RHO GTPases activate formins (Homo sapiens)

From WikiPathways

Revision as of 16:41, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1-3, 6, 9...10, 17, 20, 21, 26...14, 25, 42, 45, 47...32417, 20, 31, 3251, 58, 6024, 506417, 43, 46, 5617, 29, 32, 35, 46...17, 20, 26, 43, 667-9, 16, 414240404, 28, 596463642, 17, 38, 46, 565, 48, 49, 51-53, 606, 3191, 339922, 23, 37nucleoplasmcytosolendosomeERCC6L CDC42:FMNL2:Profilin:G-actinCENPH AURKB CDC42 GTP PPP1CC CENPA RANBP2 APITD1 SEC13 DSN1 ACTG1 FMNL1 MLF1IP PPP2R1B PFN1 FMNL2 CKAP5 ZWILCH RHOD:GTP:DIAPH2-3PFN1 PPP2CB CENPF RANGAP1 DIAPH1 NDC80 PPP2R5B PiPPP2R1B SPC24 SKA2 DIAPH3 CDC42 MKL1 PAFAH1B1 INCENP CDC20 NDC80 RHOB CLASP2 CENPN DYNC1H1 actin:ATPKIF18A RHOA ZW10 RHOC:GTP:FMNL3:G-actinEVL SKA1 CENPI FMNL2 MAD1L1 CENPO ERCC6L GTP ACTB(1-375) CDC20 Cell junctionorganizationSRF:MKL1:ITGB1 GenePFNH2OACTG1 NUP160 PMF1 NDE1 CLIP1 Integrin cellsurfaceinteractionsFMNL3Profilin:G-actinGTP Profilin:G-actin:MKL1pp-DVLNUP37 PPP2R1A SRF:MKL1CDC42 CDC42:GTPRCC2 SRF SKA1 RPS27 Microtubule-boundkinetochoreGTP DSN1 AHCTF1 RHOD FMNL1 PPP2R1B KIF2C DSN1 NUF2 TAOK1 ZWINT CDC42:GTP:FMNL1CENPH DYNC1LI1 GTP ERCC6L CENPA MAD2L1 DYNLL2 PFN2 CENPK RHOC:GTP:FMNL2CENPF PPP2CB CENPL DYNC1H1 PAFAH1B1 PPP2R5B SPC24 KNTC1 NUP107 CASC5 pp-DVL2 CENPL DYNC1I2 DIAPH2-3B9D2 ZW10 KIF2B BIRC5 ACTB(1-375) NDEL1 PPP2R5D CENPE PPP2R5E RAC1 DIAPH1 CENPA GTP ITGB1SGOL2 RCC2 CENPI CENPC1 CDC20 BUB3 ITGB3BP KIF2C RHOC NUP107 CENPC1 RPS27 MAD1L1 MKL1 KIF18A XPO1 BUB3 FMNL1 B9D2 NUDC ACTB(1-375) Mg2+ MIS12 KIF2C CENPI DYNLL2 MKL1 SGOL2 RHOA CASC5 CDC42 PPP2R1A CLASP1 ACTG1 GTP NDEL1 ATPPFN2 GTP KIF2B DIAPH1 GTP APITD1 SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinPLK1 Microtubule protofilament DIAPH1pp-DVL2 DSN1 DYNC1H1 CENPQ GTP DAAM1 CLASP2 DIAPH2-2 CDC42:GTPDYNC1LI2 GTP RAC1:GDPACTG1 NUP98-5 CENPT NDEL1 DIAPH3 CENPM RHOC:GTPPPP2R5A CLIP1 CDC42 DIAPH1,DIAPH3MAPRE1 RCC2 SRF PAFAH1B1 PPP2R5C BIRC5 RHOD:GTP:DIAPH2:SRC-1B9D2 ITGB1 Gene RANGAP1 RHOA:GTP:DIAPH1RAC1:GTPSRFGTP ppDVL:DAAM1:RHOA:GTPGTP FMNL1 MAPRE1 SCAI RHOA:GTP:DIAPH1:EVL:Profilin:G-actinACTB(1-375) RANBP2 BUB3 Mg2+ RAC1 ITGB1 GeneDYNC1LI1 PPP2R5A RANGAP1 SPDL1 NSL1 SGOL1 ACTB(1-375) CASC5 SPC24 RHOB GTP DIAPH2-3 ppDVL:DAAM1DYNLL1 CENPI DIAPH2-2 CENPM DYNC1H1 p-S196-DIAPH2-2 CDCA8 ATP PPP2R5B DYNLL1 DYNLL2 PLK1 CLASP2 DYNC1LI1 ADPNUP85 NUP37 PPP2R1A CENPC1 ZWINT PPP2R5C KIF2B MAD1L1 DYNC1I2 SEH1L-1 GTP NUDC CENPP DIAPH2-3 KNTC1 PFN1 FMNL3 NUP43 KIF2B ATP MLF1IP PPP1CC MAD2L1 PFN2 ACTB(1-375) CKAP5 RHOA:GTPCENPE INCENP PPP2CA PPP2R5D CDC42:GTP:FMNL2ZW10 RHOB:GTPFMNL2 ATP DYNC1I1 FMNL2CDCA8 CENPN GTP NUF2 NUDC RPS27 CENPO CDCA8 XPO1 SRGAP2EVL GTP CDCA8 CLASP1 PFN1 FMNL3 CENPT NDEL1 PPP2R5E MAD2L1 CENPF DAAM1PPP1CC SPC24 RHOD CENPL NUP43 RAC1 SEH1L-1 SRC-1 RANBP2 MIS12 SPC25 NDE1 GTP pp-DVL2 DYNC1I1 CLIP1 PPP2R5B DYNC1LI2 KIF2A pp-DVL1 BUB1 CENPT CENPE ACTG1 PFN1 CENPL BUB1B PFN2 DIAPH1 RHOC MKL1SPDL1 KIF2A NDE1 RHOD:GTPPPP2CA KIF18A SRC-1CENPE CENPO BUB1B NUF2 ACTG1 PPP2R5E pp-DVL3 NUP133 ITGB3BP TAOK1 ACTB(1-375) PPP2CA MIS12 NUP107 DYNC1I1 PLK1 KIF18A ATP RAC1:GTP:FMNL1ZWILCH AURKB RHOA:GTP:Mg2+SRF:MKL1:SCAIPPP1CC pp-DVL1 NUP85 NUP133 APITD1 