Mitochondrial iron-sulfur cluster biogenesis (Homo sapiens)
From WikiPathways
Description
Iron-sulfur (Fe-S) proteins are localized in the cytosol, nucleus, and mitochondria of mammalian cells (reviewed in Stemmler et al. 2010, Rouault 2012, Bandyopadhyay et al. 2008, Lill 2009, Lill et al. 2012). Fe-S protein biogenesis in the mitochondrial matrix involves the iron-sulfur cluster (ISC) assembly machinery. Ferrous iron is transported across the inner mitochondrial membrane into the mitochondrial matrix by Mitoferrin-1 and Mitoferrin-2. (Mitoferrin-1 is enriched in erythroid cells while Mitoferrin-2 is ubiquitous.) Frataxin binds ferrous iron in the mitochondrial matrix. The cysteine desulfurase NFS1 in a subcomplex with ISD11 provides the sulfur by converting cyteine into alanine and forming a persulfide which is used for cluster formation on ISCU, the scaffold protein. Interaction between NFS1 and ISD11 is necessary for desulfurase activity. Frataxin binds to a complex containing NFS1, ISD11, and ISCU and is proposed to function as an iron donor to ISCU or as an allosteric switch that activates sulfur transfer and Fe-S cluster assembly (Tsai and Barondeau 2010). Cluster formation also involves the electron transfer chain ferredoxin reductase and ferredoxin. ISCU initially forms clusters containing 2 iron atoms and 2 sulfur atoms ([2Fe-2S] clusters). They are released by the function of HSP70-HSC20 chaperones and the monothiol glutaredoxin GLRX5 and used for assembly of [2Fe-2S] proteins. Assembly of larger clusters such as [4Fe-4S] clusters may involve the function of ISCA1, ISCA2, and IBA57. The clusters are transferred to apo-enzymes such as the respiratory complexes, aconitase, and lipoate synthase through dedicated targeting factors such as IND1, NFU1, and BOLA3.
Original Pathway at Reactome: http://www.reactome.org/PathwayBrowser/#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=1362409
Quality Tags
Ontology Terms
Bibliography
View all... |
- Schmucker S, Martelli A, Colin F, Page A, Wattenhofer-Donzé M, Reutenauer L, Puccio H.; ''Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex.''; PubMed Europe PMC Scholia
- Fox NG, Chakrabarti M, McCormick SP, Lindahl PA, Barondeau DP.; ''The Human Iron-Sulfur Assembly Complex Catalyzes the Synthesis of [2Fe-2S] Clusters on ISCU2 That Can Be Transferred to Acceptor Molecules.''; PubMed Europe PMC Scholia
- Bandyopadhyay S, Chandramouli K, Johnson MK.; ''Iron-sulfur cluster biosynthesis.''; PubMed Europe PMC Scholia
- Mühlenhoff U, Gerber J, Richhardt N, Lill R.; ''Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p.''; PubMed Europe PMC Scholia
- Cai K, Tonelli M, Frederick RO, Markley JL.; ''Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis.''; PubMed Europe PMC Scholia
- Bridwell-Rabb J, Winn AM, Barondeau DP.; ''Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex.''; PubMed Europe PMC Scholia
- Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR.; ''NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein.''; PubMed Europe PMC Scholia
- Yoon T, Cowan JA.; ''Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins.''; PubMed Europe PMC Scholia
- Brandt ME, Vickery LE.; ''Expression and characterization of human mitochondrial ferredoxin reductase in Escherichia coli.''; PubMed Europe PMC Scholia
- Ciesielski SJ, Schilke BA, Osipiuk J, Bigelow L, Mulligan R, Majewska J, Joachimiak A, Marszalek J, Craig EA, Dutkiewicz R.; ''Interaction of J-protein co-chaperone Jac1 with Fe-S scaffold Isu is indispensable in vivo and conserved in evolution.''; PubMed Europe PMC Scholia
