DNA Damage Reversal (Homo sapiens)

From WikiPathways

Revision as of 12:53, 21 August 2015 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
4-9, 114442-43, 4, 6, 125, 8, 10, 112-41, 2, 4, 61, 2, 4, 62-41, 2, 4, 6447, 9, 11, 13, 14nucleoplasmFe2+ ALKBH3 1-etA-dsDNAASCC3 1-etA-dsDNA 6-OMeG-dsDNA ALKBH2:Fe2+:3-meC-dsDNAASCC3 CH2OZn2+ ALKBH2:Fe2+:1-meA-dsDNAFe2+ ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:3-meC-dsDNAMGMT:Zn2+:6-OMeG-dsDNA2OG1-meA-dsDNA ALKBH2 2OGMGMT ASCC3 ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-etA-dsDNAMGMT:Zn2+ALKBH2 ASCC2 ALKBH3 Fe2+ dsDNAALKBH2 3-meC-dsDNAALKBH2:Fe2+CO2Fe2+ SUCCA2OGCH2OASCC1 SUCCAASCC2 MetC-MGMT 1-etA-dsDNA ALKBH3:Fe2+:ASCC1:ASCC2:ASCC31-meA-dsDNAO2ALKBH3 O2Fe2+ ASCC1 MGMT ALKBH2 Fe2+ ASCC2 3-meC-dsDNA ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-meA-dsDNAO2ASCC1 CO2ASCC1 ASCC2 SUCCAALKBH2:Fe2+:1-etA-dsDNA1-meA-dsDNA ASCC3 Fe2+ MetC-MGMT:Zn2+Zn2+ CH3CHO6-OMeG-dsDNAALKBH3 Zn2+ Fe2+ 3-meC-dsDNA CO265, 8, 10455


Description

DNA damage can be directly reversed by dealkylation (Mitra and Kaina 1993). Three enzymes play a major role in reparative DNA dealkylation: MGMT, ALKBH2 and ALKBH3. MGMT dealkylates O-6-methylguanine in a suicidal reaction that inactivates the enzyme (Daniels et al. 2000, Rasimas et al. 2004, Duguid et al. 2005, Tubbs et al. 2007), while ALKBH2 and ALKBH3 dealkylate 1-methyladenine, 3-methyladenine, 3-methylcytosine and 1-ethyladenine (Duncan et al. 2002, Dango et al. 2011). View original pathway at:Reactome.

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B.; ''Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage.''; PubMed Europe PMC Scholia
  2. Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C, Chen Z.; ''Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition.''; PubMed Europe PMC Scholia
  3. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B.; ''Reversal of DNA alkylation damage by two human dioxygenases.''; PubMed Europe PMC Scholia
  4. Dango S, Mosammaparast N, Sowa ME, Xiong LJ, Wu F, Park K, Rubin M, Gygi S, Harper JW, Shi Y.; ''DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation.''; PubMed Europe PMC Scholia
  5. Sundheim O, Vågbø CB, Bjørås M, Sousa MM, Talstad V, Aas PA, Drabløs F, Krokan HE, Tainer JA, Slupphaug G.; ''Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage.''; PubMed Europe PMC Scholia
  6. Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG.; ''FTO and obesity: mechanisms of association.''; PubMed Europe PMC Scholia
  7. Moore MH, Gulbis JM, Dodson EJ, Demple B, Moody PC.; ''Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli.''; PubMed Europe PMC Scholia
  8. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI.; ''A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.''; PubMed Europe PMC Scholia
  9. Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le Stunff C, Bougnères P, Kovacs P, Marre M, Balkau B, Cauchi S, Chèvre JC, Froguel P.; ''Variation in FTO contributes to childhood obesity and severe adult obesity.''; PubMed Europe PMC Scholia
  10. Chen B, Liu H, Sun X, Yang CG.; ''Mechanistic insight into the recognition of single-stranded and double-stranded DNA substrates by ABH2 and ABH3.''; PubMed Europe PMC Scholia
  11. Duguid EM, Rice PA, He C.; ''The structure of the human AGT protein bound to DNA and its implications for damage detection.''; PubMed Europe PMC Scholia
  12. Rasimas JJ, Dalessio PA, Ropson IJ, Pegg AE, Fried MG.; ''Active-site alkylation destabilizes human O6-alkylguanine DNA alkyltransferase.''; PubMed Europe PMC Scholia
  13. Tubbs JL, Pegg AE, Tainer JA.; ''DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy.''; PubMed Europe PMC Scholia
  14. Lindahl T, Demple B, Robins P.; ''Suicide inactivation of the E. coli O6-methylguanine-DNA methyltransferase.''; PubMed Europe PMC Scholia
  15. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C.; ''N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO.''; PubMed Europe PMC Scholia