XPO1 BUB1 FMNL1Microtubule protofilament CENPK RHOC:GTP:FMNL3PFN2 GTP SKA1 NUP37 NUF2 RHOC BUB1 TAOK1 RANGAP1 NSL1 INCENP DYNLL1 SEC13 CENPC1 PPP2CB NUP37 KIF2A CENPH SKA2 ITGB3BP PMF1 SPDL1 RHOA PFN2 CLASP2 FMNL3 NUP98-5 NUP85 PFN1 PFN2 GTP ATP PFN1 PPP2R5C MicrotubuleRAC1 Kinetochore:CDC42:GTP:p-S196-DIAPH2-2MAD1L1 DYNC1I1 DYNC1I2 PFN1 ZWILCH NDE1 PPP2R5E CDC20 CENPK SPC25 B9D2 ACTG1 PFN2 AHCTF1 SGOL1 NDC80 KIF2C AURKB NUP98-5 PPP2CB NUP43 CENPM PLK1 MAPRE1 ATP NDC80 RHOD PPP2R5A CENPP SGOL2 KNTC1 DYNC1LI2 RANBP2 EVLNUP85 BIRC5 PAFAH1B1 DYNLL1 SPDL1 ITGB3BP APITD1 CENPN GTP RCC2 ATP KNTC1 RHOC NUP98-5 BIRC5 NSL1 pp-DVL3 SEC13 NUP160 RHOA AHCTF1 ZWINT DYNC1LI2 DIAPH2-3 CENPK KIF2A GTP SKA1 ZW10 CENPQ NUP133 CKAP5 SEC13 CLASP1 DIAPH1 SPC25 PPP2CA ZWILCH SEH1L-1 ERCC6L Kinetochore:CDC42:GTP:DIAPH2-2CENPQ TAOK1 PPP2R5A ATP NUP43 SPC25 CENPT CENPA CENPQ CENPH MLF1IP PPP2R1A CASC5 DAAM1 DIAPH2-2CDC42 SCAICENPM DYNC1LI1 MAPRE1 CKAP5 PPP2R1B RPS27 BUB1B SKA2 GTP RAC1:GTP:FMNL1:Profilin:G-actinCENPF RHOA DYNLL2 pp-DVL1 MIS12 NUP107 NSL1 SRGAP2 MKL1FMNL1 ZWINT NUP160 PPP2R5C MAD2L1 NUDC RHOB:GTP:DIAPH1,DIAPH3KinetochoreNUP133 AHCTF1 SRF PMF1 XPO1 MLF1IP GTP PMF1 CENPP GDP SGOL1 SEH1L-1 BUB1B PPP2R5D CLIP1 CENPO ACTB(1-375) SKA2 CENPP ACTG1 CLASP1 MKL1 Beta-cateninindependent WNTsignalingINCENP NUP160 SGOL2 pp-DVL3 GTP CDC42 SGOL1 BUB3 RAC1 CENPN FMNL2 AURKB PPP2R5D BUB1 DYNC1I2 317, 20624, 50433217, 2017, 203815, 34, 39, 44, 61...22, 23, 3717, 18, 204011, 42, 6329, 3296311, 42, 636464911, 42, 6313, 19, 27, 30, 65433824


Description

Formins are a family of proteins with 15 members in mammals, organized into 8 subfamilies. Formins are involved in the regulation of actin cytoskeleton. Many but not all formin family members are activated by RHO GTPases. Formins that serve as effectors of RHO GTPases belong to different formin subfamilies but they all share a structural similarity to Drosophila protein diaphanous and are hence named diaphanous-related formins (DRFs).

DRFs activated by RHO GTPases contain a GTPase binding domain (GBD) at their N-terminus, followed by formin homology domains 3, 1, and 2 (FH3, FH1, FH2) and a diaphanous autoregulatory domain (DAD) at the C-terminus. Most DRFs contain a dimerization domain (DD) and a coiled-coil region (CC) in between FH3 and FH1 domains (reviewed by Kuhn and Geyer 2014). RHO GTPase-activated DRFs are autoinhibited through the interaction between FH3 and DAD which is disrupted upon binding to an active RHO GTPase (Li and Higgs 2003, Lammers et al. 2005, Nezami et al. 2006). Since formins dimerize, it is not clear whether the FH3-DAD interaction is intra- or intermolecular. FH2 domain is responsible for binding to the F-actin and contributes to the formation of head-to-tail formin dimers (Xu et al. 2004). The proline-rich FH1 domain interacts with the actin-binding proteins profilins, thereby facilitating actin recruitment to formins and accelerating actin polymerization (Romero et al. 2004, Kovar et al. 2006).