia and hypothermia (PMID:18599790). These genes as well as those involved in serotonin synthesis are predicted to be transcriptionally regulated by a common factor, FEV (human orthologue of PET-1). PET-1 knock-out results in up to a 90% loss of serotonin neurons (PMID:12546819), while polymorphisms in FEV are over-represented in African American infants with SIDS. In addition to FEV, other transcription factors implicated in the regulation of these genes (Putative transcriptional regulators (TRs)) and FEV are also listed (see associated references). In addition to serotonin, vasopressin signaling and its regulation by serotonin appear to be important in a common pathway of cardiopulmonary regulation (PMID:2058745). A protein that associates with vasopressin signaling, named pituitary adenylate cyclase-activating polypeptide (ADCYAP1), results in a SIDS like phenotype, characterized by a high increase in spontaneous neonatal death, exacerbated by hypothermia and hypoxia (PMID:14608012), when disrupted in mice. Protein for this gene is widely distributed throughout the central nervous system (CNS), including autonomic control centers (PMID:12389210). ADCYAP1 and HTR1A are both predicted to be transcriptionally regulated by REST promoter binding. Regulation of G-protein coupled signaling pathways is illustrated for these genes, however, it is not clear whether ADCYAP1 acts directly upon raphe serotonin neurons.

Another potentially important class of receptors in SIDS is nicotine. Receptors for nicotine are expressed in serotonin neurons of the raphe throughout development (PMID:18986852). Application of nicotine or cigarette smoke is sufficient to inhibit electrical activity of raphe serotonin neurons (PMID:17515803) and chronic nicotine infusion in rats decreases expression of SLC6A4 (PMID:18778441). Furthermore, nicotine exposure reduces both HTR1A and HTR2A immunoreactivity in several nuclei of the brainstem (PMID:17451658).

In addition to CNS abnormalities, several studies have identified a critical link between cardiac arrhythmia (long QT syndrome) and SIDS (PMID:18928334). A number of genetic association studies identified functionally modifying mutations in critical cardiac channels in as many as 10% of all SIDS cases (PMID:18928334). These mutations have been predicted to predispose infants for long QT syndrome and sudden death. The highest proportion of SIDS associated mutations (both inherited and sporadic) is found in the sodium channel gene SCN5A. Examination of putative transcriptional regulators for these genes, highlights a diverse set of factors as well as a relatively common one (SP1).

Finally, several miscellaneous mutations have been identified in genes associated with inflammatory response and thermoregulation. Infection is considered a significant risk factor for SIDS (PMID:19114412). For inflammatory associated genes, such as TNF alpha, interleukin 10 and complement component 4, many of these mutations are only significant in the presence of infection and SIDS. In addition to these mutations, cerebrospinal fluid levels of IL6 are increased in SIDS cases as well as IL6R levels in the arcuate nucleus of the brain, another major site of serotonin synthesis (PMID:19396608). Genes such as ILR6 and ADCYAP1 are also associated with autoimmune disorders, thus SIDS may also be associated with autoinflammation of autonomic centers in the brain. Regulation of thermogenesis by brown adipose tissue has been proposed be an important component of SIDS, given that SIDS incidence is highest in the winter time and that animal models of SIDS demonstrate variation in body temperature. Interestingly, activation of raphe HTR1A decreases both shivering and peripheral vasoconstriction in piglets (18094064). Although a putative significant polymorphism was identified in the thermoregulator gene HSP60, this only occurred in one SIDS case. It is important to note that in the large majority of all these studies, sleeping position and smoking were among the most significant risk factors for SIDS.

In loving memory of Milo Salomonis (http://www.milosalomonis.org).

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Morley ME, Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE; ''Genetic variation in the HTR1A gene and sudden infant death syndrome.''; Am J Med Genet A, 2008 PubMed Europe PMC Scholia
  2. Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L; ''Sudden infant death syndrome and sudden intrauterine unexplained death: correlation between hypoplasia of raphé nuclei and serotonin transporter gene promoter polymorphism.''; Pediatr Res, 2009 PubMed Europe PMC Scholia
  3. Sawaguchi T, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Nishida H, Kahn A; ''The correlation between microtubule-associated protein 2 in the brainstem of SIDS victims and physiological data on sleep apnea.''; Early Hum Dev, 2003 PubMed Europe PMC Scholia
  4. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P, Heinz A, Walther DJ, Priller J; ''Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons.''; Biol Psychiatry, 2007 PubMed Europe PMC Scholia
  5. Machaalani R, Waters KA; ''Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors.''; Brain, 2008 PubMed Europe PMC Scholia
  6. Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE; ''Sudden infant death syndrome: rare mutation in the serotonin system FEV gene.''; Pediatr Res, 2007 PubMed Europe PMC Scholia
