SUMOylation of chromatin organization proteins (Homo sapiens)

From WikiPathways

Revision as of 09:17, 11 July 2016 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
24, 5nucleoplasmUBE2I-G93-SUMO2 SUMO2:UBE2ISUMO2-C93-UBE2I PIAS1L3MBTL2UBE2ISUMO2-K675,K700-L3MBTL21, 3


Description

SUMOylation of proteins involved in chromatin organization regulates gene expression in several ways: direct influence on catalytic activity of enzymes that modify chromatin, recruitment of proteins that form repressive (e.g. PRC1) or activating complexes on chromatin, recruitment of proteins to larger bodies (e.g PML bodies) in the nucleus (reviewed in Cubenas-Potts and Matunis 2013). View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET.; ''Characterization of a second member of the sentrin family of ubiquitin-like proteins.''; PubMed Europe PMC Scholia
  2. Suntharalingam M, Wente SR.; ''Peering through the pore: nuclear pore complex structure, assembly, and function.''; PubMed Europe PMC Scholia
  3. Brandl A, Wagner T, Uhlig KM, Knauer SK, Stauber RH, Melchior F, Schneider G, Heinzel T, Krämer OH.; ''Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress.''; PubMed Europe PMC Scholia
  4. Tan JA, Song J, Chen Y, Durrin LK.; ''Phosphorylation-dependent interaction of SATB1 and PIAS1 directs SUMO-regulated caspase cleavage of SATB1.''; PubMed Europe PMC Scholia
  5. Stielow C, Stielow B, Finkernagel F, Scharfe M, Jarek M, Suske G.; ''SUMOylation of the polycomb group protein L3MBTL2 facilitates repression of its target genes.''; PubMed Europe PMC Scholia
  6. Citro S, Jaffray E, Hay RT, Seiser C, Chiocca S.; ''A role for paralog-specific sumoylation in histone deacetylase 1 stability.''; PubMed Europe PMC Scholia
  7. Dobreva G, Dambacher J, Grosschedl R.; ''SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression.''; PubMed Europe PMC Scholia
  8. Ismail IH, Gagné JP, Caron MC, McDonald D, Xu Z, Masson JY, Poirier GG, Hendzel MJ.; ''CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage.''; PubMed Europe PMC Scholia
  9. Su HL, Li SS.; ''Molecular features of human ubiquitin-like SUMO genes and their encoded proteins.''; PubMed Europe PMC Scholia
  10. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJ, Briggs JA, Glavy JS, Hurt E, Beck M.; ''Molecular architecture of the inner ring scaffold of the human nuclear pore complex.''; PubMed Europe PMC Scholia
  11. Kabachinski G, Schwartz TU.; ''The nuclear pore complex--structure and function at a glance.''; PubMed Europe PMC Scholia
  12. Cheng J, Wang D, Wang Z, Yeh ET.; ''SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1.''; PubMed Europe PMC Scholia
  13. David G, Neptune MA, DePinho RA.; ''SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities.''; PubMed Europe PMC Scholia
  14. Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A.; ''Ubc9 sumoylation regulates SUMO target discrimination.''; PubMed Europe PMC Scholia
  15. Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T, Mobbs G, Fan Y, Thierbach K, Huber FM, Collins LN, Davenport AM, Jeon YE, Hoelz A.; ''Architecture of the symmetric core of the nuclear pore.''; PubMed Europe PMC Scholia
  16. Ori A, Banterle N, Iskar M, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M.; ''Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines.''; PubMed Europe PMC Scholia
  17. Tan JA, Sun Y, Song J, Chen Y, Krontiris TG, Durrin LK.; ''SUMO conjugation to the matrix attachment region-binding protein, special AT-rich sequence-binding protein-1 (SATB1), targets SATB1 to promyelocytic nuclear bodies where it undergoes caspase cleavage.''; PubMed Europe PMC Scholia
  18. Riising EM, Boggio R, Chiocca S, Helin K, Pasini D.; ''The polycomb repressive complex 2 is a potential target of SUMO modifications.''; PubMed Europe PMC Scholia
  19. Merrill JC, Melhuish TA, Kagey MH, Yang SH, Sharrocks AD, Wotton D.; ''A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity.''; PubMed Europe PMC Scholia
  20. Roscic A, Möller A, Calzado MA, Renner F, Wimmer VC, Gresko E, Lüdi KS, Schmitz ML.; ''Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2.''; PubMed Europe PMC Scholia