<p>Different formins are activated by different RHO GTPases in different cell contexts. FMNL1 (formin-like protein 1) is activated by binding to the RAC1:GTP and is involved in the formation of lamellipodia in macrophages (Yayoshi-Yamamoto et al. 2000) and is involved in the regulation of the Golgi complex structure (Colon-Franco et al. 2011). Activation of FMNL1 by CDC42:GTP contributes to the formation of the phagocytic cup (Seth et al. 2006). Activation of FMNL2 (formin-like protein 2) and FMNL3 (formin-like protein 3) by RHOC:GTP is involved in cancer cell motility and invasiveness (Kitzing et al. 2010, Vega et al. 2011). DIAPH1, activated by RHOA:GTP, promotes elongation of actin filaments and activation of SRF-mediated transcription which is inhibited by unpolymerized actin (Miralles et al. 2003). RHOF-mediated activation of DIAPH1 is implicated in formation of stress fibers (Fan et al. 2010). Activation of DIAPH1 and DIAPH3 by RHOB:GTP leads to actin coat formation around endosomes and regulates endosome motility and trafficking (Fernandez-Borja et al. 2005, Wallar et al. 2007). Endosome trafficking is also regulated by DIAPH2 transcription isoform 3 (DIAPH2-3) which, upon activation by RHOD:GTP, recruits SRC kinase to endosomes (Tominaga et al. 2000, Gasman et al. 2003). DIAPH2 transcription isoform 2 (DIAPH2-2) is involved in mitosis where, upon being activated by CDC42:GTP, it facilitates the capture of astral microtubules by kinetochores (Yasuda et al. 2004, Cheng et al. 2011). DIAPH2 is implicated in ovarian maintenance and premature ovarian failure (Bione et al. 1998). DAAM1, activated by RHOA:GTP, is involved in linking WNT signaling to cytoskeleton reorganization (Habas et al. 2001). View original pathway at:Reactome.</div>

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5663220
Reactome-version 
Reactome version: 63
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Li D, Sewer MB.; ''RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking.''; PubMed Europe PMC Scholia
  2. Gao GX, Dong HJ, Gu HT, Gao Y, Pan YZ, Yang Y, Chen XQ.; ''[PI3-kinase mediates activity of RhoA and interaction of RhoA with mDia1 in thrombin-induced platelet aggregation].''; PubMed Europe PMC Scholia
  3. Boudreau NJ, Jones PL.; ''Extracellular matrix and integrin signalling: the shape of things to come.''; PubMed Europe PMC Scholia
  4. Fernandez-Borja M, Janssen L, Verwoerd D, Hordijk P, Neefjes J.; ''RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1.''; PubMed Europe PMC Scholia
  5. Wong GT, Gavin BJ, McMahon AP.; ''Differential transformation of mammary epithelial cells by Wnt genes.''; PubMed Europe PMC Scholia
  6. Block J, Breitsprecher D, Kühn S, Winterhoff M, Kage F, Geffers R, Duwe P, Rohn JL, Baum B, Brakebusch C, Geyer M, Stradal TE, Faix J, Rottner K.; ''FMNL2 drives actin-based protrusion and migration downstream of Cdc42.''; PubMed Europe PMC Scholia
  7. Gao B.; ''Wnt regulation of planar cell polarity (PCP).''; PubMed Europe PMC Scholia
  8. Kühn S, Geyer M.; ''Formins as effector proteins of Rho GTPases.''; PubMed Europe PMC Scholia
  9. Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier MF.; ''Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis.''; PubMed Europe PMC Scholia