  7. Miyata A, Sugawara H, Iwata S, Shimizu T, Kangawa K; ''[The regulatory mechanism for neuron specific expression of PACAP gene]''; Nippon Yakurigaku Zasshi, 2004 PubMed Europe PMC Scholia
  8. Klintschar M, Heimbold C; ''Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome.''; Pediatrics, 2012 PubMed Europe PMC Scholia
  9. Dugast-Darzacq C, Egloff S, Weber MJ; ''Cooperative dimerization of the POU domain protein Brn-2 on a new motif activates the neuronal promoter of the human aromatic L-amino acid decarboxylase gene.''; Brain Res Mol Brain Res, 2004 PubMed Europe PMC Scholia
  10. Broadbelt KG, Paterson DS, Belliveau RA, Trachtenberg FL, Haas EA, Stanley C, Krous HF, Kinney HC; ''Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome.''; J Neuropathol Exp Neurol, 2011 PubMed Europe PMC Scholia
  11. Poetsch M, Nottebaum BJ, Wingenfeld L, Frede S, Vennemann M, Bajanowski T; ''Impact of Sodium/Proton Exchanger 3 Gene Variants on Sudden Infant Death Syndrome.''; J Pediatr, 2009 PubMed Europe PMC Scholia
  12. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, Marazita ML; ''Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development.''; Pediatr Res, 2004 PubMed Europe PMC Scholia
  13. Gronli JO, Santucci BA, Leurgans SE, Berry-Kravis EM, Weese-Mayer DE; ''Congenital central hypoventilation syndrome: PHOX2B genotype determines risk for sudden death.''; Pediatr Pulmonol, 2008 PubMed Europe PMC Scholia
  14. Ferrante L, Opdal SH, Vege A, Rognum TO; ''IL-1 gene cluster polymorphisms and sudden infant death syndrome.''; Hum Immunol, 2010 PubMed Europe PMC Scholia
  15. Brown JW, Sirlin EA, Benoit AM, Hoffman JM, Darnall RA; ''Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet.''; Am J Physiol Regul Integr Comp Physiol, 2008 PubMed Europe PMC Scholia
  16. Dergacheva O, Griffioen KJ, Wang X, Kamendi H, Gorini C, Mendelowitz D; ''5-HT(2) receptor subtypes mediate different long-term changes in GABAergic activity to parasympathetic cardiac vagal neurons in the nucleus ambiguus.''; Neuroscience, 2007 PubMed Europe PMC Scholia
  17. Cummings KJ, Commons KG, Fan KC, Li A, Nattie EE; ''Severe spontaneous bradycardia associated with respiratory disruptions in rat pups with fewer brainstem 5-HT neurons.''; Am J Physiol Regul Integr Comp Physiol, 2009 PubMed Europe PMC Scholia
  18. Van Hoecke M, Prigent-Tessier AS, Garnier PE, Bertrand NM, Filomenko R, Bettaieb A, Marie C, Beley AG; ''Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia.''; Mol Cell Neurosci, 2007 PubMed Europe PMC Scholia
  19. Puffenberger EG, Hu-Lince D, Parod JM, Craig DW, Dobrin SE, Conway AR, Donarum EA, Strauss KA, Dunckley T, Cardenas JF, Melmed KR, Wright CA, Liang W, Stafford P, Flynn CR, Morton DH, Stephan DA; ''Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function.''; Proc Natl Acad Sci U S A, 2004 PubMed Europe PMC Scholia
  20. Lin H, Xiao J, Luo X, Wang H, Gao H, Yang B, Wang Z; ''Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1.''; J Cell Physiol, 2007 PubMed Europe PMC Scholia
  21. Gessner BD, Gillingham MB, Birch S, Wood T, Koeller DM; ''Evidence for an association between infant mortality and a carnitine palmitoyltransferase 1A genetic variant.''; Pediatrics, 2010 PubMed Europe PMC Scholia
  22. Pedraza N, Rafel M, Navarro I, Encinas M, Aldea M, Gallego C; ''Mixed lineage kinase phosphorylates transcription factor E47 and inhibits TrkB expression to link neuronal death and survival pathways.''; J Biol Chem, 2009 PubMed Europe PMC Scholia
  23. Valdivia CR, Ueda K, Ackerman MJ, Makielski JC; ''GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A.''; Am J Physiol Heart Circ Physiol, 2009 PubMed Europe PMC Scholia
  24. Jiang X, Tian F, Du Y, Copeland NG, Jenkins NA, Tessarollo L, Wu X, Pan H, Hu XZ, Xu K, Kenney H, Egan SE, Turley H, Harris AL, Marini AM, Lipsky RH; ''BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability.''; J Neurosci, 2008 PubMed Europe PMC Scholia
  25. Adams ME, Dwyer TM, Dowler LL, White RA, Froehner SC; ''Mouse alpha 1- and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain.''; J Biol Chem, 1995 PubMed Europe PMC Scholia
  26. Osawa M, Kimura R, Hasegawa I, Mukasa N, Satoh F; ''SNP association and sequence analysis of the NOS1AP gene in SIDS.''; Leg Med (Tokyo), 2009 PubMed Europe PMC Scholia
  27. Maddodi N, Bhat KM, Devi S, Zhang SC, Setaluri V; ''Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1.''; J Biol Chem, 2010 PubMed Europe PMC Scholia
  28. Forsyth L, Hume R, Howatson A, Busuttil A, Burchell A; ''Identification of novel polymorphisms in the glucokinase and glucose-6-phosphatase genes in infants who died suddenly and unexpectedly.''; J Mol Med (Berl), 2005 PubMed Europe PMC Scholia
  29. Machaalani R, Say M, Waters KA; ''Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem.''; Toxicol Appl Pharmacol, 2011 PubMed Europe PMC Scholia
  30. Fukuchi M, Fujii H, Takachi H, Ichinose H, Kuwana Y, Tabuchi A, Tsuda M; ''Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca(2+) signals evoked via the N-methyl-D-aspartate (NMDA) receptor.''; Brain Res, 2010 PubMed Europe PMC Scholia
  31. Goudet G, Delhalle S, Biemar F, Martial JA, Peers B; ''Functional and cooperative interactions between the homeodomain PDX1, Pbx, and Prep1 factors on the somatostatin promoter.''; J Biol Chem, 1999 PubMed Europe PMC Scholia