- Shi Y, Ghosh M, Kovtunovych G, Crooks DR, Rouault TA.; ''Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis.''; PubMed Europe PMC Scholia
- Gerber J, Mühlenhoff U, Lill R.; ''An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1.''; PubMed Europe PMC Scholia
- Marinoni EN, de Oliveira JS, Nicolet Y, Raulfs EC, Amara P, Dean DR, Fontecilla-Camps JC.; ''(IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer.''; PubMed Europe PMC Scholia
- Cameron JM, Janer A, Levandovskiy V, Mackay N, Rouault TA, Tong WH, Ogilvie I, Shoubridge EA, Robinson BH.; ''Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes.''; PubMed Europe PMC Scholia
- Stemmler TL, Lesuisse E, Pain D, Dancis A.; ''Frataxin and mitochondrial FeS cluster biogenesis.''; PubMed Europe PMC Scholia
- Bridwell-Rabb J, Iannuzzi C, Pastore A, Barondeau DP.; ''Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis.''; PubMed Europe PMC Scholia
- Tong WH, Rouault T.; ''Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells.''; PubMed Europe PMC Scholia
- Shan Y, Napoli E, Cortopassi G.; ''Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones.''; PubMed Europe PMC Scholia
- Tsai CL, Barondeau DP.; ''Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex.''; PubMed Europe PMC Scholia
- Uhrigshardt H, Singh A, Kovtunovych G, Ghosh M, Rouault TA.; ''Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis.''; PubMed Europe PMC Scholia
- Wang T, Craig EA.; ''Binding of yeast frataxin to the scaffold for Fe-S cluster biogenesis, Isu.''; PubMed Europe PMC Scholia
- Sheftel A, Stehling O, Lill R.; ''Iron-sulfur proteins in health and disease.''; PubMed Europe PMC Scholia
- Johnson DC, Dean DR, Smith AD, Johnson MK.; ''Structure, function, and formation of biological iron-sulfur clusters.''; PubMed Europe PMC Scholia
- Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R, Lill R.; ''Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis.''; PubMed Europe PMC Scholia
- Rouault TA.; ''Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease.''; PubMed Europe PMC Scholia
- Cavadini P, O'Neill HA, Benada O, Isaya G.; ''Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia.''; PubMed Europe PMC Scholia
- Shi Y, Ghosh MC, Tong WH, Rouault TA.; ''Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis.''; PubMed Europe PMC Scholia
- Biederbick A, Stehling O, Rösser R, Niggemeyer B, Nakai Y, Elsässer HP, Lill R.; ''Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation.''; PubMed Europe PMC Scholia
- Huang J, Dizin E, Cowan JA.; ''Mapping iron binding sites on human frataxin: implications for cluster assembly on the ISU Fe-S cluster scaffold protein.''; PubMed Europe PMC Scholia
- Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R.; ''Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins.''; PubMed Europe PMC Scholia
- Brancaccio D, Gallo A, Piccioli M, Novellino E, Ciofi-Baffoni S, Banci L.; ''[4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper.''; PubMed Europe PMC Scholia
- Lill R.; ''Function and biogenesis of iron-sulphur proteins.''; PubMed Europe PMC Scholia
- Stehling O, Elsässer HP, Brückel B, Mühlenhoff U, Lill R.; ''Iron-sulfur protein maturation in human cells: evidence for a function of frataxin.''; PubMed Europe PMC Scholia
- Fox NG, Das D, Chakrabarti M, Lindahl PA, Barondeau DP.; ''Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex.''; PubMed Europe PMC Scholia
- Bandyopadhyay S, Naik SG, O'Carroll IP, Huynh BH, Dean DR, Johnson MK, Dos Santos PC.; ''A proposed role for the Azotobacter vinelandii NfuA protein as an intermediate iron-sulfur cluster carrier.''; PubMed Europe PMC Scholia
- Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Mühlenhoff U.; ''The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.''; PubMed Europe PMC Scholia
- Brancaccio D, Gallo A, Mikolajczyk M, Zovo K, Palumaa P, Novellino E, Piccioli M, Ciofi-Baffoni S, Banci L.; ''Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery.''; PubMed Europe PMC Scholia
- Sheftel AD, Wilbrecht C, Stehling O, Niggemeyer B, Elsässer HP, Mühlenhoff U, Lill R.; ''The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation.''; PubMed Europe PMC Scholia
- Tong WH, Jameson GN, Huynh BH, Rouault TA.; ''Subcellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster.''; PubMed Europe PMC Scholia
- Banci L, Brancaccio D, Ciofi-Baffoni S, Del Conte R, Gadepalli R, Mikolajczyk M, Neri S, Piccioli M, Winkelmann J.; ''[2Fe-2S] cluster transfer in iron-sulfur protein biogenesis.''; PubMed Europe PMC Scholia
- Stehling O, Lill R.; ''The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases.''; PubMed Europe PMC Scholia
- Navarro-Sastre A, Tort F, Stehling O, Uzarska MA, Arranz JA, Del Toro M, Labayru MT, Landa J, Font A, Garcia-Villoria J, Merinero B, Ugarte M, Gutierrez-Solana LG, Campistol J, Garcia-Cazorla A, Vaquerizo J, Riudor E, Briones P, Elpeleg O, Ribes A, Lill R.; ''A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins.''; PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Name | Type | Database reference | Comment |
---|---|---|---|
2 Iron
FXN NFS1 ISD11 ISCU | Complex | REACT_152530 (Reactome) | |
2Fe-2S cluster | Metabolite | CHEBI:33739 (ChEBI) | |
FAD | Metabolite | CHEBI:16238 (ChEBI) | |
FADH2 | Metabolite | CHEBI:17877 (ChEBI) | |
FDX1/1L | Complex | REACT_150657 (Reactome) | |
FDX1/1L | Complex | REACT_151081 (Reactome) | |
FDXR FADH2 | Complex | REACT_150903 (Reactome) | |
FDXR FAD | Complex | REACT_151835 (Reactome) | |
FDXR | Protein | P22570 (Uniprot-TrEMBL) | |
FXN
ISD11 NFS1 ISCU | Complex | REACT_150577 (Reactome) | |
FXN
NFS1 ISD11 ISCU 2Fe-2S Cluster | Complex | REACT_151067 (Reactome) | |
FXN | Protein | Q16595 (Uniprot-TrEMBL) | |
Fe2+ | Metabolite | CHEBI:18248 (ChEBI) | |
Fe2+ | Metabolite | CHEBI:18248 (ChEBI) | |
H+ | Metabolite | CHEBI:15378 (ChEBI) | |
ISCU-1 | Protein | Q9H1K1-1 (Uniprot-TrEMBL) | |
L-Ala | Metabolite | CHEBI:16977 (ChEBI) | |
L-Cys | Metabolite | CHEBI:17561 (ChEBI) | |
LYRM4 | Protein | Q9HD34 (Uniprot-TrEMBL) | |
Mitoferrin1/2 | Protein | REACT_152226 (Reactome) | |
NADP+ | Metabolite | CHEBI:18009 (ChEBI) | |
NADPH | Metabolite | CHEBI:16474 (ChEBI) | |
NFS1-1 | Protein | Q9Y697-1 (Uniprot-TrEMBL) | By analogy with yeast Hfs1, human NFS1 probably has an N-terminal transit peptide that is removed by mitochondrial processing peptidase. The cleavage site is unknown. |
PXLP | Metabolite | CHEBI:18405 (ChEBI) |
Annotated Interactions
View all... |
Source | Target | Type | Database reference | Comment |
---|---|---|---|---|
2 Iron
FXN NFS1 ISD11 ISCU | REACT_150385 (Reactome) | |||
FDX1/1L | Arrow | REACT_150196 (Reactome) | ||
FDX1/1L | Arrow | REACT_150385 (Reactome) | ||
FDX1/1L | REACT_150196 (Reactome) | |||
FDX1/1L | REACT_150385 (Reactome) | |||
FDXR FAD | Arrow | REACT_150196 (Reactome) | ||
FDXR FADH2 | Arrow | REACT_150376 (Reactome) | ||
FDXR FADH2 | REACT_150196 (Reactome) | |||
FDXR FAD | REACT_150376 (Reactome) | |||
FXN
ISD11 NFS1 ISCU | REACT_150163 (Reactome) | |||
FXN
NFS1 ISD11 ISCU 2Fe-2S Cluster | Arrow | REACT_150385 (Reactome) | ||
Fe2+ | REACT_150163 (Reactome) | |||
