Interleukin-20 family signaling (Homo sapiens)
From WikiPathways
Description
The interleukin 20 (IL20) subfamily comprises IL19, IL20, IL22, IL24 and IL26. They are members of the larger IL10 family, but have been grouped together based on their usage of common receptor subunits and similarities in their target cell profiles and biological functions. Members of the IL20 subfamily facilitate the communication between leukocytes and epithelial cells, thereby enhancing innate defence mechanisms and tissue repair processes at epithelial surfaces. Much of the understanding of this group of cytokines is based on IL22, which is the most studied member (Rutz et al. 2014, Akdis M et al. 2016, Longsdon et al. 2012).
View original pathway at:Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
Annotated Interactions
The Interleukin-22 receptor consists of IL22RA1 and Interleukin-10 receptor subunit beta (IL10RB), which is also a component of the receptors for Interleukin-10 (IL10), Interleukin-22 (IL22), Interleukin-26 (IL26), Interleukin-28 (IL28), and Interferon lambda-1 (IFNL1).
Interleukin-20 receptor A (IL20RA) and Interleukin-20 receptor B (IL20RB) form a receptor complex for Interleukin-19 (IL19) (and Interleukin-20 (IL20) and Interleukin-24 (IL24)) (Gallagher et al. 2000, Blumberg et al. 2001, Parrish-Novak et al. 2002, Logsdon et al. 2012, Rutz et al. 2014, Pletnev et al. 2003).
This is a black box event because it is not clear whether the dimeric receptor can form in the absence of ligand.
This is a black box event because it is not clear whether the dimeric receptor can form in the absence of ligand.
According to the classical model, phosphorylated Signal transducer and activator of transcription (STAT) monomers associate in an active dimer form, which is stabilized by the reciprocal interactions between a phosphorylated tyrosine residue of one and the SH2 domain of the other monomer (Shuai et al. 1994). These dimers then translocate to the nucleus (Akira et al. 1994). Recently an increasing number of studies have demonstrated the existence of STAT dimers in unstimulated cell states and the capability of STATs to exert biological functions independently of phosphorylation (Braunstein et al. 2003, Li et al. 2008, Santos & Costas-Pereira 2011). As phosphorylation of STATs is not unequivocally required for its subsequent translocation to the nucleus, this event is shown as an uncertain process.
As it is not clear whether the receptor complex can form in the absence of ligand, formation of the receptor dimer is represented here as an uncertain event.