  32. Bhat KM, Maddodi N, Shashikant C, Setaluri V; ''Transcriptional regulation of human MAP2 gene in melanoma: role of neuronal bHLH factors and Notch1 signaling.''; Nucleic Acids Res, 2006 PubMed Europe PMC Scholia
  33. Echetebu CO, Ali M, Izban MG, MacKay L, Garfield RE; ''Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene.''; Mol Hum Reprod, 1999 PubMed Europe PMC Scholia
  34. Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, Krous HF, Haas EA, Stanley C, Nattie EE, Trachtenberg FL, Kinney HC; ''Brainstem serotonergic deficiency in sudden infant death syndrome.''; JAMA, 2010 PubMed Europe PMC Scholia
  35. Pombo PM, Barettino D, Espliguero G, Metsis M, Iglesias T, Rodriguez-Pena A; ''Transcriptional repression of neurotrophin receptor trkB by thyroid hormone in the developing rat brain.''; J Biol Chem, 2000 PubMed Europe PMC Scholia
  36. Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ; ''Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome.''; Circ Cardiovasc Genet, 2011 PubMed Europe PMC Scholia
  37. Dashash M, Pravica V, Hutchinson IV, Barson AJ, Drucker DB; ''Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms.''; Hum Immunol, 2006 PubMed Europe PMC Scholia
  38. Highet AR, Gibson CS, Goldwater PN; ''Variant interleukin 1 receptor antagonist gene alleles in sudden infant death syndrome.''; Arch Dis Child, 2010 PubMed Europe PMC Scholia
  39. Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, Berry-Kravis EM, Tobias R, Goldie C, Bech-Hansen NT, Wilson RJ; ''Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP).''; Acta Paediatr, 2009 PubMed Europe PMC Scholia
  40. Ferrante L, Opdal SH, Vege A, Rognum TO; ''Cytokine gene polymorphisms and sudden infant death syndrome.''; Acta Paediatr, 2009 PubMed Europe PMC Scholia
  41. Ferrante L, Opdal SH, Vege A, Rognum T; ''Cytokine gene polymorphisms and sudden infant death syndrome.''; Acta Paediatr, 2010 PubMed Europe PMC Scholia
  42. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O; ''miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants.''; Science, 2010 PubMed Europe PMC Scholia
  43. Kelly TJ, Souza AL, Clish CB, Puigserver P; ''A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like.''; Mol Cell Biol, 2011 PubMed Europe PMC Scholia
  44. Livolsi A, Niederhoffer N, Dali-Youcef N, Rambaud C, Olexa C, Mokni W, Gies JP, Bousquet P; ''Cardiac muscarinic receptor overexpression in sudden infant death syndrome.''; PLoS One, 2010 PubMed Europe PMC Scholia
  45. Mallard C, Tolcos M, Leditschke J, Campbell P, Rees S; ''Reduction in choline acetyltransferase immunoreactivity but not muscarinic-m2 receptor immunoreactivity in the brainstem of SIDS infants.''; J Neuropathol Exp Neurol, 1999 PubMed Europe PMC Scholia
  46. Côté F, Schussler N, Boularand S, Peirotes A, Thévenot E, Mallet J, Vodjdani G; ''Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH ) gene in the pineal gland.''; J Neurochem, 2002 PubMed Europe PMC Scholia
  47. Poetsch M, Czerwinski M, Wingenfeld L, Vennemann M, Bajanowski T; ''A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS).''; Int J Legal Med, 2010 PubMed Europe PMC Scholia
  48. Opdal SH, Vege A, Stray-Pedersen A, Rognum TO; ''Aquaporin-4 gene variation and sudden infant death syndrome.''; Pediatr Res, 2010 PubMed Europe PMC Scholia
  49. Lavezzi AM, Ottaviani G, Matturri L; ''Role of somatostatin and apoptosis in breathing control in sudden perinatal and infant unexplained death.''; Clin Neuropathol, 2004 PubMed Europe PMC Scholia
  50. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC; ''''; , PubMed Europe PMC Scholia
  51. Winge I, McKinney JA, Ying M, D'Santos CS, Kleppe R, Knappskog PM, Haavik J; ''Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding.''; Biochem J, 2008 PubMed Europe PMC Scholia
  52. Semba J, Wakuta M; ''Chronic effect of nicotine on serotonin transporter mRNA in the raphe nucleus of rats: reversal by co-administration of bupropion.''; Psychiatry Clin Neurosci, 2008 PubMed Europe PMC Scholia
  53. Lemonde S, Rogaeva A, Albert PR; ''Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene.''; J Neurochem, 2004 PubMed Europe PMC Scholia
  54. Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, Ackerman MJ; ''A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors.''; Heart Rhythm, 2007 PubMed Europe PMC Scholia
  55. Inoue K, Ito K, Osato M, Lee B, Bae SC, Ito Y; ''The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  56. Wiemann M, Frede S, Tschentscher F, KKiwull-Schöne H, Kiwull P, Bingmann D, Brinkmann B, Bajanowski T; ''NHE3 in the human brainstem: implication for the pathogenesis of the sudden infant death syndrome (SIDS)?''; Adv Exp Med Biol, 2008 PubMed Europe PMC Scholia
  57. Forsyth L, Scott HM, Howatson A, Busuttil A, Hume R, Burchell A; ''Genetic variation in hepatic glucose-6-phosphatase system genes in cases of sudden infant death syndrome.''; J Pathol, 2007 PubMed Europe PMC Scholia
  58. Nishida K, Otsu K, Hori M, Kuzuya T, Tada M; ''Cloning and characterization of the 5'-upstream regulatory region of the Ca(2+)-release channel gene of cardiac sarcoplasmic reticulum.''; Eur J Biochem, 1996 PubMed Europe PMC Scholia
  59. Rand CM, Weese-Mayer DE, Zhou L, Maher BS, Cooper ME, Marazita ML, Berry-Kravis EM; ''Sudden infant death syndrome: Case-control frequency differences in paired like homeobox (PHOX) 2B gene.''; Am J Med Genet A, 2006 PubMed Europe PMC Scholia