  10. Thompson ME, Heimsath EG, Gauvin TJ, Higgs HN, Kull FJ.; ''FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation.''; PubMed Europe PMC Scholia
  11. Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E.; ''The way Wnt works: components and mechanism.''; PubMed Europe PMC Scholia
  12. Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M, Yonemura S, Terada Y, Ishizaki T, Narumiya S.; ''Cdc42 and mDia3 regulate microtubule attachment to kinetochores.''; PubMed Europe PMC Scholia
  13. Bione S, Sala C, Manzini C, Arrigo G, Zuffardi O, Banfi S, Borsani G, Jonveaux P, Philippe C, Zuccotti M, Ballabio A, Toniolo D.; ''A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility.''; PubMed Europe PMC Scholia
  14. Lammers M, Rose R, Scrima A, Wittinghofer A.; ''The regulation of mDia1 by autoinhibition and its release by Rho*GTP.''; PubMed Europe PMC Scholia
  15. Colón-Franco JM, Gomez TS, Billadeau DD.; ''Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex.''; PubMed Europe PMC Scholia
  16. Brandt DT, Baarlink C, Kitzing TM, Kremmer E, Ivaska J, Nollau P, Grosse R.; ''SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of beta1-integrin.''; PubMed Europe PMC Scholia
  17. Cheeseman IM, Desai A.; ''Molecular architecture of the kinetochore-microtubule interface.''; PubMed Europe PMC Scholia
  18. Miralles F, Posern G, Zaromytidou AI, Treisman R.; ''Actin dynamics control SRF activity by regulation of its coactivator MAL.''; PubMed Europe PMC Scholia
  19. Faull RJ, Ginsberg MH.; ''Inside-out signaling through integrins.''; PubMed Europe PMC Scholia
  20. Nodelman IM, Bowman GD, Lindberg U, Schutt CE.; ''X-ray structure determination of human profilin II: A comparative structural analysis of human profilins.''; PubMed Europe PMC Scholia
  21. Kitzing TM, Wang Y, Pertz O, Copeland JW, Grosse R.; ''Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC.''; PubMed Europe PMC Scholia
  22. Vega FM, Fruhwirth G, Ng T, Ridley AJ.; ''RhoA and RhoC have distinct roles in migration and invasion by acting through different targets.''; PubMed Europe PMC Scholia
  23. Lal H, Verma SK, Foster DM, Golden HB, Reneau JC, Watson LE, Singh H, Dostal DE.; ''Integrins and proximal signaling mechanisms in cardiovascular disease.''; PubMed Europe PMC Scholia
  24. White DJ, Puranen S, Johnson MS, Heino J.; ''The collagen receptor subfamily of the integrins.''; PubMed Europe PMC Scholia
  25. Seth A, Otomo C, Rosen MK.; ''Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpha and mDia1.''; PubMed Europe PMC Scholia
  26. Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS.; ''Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling.''; PubMed Europe PMC Scholia
  27. Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A.; ''Structural and mechanistic insights into the interaction between Rho and mammalian Dia.''; PubMed Europe PMC Scholia
  28. Watanabe N, Higashida C.; ''Formins: processive cappers of growing actin filaments.''; PubMed Europe PMC Scholia
  29. Korenbaum E, Nordberg P, Björkegren-Sjögren C, Schutt CE, Lindberg U, Karlsson R.; ''The role of profilin in actin polymerization and nucleotide exchange.''; PubMed Europe PMC Scholia