  16. Han Z, Niu T, Chang J, Lei X, Zhao M, Wang Q, Cheng W, Wang J, Feng Y, Chai J.; ''Crystal structure of the FTO protein reveals basis for its substrate specificity.''; PubMed Europe PMC Scholia
  17. Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min J.; ''Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation.''; PubMed Europe PMC Scholia
  18. Aas PA, Otterlei M, Falnes PO, Vågbø CB, Skorpen F, Akbari M, Sundheim O, Bjørås M, Slupphaug G, Seeberg E, Krokan HE.; ''Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA.''; PubMed Europe PMC Scholia
  19. Merkestein M, Sellayah D.; ''Role of FTO in Adipocyte Development and Function: Recent Insights.''; PubMed Europe PMC Scholia
  20. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C.; ''ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility.''; PubMed Europe PMC Scholia
  21. Mitra S, Kaina B.; ''Regulation of repair of alkylation damage in mammalian genomes.''; PubMed Europe PMC Scholia
  22. Daniels DS, Mol CD, Arvai AS, Kanugula S, Pegg AE, Tainer JA.; ''Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding.''; PubMed Europe PMC Scholia
  23. Vora RA, Pegg AE, Ealick SE.; ''A new model for how O6-methylguanine-DNA methyltransferase binds DNA.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114980view16:51, 25 January 2021ReactomeTeamReactome version 75
113424view11:50, 2 November 2020ReactomeTeamReactome version 74
112626view16:00, 9 October 2020ReactomeTeamReactome version 73
101542view11:40, 1 November 2018ReactomeTeamreactome version 66
101077view21:23, 31 October 2018ReactomeTeamreactome version 65
100607view19:57, 31 October 2018ReactomeTeamreactome version 64
100158view16:42, 31 October 2018ReactomeTeamreactome version 63
99708view15:11, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99289view12:46, 31 October 2018ReactomeTeamreactome version 62
93865view13:41, 16 August 2017ReactomeTeamreactome version 61
93430view11:23, 9 August 2017ReactomeTeamreactome version 61
86521view09:20, 11 July 2016ReactomeTeamreactome version 56
83251view10:31, 18 November 2015ReactomeTeamVersion54
81358view12:53, 21 August 2015ReactomeTeamVersion53
76827view08:05, 17 July 2014ReactomeTeamFixed remaining interactions
76531view11:50, 16 July 2014ReactomeTeamFixed remaining interactions
75864view09:51, 11 June 2014ReactomeTeamRe-fixing comment source
75564view10:36, 10 June 2014ReactomeTeamReactome 48 Update
74919view13:44, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74563view08:36, 30 April 2014ReactomeTeamReactome46
69018view17:48, 8 July 2013MaintBotUpdated to 2013 gpml schema
45198view10:06, 7 October 2011MartijnVanIerselOntology Term : 'DNA repair pathway' added !
42027view21:51, 4 March 2011MaintBotAutomatic update
39830view05:51, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
1-etA-dsDNA R-HSA-5657646 (Reactome)
1-etA-dsDNAR-HSA-5657646 (Reactome)
1-meA-dsDNA R-HSA-5657602 (Reactome)
1-meA-dsDNAR-HSA-5657602 (Reactome)
2OGMetaboliteCHEBI:30915 (ChEBI)
3-meC-dsDNA R-HSA-5657603 (Reactome)
3-meC-dsDNAR-HSA-5657603 (Reactome)
6-OMeG-dsDNA R-HSA-5657606 (Reactome)
6-OMeG-dsDNAR-HSA-5657606 (Reactome)
ALKBH2 ProteinQ6NS38 (Uniprot-TrEMBL)
ALKBH2:Fe2+:1-etA-dsDNAComplexR-HSA-5657636 (Reactome)
ALKBH2:Fe2+:1-meA-dsDNAComplexR-HSA-5657616 (Reactome)
ALKBH2:Fe2+:3-meC-dsDNAComplexR-HSA-5657613 (Reactome)
ALKBH2:Fe2+ComplexR-HSA-5656464 (Reactome)
ALKBH3 ProteinQ96Q83 (Uniprot-TrEMBL)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-etA-dsDNAComplexR-HSA-5657647 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-meA-dsDNAComplexR-HSA-5657653 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:3-meC-dsDNAComplexR-HSA-5657618 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3ComplexR-HSA-5656407 (Reactome)
ASCC1 ProteinQ8N9N2 (Uniprot-TrEMBL)
ASCC2 ProteinQ9H1I8 (Uniprot-TrEMBL)
ASCC3 ProteinQ8N3C0 (Uniprot-TrEMBL)
CH2OMetaboliteCHEBI:16842 (ChEBI)