  60. Donner N, Handa RJ; ''Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei.''; Neuroscience, 2009 PubMed Europe PMC Scholia
  61. Machaalani R, Waters KA; ''NMDA receptor 1 expression in the brainstem of human infants and its relevance to the sudden infant death syndrome (SIDS).''; J Neuropathol Exp Neurol, 2003 PubMed Europe PMC Scholia
  62. Patel PD, Bochar DA, Turner DL, Meng F, Mueller HM, Pontrello CG; ''Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  63. Toliver-Kinsky T, Wood T, Perez-Polo JR; ''Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells.''; J Neurochem, 2000 PubMed Europe PMC Scholia
  64. Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MV, Zukin RS; ''Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death.''; Proc Natl Acad Sci U S A, 2012 PubMed Europe PMC Scholia
  65. Cargnin F, Flora A, Di Lascio S, Battaglioli E, Longhi R, Clementi F, Fornasari D; ''PHOX2B regulates its own expression by a transcriptional auto-regulatory mechanism.''; J Biol Chem, 2005 PubMed Europe PMC Scholia
  66. Queiroz-Leite GD, Peruzzetto MC, Neri EA, Rebouças NA; ''Transcriptional regulation of the Na⁺/H⁺ exchanger NHE3 by chronic exposure to angiotensin II in renal epithelial cells.''; Biochem Biophys Res Commun, 2011 PubMed Europe PMC Scholia
  67. Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR; ''Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism.''; J Neurosci, 2006 PubMed Europe PMC Scholia
  68. Robert I, Sutter A, Quirin-Stricker C; ''Synergistic activation of the human choline acetyltransferase gene by c-Myb and C/EBPbeta.''; Brain Res Mol Brain Res, 2002 PubMed Europe PMC Scholia
  69. Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX; ''Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling.''; Mol Cell Biol, 2010 PubMed Europe PMC Scholia
  70. Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan BH, Ye B, Kroboth S, Vatta M, Tester DJ, January CT, Makielski JC, Ackerman MJ; ''Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current.''; Circ Arrhythm Electrophysiol, 2009 PubMed Europe PMC Scholia
  71. Filonzi L, Magnani C, Lavezzi AM, Rindi G, Parmigiani S, Bevilacqua G, Matturri L, Nonnis Marzano F; ''Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis.''; Neurogenetics, 2009 PubMed Europe PMC Scholia
  72. Ferrante L, Opdal SH, Vege A, Rognum TO; ''TNF-alpha promoter polymorphisms in sudden infant death.''; Hum Immunol, 2008 PubMed Europe PMC Scholia
  73. Greco SJ, Smirnov SV, Murthy RG, Rameshwar P; ''Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  74. Weese-Mayer DE, Berry-Kravis EM, Maher BS, Silvestri JM, Curran ME, Marazita ML; ''Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene.''; Am J Med Genet A, 2003 PubMed Europe PMC Scholia
  75. Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K; ''MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter.''; J Biol Chem, 2012 PubMed Europe PMC Scholia
  76. Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, Berry-Kravis EM, Tobias R, Goldie C, Bech-Hansen NT, Wilson RJ; ''Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP).''; Acta Paediatr, 2009 PubMed Europe PMC Scholia
  77. Martens LK, Kirschner KM, Warnecke C, Scholz H; ''Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  78. Opdal SH, Vege A, Stave AK, Rognum TO; ''The complement component C4 in sudden infant death.''; Eur J Pediatr, 1999 PubMed Europe PMC Scholia
  79. Inoue A, Ohnishi M, Fukutomi C, Kanoh M, Miyauchi M, Takata T, Tsuchiya D, Nishio H; ''Protein Kinase A-Dependent Substance P Expression by Pituitary Adenylate Cyclase-Activating Polypeptide in Rat Sensory Neuronal Cell Line ND7/23 Cells.''; J Mol Neurosci, 2012 PubMed Europe PMC Scholia
  80. Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, Klenova E, Quinn JP; ''Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat.''; J Neurosci, 2007 PubMed Europe PMC Scholia
  81. Kim SM, Yang JW, Park MJ, Lee JK, Kim SU, Lee YS, Lee MA; ''Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor.''; Biochem Biophys Res Commun, 2006 PubMed Europe PMC Scholia
  82. Fukuchi M, Tabuchi A, Tsuda M; ''Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons.''; J Pharmacol Sci, 2005 PubMed Europe PMC Scholia
  83. Tester DJ, Ackerman M; ''Cardiomyopathic and Channelopathic Causes of Sudden, Unexpected Death in Infants and Children.''; Annu Rev Med, 2008 PubMed Europe PMC Scholia
  84. Perskvist N, Skoglund K, Edston E, Bäckström G, Lodestad I, Palm U; ''TNF-alpha and IL-10 gene polymorphisms versus cardioimmunological responses in sudden infant death.''; Fetal Pediatr Pathol, 2008 PubMed Europe PMC Scholia
  85. Hauge Opdal S, Melien Ø, Rootwelt H, Vege A, Arnestad M, Ole Rognum T; ''The G protein beta3 subunit 825C allele is associated with sudden infant death due to infection.''; Acta Paediatr, 2006 PubMed Europe PMC Scholia
  86. Shang LL, Sanyal S, Pfahnl AE, Jiao Z, Allen J, Liu H, Dudley SC Jr; ''NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II.''; Am J Physiol Cell Physiol, 2008 PubMed Europe PMC Scholia
  87. Scott MM, Krueger KC, Deneris ES; ''A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development.''; J Neurosci, 2005 PubMed Europe PMC Scholia
  88. Le François B, Czesak M, Steubl D, Albert PR; ''Transcriptional regulation at a HTR1A polymorphism associated with mental illness.''; Neuropharmacology, 2008 PubMed Europe PMC Scholia