  30. Mason FM, Heimsath EG, Higgs HN, Soderling SH.; ''Bi-modal regulation of a formin by srGAP2.''; PubMed Europe PMC Scholia
  31. van Amerongen R.; ''Alternative Wnt pathways and receptors.''; PubMed Europe PMC Scholia
  32. Nezami AG, Poy F, Eck MJ.; ''Structure of the autoinhibitory switch in formin mDia1.''; PubMed Europe PMC Scholia
  33. Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D.; ''An actin nucleation mechanism mediated by Bni1 and profilin.''; PubMed Europe PMC Scholia
  34. Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK.; ''Structural basis of Rho GTPase-mediated activation of the formin mDia1.''; PubMed Europe PMC Scholia
  35. Cheng L, Zhang J, Ahmad S, Rozier L, Yu H, Deng H, Mao Y.; ''Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment.''; PubMed Europe PMC Scholia
  36. Li F, Higgs HN.; ''The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition.''; PubMed Europe PMC Scholia
  37. Xu Y, Moseley JB, Sagot I, Poy F, Pellman D, Goode BL, Eck MJ.; ''Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture.''; PubMed Europe PMC Scholia
  38. Heimsath EG, Higgs HN.; ''The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends.''; PubMed Europe PMC Scholia
  39. Grosse R, Copeland JW, Newsome TP, Way M, Treisman R.; ''A role for VASP in RhoA-Diaphanous signalling to actin dynamics and SRF activity.''; PubMed Europe PMC Scholia
  40. Habas R, Kato Y, He X.; ''Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1.''; PubMed Europe PMC Scholia
  41. Kursula P, Kursula I, Massimi M, Song YH, Downer J, Stanley WA, Witke W, Wilmanns M.; ''High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP.''; PubMed Europe PMC Scholia
  42. Aspenström P.; ''Formin-binding proteins: modulators of formin-dependent actin polymerization.''; PubMed Europe PMC Scholia
  43. Arnaout MA, Goodman SL, Xiong JP.; ''Coming to grips with integrin binding to ligands.''; PubMed Europe PMC Scholia
  44. Hetheridge C, Scott AN, Swain RK, Copeland JW, Higgs HN, Bicknell R, Mellor H.; ''The formin FMNL3 is a cytoskeletal regulator of angiogenesis.''; PubMed Europe PMC Scholia
  45. Copeland JW, Treisman R.; ''The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization.''; PubMed Europe PMC Scholia
  46. Favaro P, Traina F, Machado-Neto JA, Lazarini M, Lopes MR, Pereira JK, Costa FF, Infante E, Ridley AJ, Saad ST.; ''FMNL1 promotes proliferation and migration of leukemia cells.''; PubMed Europe PMC Scholia
  47. Otomo T, Tomchick DR, Otomo C, Machius M, Rosen MK.; ''Crystal structure of the Formin mDia1 in autoinhibited conformation.''; PubMed Europe PMC Scholia
  48. Yayoshi-Yamamoto S, Taniuchi I, Watanabe T.; ''FRL, a novel formin-related protein, binds to Rac and regulates cell motility and survival of macrophages.''; PubMed Europe PMC Scholia
  49. Liu ST, Rattner JB, Jablonski SA, Yen TJ.; ''Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells.''; PubMed Europe PMC Scholia
  50. Fan L, Pellegrin S, Scott A, Mellor H.; ''The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells.''; PubMed Europe PMC Scholia
  51. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A.; ''The conserved KMN network constitutes the core microtubule-binding site of the kinetochore.''; PubMed Europe PMC Scholia