H+ | Arrow | REACT_150196 (Reactome) | ||
H+ | REACT_150376 (Reactome) | |||
L-Ala | Arrow | REACT_150385 (Reactome) | ||
L-Cys | REACT_150385 (Reactome) | |||
Mitoferrin1/2 | REACT_150305 (Reactome) | |||
NADP+ | Arrow | REACT_150376 (Reactome) | ||
NADPH | REACT_150376 (Reactome) | |||
REACT_150163 (Reactome) | Frataxin (FXN) specifically binds 2 atoms of ferrous iron per monomer (reviewed in Stemmler et al. 2010). Iron bound to Frataxin may (Yoon and Cowan 2003, Gerber et al. 2003) or may not (Schmucker et al. 2011) enhance the interaction of Frataxin with NFS1, ICSU, and ISD11. Frataxin was shown to stimulate the cysteine desulfurase activity of NFS1 and was proposed to be a regulator of sulfur production (Tsai et al. 2010). The formation of sulfide by NFS1 is most efficiently observed when NFS1 is in complex with ISD11, ISCU, and FXN in the presence of cysteine and iron. This means that only the complete system of NFS1, ISD11, ISCU, FXN, cysteine, and iron is fully active as a desulfurase. FXN therefore seems to be a regulator of the cysteine desulfurase permitting sulfide production only when all components needed for Fe-S cluster synthesis are present and the ISCU-bound Fe-S cluster can be formed. | |||
REACT_150196 (Reactome) | Two electrons are transferred from reduced ferredoxin reductase (FDXR, adrenodoxin reductase) to two ferredoxin-1 or ferredoxin-1L (FDX1, FDX1L) molecules, each of which binds one electron. Two protons are released during the reaction. | |||
REACT_150305 (Reactome) | As inferred from biochemical studies in yeast and phenotypic studies in mouse, Mitoferrin-1 (SLC25A37) and Mitoferrin-2 (SLC25A28) transport ferrous iron across the inner mitochondrial membrane. Mitoferrin-1 is essential for maintaining mitochondrial iron uptake in developing erythroid cells; mitoferrin-2 is ubiquitously expressed. Defects in Mitoferrin-1 and Mitoferrin-2 cause a reduction in mitochondrial iron acquisition and biogenesis of iron-sulfur clusters and heme. | |||
REACT_150376 (Reactome) | Two electrons and one proton are transferred from NADPH to the FAD moiety of ferredoxin reductase. A proton from the medium is also taken up by ferredoxin reductase. | |||
REACT_150385 (Reactome) | Iron-sulfur clusters are assembled on the scaffold, ISCU. Based on homology with bacterial IscU:IscS complexes (reviewed in Johnson et al. 2005), one molecule of ISCU is bound to each subunit of a NFS1 dimer (Marinoni et al. 2012). A single complex may thus be capable of assembling two 2Fe-2S clusters. Sulfide is provided by desulfuration of cysteine by NFS1:ISD11 (Biederbick et al. 2006, Shi et al. 2009, Tsai and Barondeau 2010). It has been proposed that ferrous iron is delivered by FXN (Gerber et al. 2003, Yoon and Cowan 2003, Schmucker et al. 2011) bound to ISCU (inferred from yeast, Wang and Craig 2008), although more recent studies suggested that FXN functions as an allosteric effector to stimulate sulfide transfer (Tsai et al. 2010). Holo-ISCU (ISCU bound to a newly synthesized 2Fe-2S cluster) transiently interacts with a dedicated HSP70 chaperone system including Mortalin (GRP75) and HSP20 and GLRX5 (GRX5). Electrons supplied by FDXL1 (FDX2) are required and may reduce the sulfur from S0 to S2-. NFU1 binds an Fe-S cluster (Tong et al. 2003, inferred from bacteria Yuvaniyama et al. 2000) and, from biochemical studies of bacterial NFU1 homologues, is proposed to be an intermediate Fe-S cluster carrier (Bandyopadhy et al. 2008). Mutations in human NFU1 affect only a subset of Fe-S proteins (Navarro-Sastre et al. 2011). |