  89. Sudhakar C, Jain N, Swarup G; ''Sp1-like sequences mediate human caspase-3 promoter activation by p73 and cisplatin.''; FEBS J, 2008 PubMed Europe PMC Scholia
  90. Duncan JR, Garland M, Myers MM, Fifer WP, Yang M, Kinney HC, Stark RI; ''Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome.''; J Appl Physiol, 2009 PubMed Europe PMC Scholia
  91. Aizawa S, Teramoto K, Yamamuro Y; ''Histone deacetylase 9 as a negative regulator for choline acetyltransferase gene in NG108-15 neuronal cells.''; Neuroscience, 2012 PubMed Europe PMC Scholia
  92. Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF, Zimmer L, Costes N, Mulligan R, Reutens D; ''Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy.''; Neuroimage, 2006 PubMed Europe PMC Scholia
  93. Sullivan GM, Ogden RT, Oquendo MA, Kumar JS, Simpson N, Huang YY, Mann JJ, Parsey RV; ''Positron Emission Tomography Quantification of Serotonin-1A Receptor Binding in Medication-Free Bipolar Depression.''; Biol Psychiatry, 2009 PubMed Europe PMC Scholia
  94. Dawson SJ, Yoon SO, Chikaraishi DM, Lillycrop KA, Latchman DS; ''The Oct-2 transcription factor represses tyrosine hydroxylase expression via a heptamer TAATGARAT-like motif in the gene promoter.''; Nucleic Acids Res, 1994 PubMed Europe PMC Scholia
  95. Alenina N, Bashammakh S, Bader M; ''Specification and differentiation of serotonergic neurons.''; Stem Cell Rev, 2006 PubMed Europe PMC Scholia
  96. Kingsbury TJ, Krueger BK; ''Ca2+, CREB and krüppel: a novel KLF7-binding element conserved in mouse and human TRKB promoters is required for CREB-dependent transcription.''; Mol Cell Neurosci, 2007 PubMed Europe PMC Scholia
  97. Galehdari H, Pooryasin A, Foroughmand A, Daneshmand S, Saadat M; ''Association between the G1001C polymorphism in the GRIN1 gene promoter and schizophrenia in the Iranian population.''; J Mol Neurosci, 2009 PubMed Europe PMC Scholia
  98. Cummings KJ, Pendlebury JD, Sherwood NM, Wilson RJ; ''Sudden neonatal death in PACAP-deficient mice is associated with reduced respiratory chemoresponse and susceptibility to apnoea.''; J Physiol, 2004 PubMed Europe PMC Scholia
  99. Nagamoto-Combs K, Piech KM, Best JA, Sun B, Tank AW; ''Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic amp-responsive element binding protein-independent regulation.''; J Biol Chem, 1997 PubMed Europe PMC Scholia
  100. Umenishi F, Verkman AS; ''Isolation and functional analysis of alternative promoters in the human aquaporin-4 water channel gene.''; Genomics, 1998 PubMed Europe PMC Scholia
  101. Rahim RA, Boyd PA, Ainslie Patrick WJ, Burdon RH; ''Human heat shock protein gene polymorphisms and sudden infant death syndrome.''; Arch Dis Child, 1996 PubMed Europe PMC Scholia
  102. Orii KE, Aoyama T, Wakui K, Fukushima Y, Miyajima H, Yamaguchi S, Orii T, Kondo N, Hashimoto T; ''Genomic and mutational analysis of the mitochondrial trifunctional protein beta-subunit (HADHB) gene in patients with trifunctional protein deficiency.''; Hum Mol Genet, 1997 PubMed Europe PMC Scholia
  103. Raynal JF, Dugast C, Le Van Thaï A, Weber MJ; ''Winged helix hepatocyte nuclear factor 3 and POU-domain protein brn-2/N-oct-3 bind overlapping sites on the neuronal promoter of human aromatic L-amino acid decarboxylase gene.''; Brain Res Mol Brain Res, 1998 PubMed Europe PMC Scholia
  104. Pérgola PE, Alper RH; ''Vasopressin and autonomic mechanisms mediate cardiovascular actions of central serotonin.''; Am J Physiol, 1991 PubMed Europe PMC Scholia
  105. ''''; , PubMed Europe PMC Scholia
  106. Luo X, Xiao J, Lin H, Lu Y, Yang B, Wang Z; ''Genomic structure, transcriptional control, and tissue distribution of HERG1 and KCNQ1 genes.''; Am J Physiol Heart Circ Physiol, 2008 PubMed Europe PMC Scholia
  107. Narita N, Narita M, Takashima S, Nakayama M, Nagai T, Okado N; ''Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population.''; Pediatrics, 2001 PubMed Europe PMC Scholia
  108. Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, Makielski JC, Ackerman MJ; ''Sudden infant death syndrome-associated mutations in the sodium channel beta subunits.''; Heart Rhythm, 2010 PubMed Europe PMC Scholia
  109. Hendricks T, Francis N, Fyodorov D, Deneris ES; ''The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes.''; J Neurosci, 1999 PubMed Europe PMC Scholia
  110. Player A, Wang Y, Bhattacharya B, Rao M, Puri RK, Kawasaki ES; ''Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines.''; Stem Cells Dev, 2006 PubMed Europe PMC Scholia
  111. Bai G, Hoffman PW; ''Transcriptional Regulation of NMDA Receptor Expression''; , 2009 PubMed Europe PMC Scholia
  112. Dergacheva O, Kamendi H, Wang X, Pinol RM, Frank J, Jameson H, Gorini C, Mendelowitz D; ''The role of 5-HT3 and other excitatory receptors in central cardiorespiratory responses to hypoxia: implications for sudden infant death syndrome.''; Pediatr Res, 2009 PubMed Europe PMC Scholia
  113. Teerawatanasuk N, Carr LG; ''CBF/NF-Y activates transcription of the human tryptophan hydroxylase gene through an inverted CCAAT box.''; Brain Res Mol Brain Res, 1998 PubMed Europe PMC Scholia
  114. Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ; ''Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor.''; J Biol Chem, 2008 PubMed Europe PMC Scholia
  115. Ou XM, Chen K, Shih JC; ''Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1.''; J Biol Chem, 2006 PubMed Europe PMC Scholia
  116. Yang Z, Lantz PE, Ibdah JA; ''''; , PubMed Europe PMC Scholia