  21. Lamoliatte F, Caron D, Durette C, Mahrouche L, Maroui MA, Caron-Lizotte O, Bonneil E, Chelbi-Alix MK, Thibault P.; ''Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling.''; PubMed Europe PMC Scholia
  22. Kagey MH, Melhuish TA, Powers SE, Wotton D.; ''Multiple activities contribute to Pc2 E3 function.''; PubMed Europe PMC Scholia
  23. Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT.; ''Proteome-wide identification of SUMO2 modification sites.''; PubMed Europe PMC Scholia
  24. Rabut G, Doye V, Ellenberg J.; ''Mapping the dynamic organization of the nuclear pore complex inside single living cells.''; PubMed Europe PMC Scholia
  25. Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, Cheng J, Yeh ET.; ''SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development.''; PubMed Europe PMC Scholia
  26. Kirsh O, Seeler JS, Pichler A, Gast A, Müller S, Miska E, Mathieu M, Harel-Bellan A, Kouzarides T, Melchior F, Dejean A.; ''The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase.''; PubMed Europe PMC Scholia
  27. Shiio Y, Eisenman RN.; ''Histone sumoylation is associated with transcriptional repression.''; PubMed Europe PMC Scholia
  28. Cubeñas-Potts C, Matunis MJ.; ''SUMO: a multifaceted modifier of chromatin structure and function.''; PubMed Europe PMC Scholia
  29. Fontoura BM, Blobel G, Matunis MJ.; ''A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96.''; PubMed Europe PMC Scholia
  30. Wagner T, Kiweler N, Wolff K, Knauer SK, Brandl A, Hemmerich P, Dannenberg JH, Heinzel T, Schneider G, Krämer OH.; ''Sumoylation of HDAC2 promotes NF-κB-dependent gene expression.''; PubMed Europe PMC Scholia
  31. Lamoliatte F, Bonneil E, Durette C, Caron-Lizotte O, Wildemann D, Zerweck J, Wenshuk H, Thibault P.; ''Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions.''; PubMed Europe PMC Scholia
  32. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ.; ''Proteomic analysis of the mammalian nuclear pore complex.''; PubMed Europe PMC Scholia
  33. Yamashita D, Moriuchi T, Osumi T, Hirose F.; ''Transcription Factor hDREF Is a Novel SUMO E3 Ligase of Mi2α.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
115004view16:53, 25 January 2021ReactomeTeamReactome version 75
113448view11:52, 2 November 2020ReactomeTeamReactome version 74
112648view16:03, 9 October 2020ReactomeTeamReactome version 73
101563view11:43, 1 November 2018ReactomeTeamreactome version 66
101099view21:26, 31 October 2018ReactomeTeamreactome version 65
100628view20:00, 31 October 2018ReactomeTeamreactome version 64
100178view16:45, 31 October 2018ReactomeTeamreactome version 63
99728view15:12, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93785view13:36, 16 August 2017ReactomeTeamreactome version 61
93318view11:20, 9 August 2017ReactomeTeamreactome version 61
88417view11:53, 5 August 2016FehrhartOntology Term : 'sumoylation pathway' added !
86403view09:17, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
L3MBTL2ProteinQ969R5 (Uniprot-TrEMBL)
PIAS1ProteinO75925 (Uniprot-TrEMBL)
SUMO2-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO2-K675,K700-L3MBTL2ProteinQ969R5 (Uniprot-TrEMBL)
SUMO2:UBE2IComplexR-HSA-2993778 (Reactome)
UBE2I-G93-SUMO2 ProteinP61956 (Uniprot-TrEMBL)
UBE2IProteinP63279 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
L3MBTL2R-HSA-6804485 (Reactome)
PIAS1mim-catalysisR-HSA-6804485 (Reactome)
R-HSA-6804485 (Reactome) PIAS1 and possibly other SUMO E3 ligases SUMOylates L3MBTL2 with SUMO2 at lysine-675 and lysine-700 near the C-terminus (Stielow et al. 2014, Tammsalu et al. 2014). SUMOylation of L3MBTL2 does not appear to affect its chromatin binding activity, however SUMOylation does enhance transcriptional repression of a subset of L3MBTL2-target genes, particularly those with low L3MBTL2 occupancy including pro-inflammatory genes (Stielow et al. 2014). SUMOylated L3MBTL2 appears to increase the level of local ubiquitinated histone H2A (Stielow et al. 2014).
SUMO2-K675,K700-L3MBTL2ArrowR-HSA-6804485 (Reactome)
SUMO2:UBE2IR-HSA-6804485 (Reactome)
UBE2IArrowR-HSA-6804485 (Reactome)
Personal tools