CH3CHOMetaboliteCHEBI:15343 (ChEBI)
CO2MetaboliteCHEBI:16526 (ChEBI)
Fe2+ MetaboliteCHEBI:18248 (ChEBI)
MGMT ProteinP16455 (Uniprot-TrEMBL)
MGMT:Zn2+:6-OMeG-dsDNAComplexR-HSA-5657662 (Reactome)
MGMT:Zn2+ComplexR-HSA-5657631 (Reactome)
MetC-MGMT ProteinP16455 (Uniprot-TrEMBL)
MetC-MGMT:Zn2+ComplexR-HSA-5657639 (Reactome)
O2MetaboliteCHEBI:15379 (ChEBI)
SUCCAMetaboliteCHEBI:15741 (ChEBI)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
dsDNAR-HSA-5649637 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
1-etA-dsDNAR-HSA-5657642 (Reactome)
1-etA-dsDNAR-HSA-5657649 (Reactome)
1-meA-dsDNAR-HSA-5657637 (Reactome)
1-meA-dsDNAR-HSA-5657641 (Reactome)
2OGR-HSA-112118 (Reactome)
2OGR-HSA-112120 (Reactome)
2OGR-HSA-112121 (Reactome)
2OGR-HSA-112123 (Reactome)
2OGR-HSA-112124 (Reactome)
2OGR-HSA-112125 (Reactome)
3-meC-dsDNAR-HSA-5657617 (Reactome)
3-meC-dsDNAR-HSA-5657665 (Reactome)
6-OMeG-dsDNAR-HSA-5657651 (Reactome)
ALKBH2:Fe2+:1-etA-dsDNAArrowR-HSA-5657649 (Reactome)
ALKBH2:Fe2+:1-etA-dsDNAR-HSA-112121 (Reactome)
ALKBH2:Fe2+:1-etA-dsDNAmim-catalysisR-HSA-112121 (Reactome)
ALKBH2:Fe2+:1-meA-dsDNAArrowR-HSA-5657641 (Reactome)
ALKBH2:Fe2+:1-meA-dsDNAR-HSA-112118 (Reactome)
ALKBH2:Fe2+:1-meA-dsDNAmim-catalysisR-HSA-112118 (Reactome)
ALKBH2:Fe2+:3-meC-dsDNAArrowR-HSA-5657665 (Reactome)
ALKBH2:Fe2+:3-meC-dsDNAR-HSA-112120 (Reactome)
ALKBH2:Fe2+:3-meC-dsDNAmim-catalysisR-HSA-112120 (Reactome)
ALKBH2:Fe2+ArrowR-HSA-112118 (Reactome)
ALKBH2:Fe2+ArrowR-HSA-112120 (Reactome)
ALKBH2:Fe2+ArrowR-HSA-112121 (Reactome)
ALKBH2:Fe2+R-HSA-5657641 (Reactome)
ALKBH2:Fe2+R-HSA-5657649 (Reactome)
ALKBH2:Fe2+R-HSA-5657665 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-etA-dsDNAArrowR-HSA-5657642 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-etA-dsDNAR-HSA-112125 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-etA-dsDNAmim-catalysisR-HSA-112125 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-meA-dsDNAArrowR-HSA-5657637 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-meA-dsDNAR-HSA-112123 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-meA-dsDNAmim-catalysisR-HSA-112123 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:3-meC-dsDNAArrowR-HSA-5657617 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:3-meC-dsDNAR-HSA-112124 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:3-meC-dsDNAmim-catalysisR-HSA-112124 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3ArrowR-HSA-112123 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3ArrowR-HSA-112124 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3ArrowR-HSA-112125 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3R-HSA-5657617 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3R-HSA-5657637 (Reactome)
ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3R-HSA-5657642 (Reactome)
CH2OArrowR-HSA-112118 (Reactome)
CH2OArrowR-HSA-112120 (Reactome)
CH2OArrowR-HSA-112123 (Reactome)
CH2OArrowR-HSA-112124 (Reactome)
CH3CHOArrowR-HSA-112121 (Reactome)
CH3CHOArrowR-HSA-112125 (Reactome)
CO2ArrowR-HSA-112118 (Reactome)
CO2ArrowR-HSA-112120 (Reactome)
CO2ArrowR-HSA-112121 (Reactome)
CO2ArrowR-HSA-112123 (Reactome)
CO2ArrowR-HSA-112124 (Reactome)
CO2ArrowR-HSA-112125 (Reactome)
MGMT:Zn2+:6-OMeG-dsDNAArrowR-HSA-5657651 (Reactome)
MGMT:Zn2+:6-OMeG-dsDNAR-HSA-73892 (Reactome)
MGMT:Zn2+:6-OMeG-dsDNAmim-catalysisR-HSA-73892 (Reactome)
MGMT:Zn2+R-HSA-5657651 (Reactome)
MetC-MGMT:Zn2+ArrowR-HSA-73892 (Reactome)
O2R-HSA-112118 (Reactome)
O2R-HSA-112120 (Reactome)
O2R-HSA-112121 (Reactome)
O2R-HSA-112123 (Reactome)
O2R-HSA-112124 (Reactome)
O2R-HSA-112125 (Reactome)
R-HSA-112118 (Reactome) ALKBH2 catalyzes the removal of the methyl group from 1-methyladenine (1-meA) in a reaction that depends on oxygen, alpha-ketoglutarate and Fe2+. ALKBH2 thus directly reverses alkylation damage of DNA in the form of 1-meA, releasing formaldehyde. ALKBH2 is ~4-fold more active on dsDNA containing 1-methyladenine than 3-methylcytosine (Duncan et al. 2002).