  117. Gallego J, Dauger S; ''PHOX2B mutations and ventilatory control.''; Respir Physiol Neurobiol, 2008 PubMed Europe PMC Scholia
  118. Rognum IJ, Haynes RL, Vege A, Yang M, Rognum TO, Kinney HC; ''Interleukin-6 and the serotonergic system of the medulla oblongata in the sudden infant death syndrome.''; Acta Neuropathol, 2009 PubMed Europe PMC Scholia
  119. Schmitt M, Bausero P, Simoni P, Queuche D, Geoffroy V, Marschal C, Kempf J, Quirin-Stricker C; ''Positive and negative effects of nuclear receptors on transcription activation by AP-1 of the human choline acetyltransferase proximal promoter.''; J Neurosci Res, 1995 PubMed Europe PMC Scholia
  120. Tian F, Hu XZ, Wu X, Jiang H, Pan H, Marini AM, Lipsky RH; ''Dynamic chromatin remodeling events in hippocampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1.''; J Neurochem, 2009 PubMed Europe PMC Scholia
  121. Rand CM, Berry-Kravis EM, Fan W, Weese-Mayer DE; ''HTR2A variation and sudden infant death syndrome: a case-control analysis.''; Acta Paediatr, 2009 PubMed Europe PMC Scholia
  122. Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, Saffitz JE, Duffy HS, Ackerman MJ; ''Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death.''; Circulation, 2012 PubMed Europe PMC Scholia
  123. Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, Stapels MD, Borenstein NS, Belliveau RA, Haas EA, Stanley C, Krous HF, Steen H, Kinney HC; ''Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome.''; Mol Cell Proteomics, 2012 PubMed Europe PMC Scholia
  124. Lau P, Nixon SJ, Parton RG, Muscat GE; ''RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR.''; J Biol Chem, 2004 PubMed Europe PMC Scholia
  125. Klintschar M, Reichenpfader B, Saternus KS; ''A functional polymorphism in the tyrosine hydroxylase gene indicates a role of noradrenalinergic signaling in sudden infant death syndrome.''; J Pediatr, 2008 PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
134932view00:19, 30 July 2024EweitzStandardize case
134865view20:27, 27 July 2024EweitzOntology Term : 'serotonergic neuron' added !
134864view20:27, 27 July 2024EweitzOntology Term : 'brown adipocyte' added !
134863view20:24, 27 July 2024EweitzFix typo: "Miscelaneous" -> "Miscellaneous", omit redundant title
129309view13:49, 26 March 2024MkutmonOntology Term : 'disease pathway' added !
128759view13:07, 21 February 2024EweitzUpgrade disease node
124910view09:44, 31 December 2022EgonwOne last encoding issue
124909view09:19, 31 December 2022EgonwOne more fixed character encoding issue
124908view09:18, 31 December 2022EgonwFixed character encoding issues
124907view08:49, 31 December 2022EgonwConverted into a translation
117178view09:58, 18 May 2021EweitzModified title
113813view13:58, 26 November 2020Finterlysmall graphical update
106830view13:31, 17 September 2019MaintBotHMDB identifier normalization
105829view23:06, 15 August 2019Khanspersmodified description
101924view17:05, 17 November 2018EgonwRemoved whitespace in PubMed identifiers.
96990view11:22, 25 April 2018Fehrhartinteractions to graphical lines
96989view10:00, 25 April 2018Fehrhartinteractions to graphical lines
96988view09:55, 25 April 2018Fehrhartinteractions to graphical lines
96900view14:21, 18 April 2018FehrhartInteractions to graphical lines
96897view14:09, 18 April 2018FehrhartInteractions to graphical lines
96896view14:04, 18 April 2018FehrhartConverted interactions to graphical lines
96895view13:58, 18 April 2018FehrhartConverted interactions to graphical lines
92921view11:36, 17 July 2017EgonwReplaced a CAS of a salt with that of the parent compound.
86078view09:59, 29 June 2016MirellaKalafatiModified title
80056view09:31, 3 May 2015LarsEijssenCorrected spelling error: serotinergic -> serotonergic
78533view10:30, 7 January 2015MaintBotadded missing graphIds
74443view07:26, 20 April 2014EgonwFixed a PubMed ID.
73552view18:27, 30 January 2014EgonwH2O not H20....
70114view19:12, 12 July 2013MaintBotupdated to 2013 schema
68050view12:25, 29 June 2013EgonwFixed a few identifier issues.
68049view12:21, 29 June 2013EgonwFixed char encoding issues in references.
67641view11:43, 26 June 2013DdiglesOntology Term : 'serotonin signaling pathway' added !
59166view18:29, 22 February 2013MaintBotUpdated Ensembl data source
55364view18:39, 13 December 2012NsalomonisPeriodical save, work in progress
55358view18:18, 13 December 2012NsalomonisSpecify description
55355view18:08, 13 December 2012NsalomonisPeriodical save, work in progress
55354view17:58, 13 December 2012NsalomonisPeriodical save, work in progress
55353view17:47, 13 December 2012NsalomonisPeriodical save, work in progress
55352view17:32, 13 December 2012NsalomonisSpecify description
52941view21:29, 24 October 2012NsalomonisSpecify description
52817view01:50, 23 October 2012NsalomonisSpecify description
52816view00:16, 23 October 2012Nsalomonistest-without-DNA
52726view03:39, 20 October 2012NsalomonisSpecify description
52723view03:12, 20 October 2012NsalomonisSpecify description
52722view03:02, 20 October 2012NsalomonisSpecify description
52721view00:57, 20 October 2012NsalomonisSpecify description
52720view00:55, 20 October 2012NsalomonisSpecify description
52719view00:32, 20 October 2012NsalomonisSpecify description
52718view00:20, 20 October 2012NsalomonisSpecify description
52715view23:35, 19 October 2012NsalomonisSpecify description

External references

DataNodes

View all...