  52. Gasman S, Kalaidzidis Y, Zerial M.; ''RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase.''; PubMed Europe PMC Scholia
  53. Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD.; ''Control of the assembly of ATP- and ADP-actin by formins and profilin.''; PubMed Europe PMC Scholia
  54. Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR, Cleveland DW.; ''The human CENP-A centromeric nucleosome-associated complex.''; PubMed Europe PMC Scholia
  55. Du SJ, Purcell SM, Christian JL, McGrew LL, Moon RT.; ''Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos.''; PubMed Europe PMC Scholia
  56. Pring M, Weber A, Bubb MR.; ''Profilin-actin complexes directly elongate actin filaments at the barbed end.''; PubMed Europe PMC Scholia
  57. Breitsprecher D, Kiesewetter AK, Linkner J, Urbanke C, Resch GP, Small JV, Faix J.; ''Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation.''; PubMed Europe PMC Scholia
  58. De A.; ''Wnt/Ca2+ signaling pathway: a brief overview.''; PubMed Europe PMC Scholia
  59. Amano M, Nakayama M, Kaibuchi K.; ''Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity.''; PubMed Europe PMC Scholia
  60. Liu W, Sato A, Khadka D, Bharti R, Diaz H, Runnels LW, Habas R.; ''Mechanism of activation of the Formin protein Daam1.''; PubMed Europe PMC Scholia
  61. Han Y, Eppinger E, Schuster IG, Weigand LU, Liang X, Kremmer E, Peschel C, Krackhardt AM.; ''Formin-like 1 (FMNL1) is regulated by N-terminal myristoylation and induces polarized membrane blebbing.''; PubMed Europe PMC Scholia
  62. Lai SL, Chien AJ, Moon RT.; ''Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis.''; PubMed Europe PMC Scholia
  63. Wallar BJ, Deward AD, Resau JH, Alberts AS.; ''RhoB and the mammalian Diaphanous-related formin mDia2 in endosome trafficking.''; PubMed Europe PMC Scholia
  64. Moriya K, Yamamoto T, Takamitsu E, Matsunaga Y, Kimoto M, Fukushige D, Kimoto C, Suzuki T, Utsumi T.; ''Protein N-myristoylation is required for cellular morphological changes induced by two formin family proteins, FMNL2 and FMNL3.''; PubMed Europe PMC Scholia
  65. Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR, Desai A, Fukagawa T.; ''The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres.''; PubMed Europe PMC Scholia
  66. Tanegashima K, Zhao H, Dawid IB.; ''WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
116650view11:41, 9 May 2021EweitzModified title
114971view16:49, 25 January 2021ReactomeTeamReactome version 75
113415view11:49, 2 November 2020ReactomeTeamReactome version 74
112617view15:59, 9 October 2020ReactomeTeamReactome version 73
101533view11:40, 1 November 2018ReactomeTeamreactome version 66
101068view21:22, 31 October 2018ReactomeTeamreactome version 65
100598view19:56, 31 October 2018ReactomeTeamreactome version 64
100148view16:41, 31 October 2018ReactomeTeamreactome version 63
99698view15:10, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93766view13:34, 16 August 2017ReactomeTeamreactome version 61
93290view11:19, 9 August 2017ReactomeTeamreactome version 61
89082view07:56, 22 August 2016EgonwOntology Term : 'signaling pathway' added !