R-HSA-112120 (Reactome) ALKBH2 catalyzes removal of the methyl group from 3-methylcytosine (3-meC) in a reaction that depends on oxygen, alpha-ketoglutarate and Fe2+. ALKBH2 thus directly reverses alkylation damage of DNA in the form of 3-meC, releasing formaldehyde (Duncan et al. 2002).
R-HSA-112121 (Reactome) ALKBH2 catalyzes removal of the ethyl group from 1-ethyladenine (1-etA) in a reaction that depends on oxygen, alpha-ketoglutarate and Fe2+. ALKBH2 thus directly reverses alkylation damage of DNA in the form of 1-etA, releasing acetaldehyde (Duncan et al. 2002).
R-HSA-112123 (Reactome) ALKBH3, a homolog of E.coli AlkB (Trewick et al. 2002), removes the methyl group from 1-methyladenine (1-meA) in a reaction dependent on alpha-ketoglutarate, oxygen and Fe2+. ALKBH3 directly reverses alkylating damage of DNA in the form of 1-meA that is accompanied with the release of formaldehyde (Duncan et al. 2002). The reversal of alkylating damage of dsDNA by ALKBH3 requires the presence of DNA helicase ASCC3, a component of the activating signal co-integrator complex (Dango et al. 2011). ALKBH3 can also repair methylated RNA (Aas et al. 2003).
R-HSA-112124 (Reactome) ALKBH3, a homolog of E.coli AlkB (Trewick et al. 2002), removes the methyl group from 3-methylcytosine (3-meC) in a reaction dependent on alpha-ketoglutarate, oxygen and Fe2+. ALKBH3 directly reverses the alkylating damage of DNA in the form of 3-meC, releasing formaldehyde (Duncan et al. 2002). The reversal of alkylating damage of dsDNA by ALKBH3 requires the presence of DNA helicase ASCC3, a component of the activating signal co-integrator complex (Dango et al. 2011). ALKBH3 can also repair methylated RNA (Aas et al. 2003).
R-HSA-112125 (Reactome) ALKBH3, a homolog of E.coli AlkB (Trewick et al. 2002), removes the ethyl group from 1-ethyladenine (1-etA) in a reaction dependent on alpha-ketoglutarate, oxygen and Fe2+. ALKBH3 directly reverses alkylating damage of DNA in the form of 1-etA, releasing acetaldehyde (Duncan et al. 2002). The reversal of alkylating damage of dsDNA by ALKBH3 requires the presence of DNA helicase ASCC3, a component of the activating signal co-activator complex (Dango et al. 2011). ALKBH3 can also repair methylated RNA (Aas et al. 2003).
R-HSA-5657617 (Reactome) ALKBH3 (ABH3) has a preference for binding single strand DNA or RNA containing alkylation damage. ALKBH3 associates with dsDNA containing 3-methylcytosine (3-meC-dsDNA) alkylation damage in the presence of ASCC3 DNA helicase. ASCC3 is a part of ASCC1:ASCC2:ASCC3 activating signal co-integrator complex, which unwinds dsDNA, providing an appropriate substrate for ALKBH3 (Duncan et al. 2002, Sundheim et al. 2006, Chen et al. 2010, Dango et al. 2011). ALKBH3 requires iron (Fe2+) for its catalytic activity (Duncan et al. 2002, Sundheim et al. 2006). ALKBH3 is ~2-fold more active on DNA containing 3-methylcytosine than 1-methyladenine (Duncan et al. 2002).