NameTypeDatabase referenceComment
5-HIAAMetaboliteHMDB00763 (HMDB)
5-HTMetaboliteHMDB00259 (HMDB)
5-HTPMetaboliteHMDB00472 (HMDB)
ACADMGeneProduct34 (Entrez Gene)
ADCYAP1GeneProduct116 (Entrez Gene)
ADCYAP1R1GeneProduct117 (Entrez Gene)
ALDOAGeneProductENSG00000149925 (Ensembl Human)
AQP4GeneProductENSG00000171885 (Ensembl Human)
ARGeneProduct367 (Entrez Gene)
ASCL1GeneProduct429 (Entrez Gene)
ATP1A3GeneProductENSG00000105409 (Ensembl Human)
AVPGeneProduct551 (Entrez Gene)
AcetylcholineMetabolite51-84-3 (CAS)
BDNFGeneProductENSG00000176697 (Ensembl Human)
BHLHE40GeneProductENSG00000134107 (Ensembl Human)
C4AGeneProduct720 (Entrez Gene)
C4BGeneProduct721 (Entrez Gene)
CASP3GeneProductENSG00000164305 (Ensembl Human)
CAV3GeneProduct859 (Entrez Gene)
CC2D1AGeneProduct54862 (Entrez Gene)
CDCA7LGeneProduct55536 (Entrez Gene)
CEBPBGeneProductENSG00000172216 (Ensembl Human)
CHATGeneProductENSG00000070748 (Ensembl Human)
CHRM2GeneProduct1129 (Entrez Gene)
CHRNA4GeneProduct1137 (Entrez Gene)
CHRNA7GeneProductENSG00000175344 (Ensembl Human)
CHRNB2GeneProduct1141 (Entrez Gene)
CHRNB4GeneProduct1143 (Entrez Gene)
CPT1AGeneProductENSG00000110090 (Ensembl Human)
CREB1GeneProduct1385 (Entrez Gene)
CREB1GeneProductENSG00000118260 (Ensembl Human)
CREBBPGeneProductENSG00000005339 (Ensembl Human)
CREMGeneProductENSG00000095794 (Ensembl Human)
CTCFGeneProduct10664 (Entrez Gene)
CTNNB1GeneProductENSG00000168036 (Ensembl Human)
CholineMetabolite62-49-7 (CAS)
DDCGeneProduct1644 (Entrez Gene)
DEAF1GeneProduct10522 (Entrez Gene)
DLX2GeneProductENSG00000115844 (Ensembl Human)
DopamineMetabolite62-31-7 (CAS)
ECE1GeneProduct1889 (Entrez Gene)
EGR1GeneProductENSG00000120738 (Ensembl Human)
EN1GeneProduct2019 (Entrez Gene)
EP300GeneProduct2033 (Entrez Gene)
ESR2GeneProduct2100 (Entrez Gene)
FEVGeneProduct54738 (Entrez Gene)
FMO3GeneProductENSG00000007933 (Ensembl Human)
FOXM1GeneProduct2305 (Entrez Gene)
FluoxetineMetabolite59333-67-4 (CAS)
G6PCGeneProductENSG00000131482 (Ensembl Human)
GABAMetaboliteHMDB00112 (HMDB)
GABRA1GeneProduct2554 (Entrez Gene)
GAPDHGeneProductENSG00000111640 (Ensembl Human)
GATA2GeneProduct2624 (Entrez Gene)
GATA3GeneProduct2625 (Entrez Gene)
GCKGeneProductENSG00000106633 (Ensembl Human)
GJA1GeneProductENSG00000152661 (Ensembl Human)
GNB3GeneProduct2784 (Entrez Gene)
GPD1LGeneProductENSG00000152642 (Ensembl Human)
GRIN1GeneProductENSG00000176884 (Ensembl Human)
Glial Cell DifferentiationPathwayWP2276
GlutamateMetabolite
GlutamateMetaboliteHMDB04135 (HMDB)
HADHAGeneProduct3030 (Entrez Gene)
HADHBGeneProductENSG00000138029 (Ensembl Human)
HDAC1GeneProductENSG00000116478 (Ensembl Human)
HDAC9GeneProductENSG00000048052 (Ensembl Human)
HES1GeneProduct3280 (Entrez Gene)
HES1GeneProductENSG00000114315 (Ensembl Human)
HES5GeneProduct388585 (Entrez Gene)
HIF1AGeneProductENSG00000100644 (Ensembl Human)
HSP90B1GeneProductENSG00000166598 (Ensembl Human)
HSPD1GeneProduct3329 (Entrez Gene)
HTR1AGeneProduct3350 (Entrez Gene)
HTR2AGeneProduct3356 (Entrez Gene)
HTR3AGeneProductENSG00000166736 (Ensembl Human)
IL10GeneProduct3586 (Entrez Gene)
IL13GeneProductENSG00000169194 (Ensembl Human)
IL1AGeneProductENSG00000115008 (Ensembl Human)
IL1BGeneProductENSG00000125538 (Ensembl Human)
IL1RNGeneProductENSG00000136689 (Ensembl Human)
IL6GeneProduct3569 (Entrez Gene)
IL6RGeneProduct3570 (Entrez Gene)
IL8GeneProduct3576 (Entrez Gene)
JUNGeneProductENSG00000177606 (Ensembl Human)
KCNH2 GeneProduct3757 (Entrez Gene)
KCNH2GeneProduct3757 (Entrez Gene)
KCNJ8GeneProduct3764 (Entrez Gene)
KCNQ1GeneProduct3784 (Entrez Gene)
L-DOPAMetabolite59-92-7 (CAS)
L-TryptophanMetaboliteHMDB00929 (HMDB)
LMX1BGeneProduct4010 (Entrez Gene)
MAOAGeneProduct4128 (Entrez Gene)
MAP2GeneProductENSG00000078018 (Ensembl Human)
MAZGeneProductENSG00000103495 (Ensembl Human)
MBD1GeneProductENSG00000141644 (Ensembl Human)
MECP2GeneProductENSG00000169057 (Ensembl Human)
MEF2CGeneProductENSG00000081189 (Ensembl Human)
MIR13AGeneProductENSG00000208009
MIR16-1GeneProduct406950 (Entrez Gene)
MIR210GeneProductENSG00000199038 (Ensembl Human)
MYBGeneProductENSG00000118513 (Ensembl Human)
NANOGGeneProductENSG00000111704 (Ensembl Human)
NEUROD1GeneProductENSG00000162992 (Ensembl Human)
NFKB1GeneProduct4790 (Entrez Gene)
NFKB1GeneProductENSG00000109320 (Ensembl Human)
NFKB2GeneProductENSG00000077150 (Ensembl Human)
NFYAGeneProduct4800 (Entrez Gene)
NGFGeneProductENSG00000134259 (Ensembl Human)
NKX2-2GeneProduct4821 (Entrez Gene)
NKX3-1GeneProduct4824 (Entrez Gene)
NOS1APGeneProductENSG00000198929 (Ensembl Human)
NR3C1GeneProduct2908 (Entrez Gene)
NR3C1GeneProductENSG00000113580 (Ensembl Human)
NTRK2GeneProduct4915 (Entrez Gene)
NicotineMetaboliteHMDB01934 (HMDB)
PAHGeneProduct5053 (Entrez Gene)
PBX1GeneProductENSG00000185630 (Ensembl Human)
PHOX2AGeneProduct401 (Entrez Gene)
PHOX2BGeneProduct8929 (Entrez Gene)
PKNOX1GeneProductENSG00000160199 (Ensembl Human)
PLP1GeneProductENSG00000123560 (Ensembl Human)
POU2F2GeneProductENSG00000028277 (Ensembl Human)
POU3F2GeneProduct5454 (Entrez Gene)
POU5F1GeneProductENSG00000204531 (Ensembl Human)
PPARGC1AGeneProduct10891 (Entrez Gene)
PPARGC1BGeneProduct133522 (Entrez Gene)
PRKACAGeneProduct5566 (Entrez Gene)
PRKACBGeneProduct5567 (Entrez Gene)
PRKAR1AGeneProduct5573 (Entrez Gene) KAP0 HUMAN
PRKAR1BGeneProduct5575 (Entrez Gene)
PRKAR2AGeneProduct5576 (Entrez Gene)
PRKAR2BGeneProduct5577 (Entrez Gene)
PhenylalanineMetabolite63-91-2 (CAS)
RESTGeneProduct5978 (Entrez Gene)
RESTGeneProductENSG00000084093 (Ensembl Human)
RETGeneProduct5979 (Entrez Gene)
RORAGeneProduct6095 (Entrez Gene)
RUNX3GeneProductENSG00000020633 (Ensembl Human)
RYR2GeneProduct6262 (Entrez Gene)
SCN3BGeneProductENSG00000166257 (Ensembl Human)
SCN4BGeneProductENSG00000177098 (Ensembl Human)
SCN5AGeneProduct6331 (Entrez Gene)
SLC1A3GeneProductENSG00000079215 (Ensembl Human)
SLC25A4GeneProductENSG00000151729 (Ensembl Human)
SLC6A4GeneProduct6532 (Entrez Gene) Contains an alternative promoter in the first and possibly second intron.
SLC9A3GeneProduct6550 (Entrez Gene)
SNAP25GeneProductENSG00000132639 (Ensembl Human)
SNTA1GeneProduct6640 (Entrez Gene)
SOX2GeneProductENSG00000181449 (Ensembl Human)
SP1GeneProduct6667 (Entrez Gene)
SP1GeneProductENSG00000185591 (Ensembl Human)
SP3GeneProductENSG00000172845 (Ensembl Human)
SPTBN1GeneProductENSG00000115306 (Ensembl Human)
SSTGeneProductENSG00000157005 (Ensembl Human)
SSTR1GeneProductENSG00000139874 (Ensembl Human)
SSTR2GeneProductENSG00000180616 (Ensembl Human)
TAC1GeneProductENSG00000006128 (Ensembl Human)
TACR1GeneProductENSG00000115353 (Ensembl Human)
TCF3GeneProductENSG00000071564 (Ensembl Human)
TFGeneProductENSG00000091513 (Ensembl Human)
THGeneProductENSG00000180176 (Ensembl Human)
THRBGeneProductENSG00000151090 (Ensembl Human)
TLX3GeneProduct30012 (Entrez Gene)
TNFGeneProduct7124 (Entrez Gene)
TP73GeneProductENSG00000078900 (Ensembl Human)
TPH1GeneProduct7166 (Entrez Gene)
TPH2GeneProduct121278 (Entrez Gene)
TPPPGeneProductENSG00000171368 (Ensembl Human)
TSPYL1GeneProductENSG00000189241 (Ensembl Human)
TyrosineMetabolite60-18-4 (CAS)
VAMP2GeneProductENSG00000220205 (Ensembl Human)
VEGFAGeneProductENSG00000112715 (Ensembl Human)
VIPR1GeneProduct7433 (Entrez Gene)
VIPR2GeneProduct7434 (Entrez Gene)
YBX1GeneProduct4904 (Entrez Gene)
YWHABGeneProduct7529 (Entrez Gene)
YWHAEGeneProduct7531 (Entrez Gene)
YWHAGGeneProduct7532 (Entrez Gene)
YWHAGGeneProductENSG00000170027 (Ensembl Human)
YWHAHGeneProduct7533 (Entrez Gene)
YWHAQGeneProduct10971 (Entrez Gene)
YWHAZGeneProduct7534 (Entrez Gene) PMID: 9861170 PMID: 1317796

Annotated Interactions

No annotated interactions

Personal tools