R-HSA-5657637 (Reactome) ALKBH3 (ABH3) has a preference for binding single strand DNA or RNA containing alkylation damage. ALKBH3 associates with dsDNA containing 1-methyladenine alkylation damage (1-meA-dsDNA) in the presence of ASCC3 DNA helicase. ASCC3 is a part of ASCC1:ASCC2:ASCC3 activating signal co-integrator complex, which unwinds dsDNA, providing an appropriate substrate for ALKBH3 (Duncan et al. 2002, Sundheim et al. 2006, Chen et al. 2010, Dango et al. 2011). ALKBH3 requires iron (Fe2+) for its catalytic activity (Duncan et al. 2002, Sundheim et al. 2006).
R-HSA-5657641 (Reactome) ALKBH2 binds alkylated DNA containing 1-methyladenine (1-meA). ALKBH2 preferentially binds double strand DNA (dsDNA) (Duncan et al. 2002, Aas et al. 2003, Chen et al. 2010). Iron (Fe2+) is needed for the catalytic activity of ALKBH2 (Duncan et al. 2002).
R-HSA-5657642 (Reactome) ALKBH3 (ABH3) has a preference for binding single strand DNA or RNA containing alkylation damage. ALKBH3 associates with dsDNA containing 1-ethyladenine alkylation damage (1-etA-dsDNA) in the presence of ASCC3 DNA helicase. ASCC3 is a part of ASCC1:ASCC2:ASCC3 activating signal co-integrator complex, which unwinds dsDNA, providing an appropriate subrate for ALKBH3 (Duncan et al. 2002, Sundheim et al. 2006, Chen et al. 2010, Dango et al. 2011). ALKBH3 requires iron (Fe2+) for its catalytic activity (Duncan et al. 2002, Sundheim et al. 2006).
R-HSA-5657649 (Reactome) ALKBH2 binds alkylated DNA containing 1-ethyladenine (1-etA). ALKBH2 preferentially binds double strand DNA (dsDNA) (Duncan et al. 2002, Aas et al. 2003, Chen et al. 2010). Iron (Fe2+) is needed for the catalytic activity of ALKBH2 (Duncan et al. 2002).
R-HSA-5657651 (Reactome) MGMT recognizes and binds DNA containing 6-O-methylguanine in a manner consistent with a helix-loop-wing DNA binding model, where guanine is flipped out in order to bring the methylated oxygen atom close to MGMT active site (Vora et al. 1998, Daniels et al. 2000). Weakened or distorted base-pairs formed by 6-O-methylguanine probably aid in the substrate recognition by MGMT (Duguid et al. 2005). MGMT is stabilized by Zn2+ binding (Daniels et al. 2000).
R-HSA-5657665 (Reactome) ALKBH2 binds alkylated DNA containing 3-methylcytosine (3-meC). ALKBH2 preferentially binds double strand DNA (dsDNA) (Duncan et al. 2002, Aas et al. 2003, Chen et al. 2010). Iron (Fe2+) is needed for the catalytic activity of ALKBH2 (Duncan et al. 2002).
R-HSA-73892 (Reactome) MGMT, just like its E.coli homolog Ada, is an O-6-methylguanine transferase (Lindahl et al. 1983, Moore et al. 1994) that removes the methyl group from the guanine and transfers it to the cysteine residue at position 145 on the protein itself. MGMT thus methylated is not regenerated, as the S-methylcysteine is very stable. This is an energetically expensive approach to DNA repair as one entire protein molecule is sacrificed per lesion that is corrected in this manner (Rasimas et al. 2004, Tubbs et al. 2007, Mitra and Kaina 1993).
SUCCAArrowR-HSA-112118 (Reactome)
SUCCAArrowR-HSA-112120 (Reactome)
SUCCAArrowR-HSA-112121 (Reactome)
SUCCAArrowR-HSA-112123 (Reactome)
SUCCAArrowR-HSA-112124 (Reactome)
SUCCAArrowR-HSA-112125 (Reactome)
dsDNAArrowR-HSA-112118 (Reactome)
dsDNAArrowR-HSA-112120 (Reactome)
dsDNAArrowR-HSA-112121 (Reactome)
dsDNAArrowR-HSA-112123 (Reactome)
dsDNAArrowR-HSA-112124 (Reactome)
dsDNAArrowR-HSA-112125 (Reactome)
dsDNAArrowR-HSA-73892 (Reactome)
Personal tools