86375view09:16, 11 July 2016ReactomeTeamreactome version 56
83377view11:04, 18 November 2015ReactomeTeamVersion54
81552view13:05, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ACTB(1-375) ProteinP60709 (Uniprot-TrEMBL)
ACTG1 ProteinP63261 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
AHCTF1 ProteinQ8WYP5 (Uniprot-TrEMBL)
APITD1 ProteinQ8N2Z9 (Uniprot-TrEMBL)
ATP MetaboliteCHEBI:15422 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
AURKB ProteinQ96GD4 (Uniprot-TrEMBL)
B9D2 ProteinQ9BPU9 (Uniprot-TrEMBL)
BIRC5 ProteinO15392 (Uniprot-TrEMBL)
BUB1 ProteinO43683 (Uniprot-TrEMBL)
BUB1B ProteinO60566 (Uniprot-TrEMBL)
BUB3 ProteinO43684 (Uniprot-TrEMBL)
Beta-catenin

independent WNT

signaling
PathwayR-HSA-3858494 (Reactome) Humans and mice have 19 identified WNT proteins that were originally classified as either 'canonical' or 'non-canonical' depending upon whether they were able to transform the mouse mammary epithelial cell line C57MG and to induce secondary axis formation in Xenopus (Wong et al, 1994; Du et al, 1995). So-called canonical WNTs, including Wnt1, 3, 3a and 7, initiate signaling pathways that destabilize the destruction complex and allow beta-catenin to accumulate and translocate to the nucleus where it promotes transcription (reviewed in Saito-Diaz et al, 2013). Non-canonical WNTs, including Wnt 2, 4, 5a, 5b, 6, 7b, and Wnt11 activate beta-catenin-independent responses that regulate many aspects of morphogenesis and development, often by impinging on the cytoskeleton (reviewed in van Amerongen, 2012). Two of the main beta-catenin-independent pathways are the Planar Cell Polarity (PCP) pathway, which controls the establishment of polarity in the plane of a field of cells, and the WNT/Ca2+ pathway, which promotes the release of intracellular calcium and regulates numerous downstream effectors (reviewed in Gao, 2012; De, 2011).
CASC5 ProteinQ8NG31 (Uniprot-TrEMBL)
CDC20 ProteinQ12834 (Uniprot-TrEMBL)
CDC42 ProteinP60953 (Uniprot-TrEMBL)
CDC42:FMNL2:Profilin:G-actinComplexR-HSA-5665752 (Reactome)
CDC42:GTP:FMNL1ComplexR-HSA-5665688 (Reactome)
CDC42:GTP:FMNL2ComplexR-HSA-5665735 (Reactome)
CDC42:GTPComplexR-HSA-182921 (Reactome)
CDC42:GTPComplexR-HSA-5666123 (Reactome)
CDCA8 ProteinQ53HL2 (Uniprot-TrEMBL)
CENPA ProteinP49450 (Uniprot-TrEMBL)
CENPC1 ProteinQ03188 (Uniprot-TrEMBL)
CENPE ProteinQ02224 (Uniprot-TrEMBL)
CENPF ProteinP49454 (Uniprot-TrEMBL)
CENPH ProteinQ9H3R5 (Uniprot-TrEMBL)
CENPI ProteinQ92674 (Uniprot-TrEMBL)
CENPK ProteinQ9BS16 (Uniprot-TrEMBL)
CENPL ProteinQ8N0S6 (Uniprot-TrEMBL)
CENPM ProteinQ9NSP4 (Uniprot-TrEMBL)
CENPN ProteinQ96H22 (Uniprot-TrEMBL)
CENPO ProteinQ9BU64 (Uniprot-TrEMBL)
CENPP ProteinQ6IPU0 (Uniprot-TrEMBL)
CENPQ ProteinQ7L2Z9 (Uniprot-TrEMBL)
CENPT ProteinQ96BT3 (Uniprot-TrEMBL)
CKAP5 ProteinQ14008 (Uniprot-TrEMBL)
CLASP1 ProteinQ7Z460 (Uniprot-TrEMBL)
CLASP2 ProteinO75122 (Uniprot-TrEMBL)
CLIP1 ProteinP30622 (Uniprot-TrEMBL)
Cell junction organizationPathwayR-HSA-446728 (Reactome) Cell junction organization in Reactome currently covers aspects of cell-cell junction organization, cell-extracellular matrix interactions, and Type I hemidesmosome assembly.
DAAM1 ProteinQ9Y4D1 (Uniprot-TrEMBL)
DAAM1ProteinQ9Y4D1 (Uniprot-TrEMBL)
DIAPH1 ProteinO60610 (Uniprot-TrEMBL)
DIAPH1,DIAPH3ComplexR-HSA-5666066 (Reactome)
DIAPH1ComplexR-HSA-5665967 (Reactome)
DIAPH2-2 ProteinO60879-2 (Uniprot-TrEMBL)
DIAPH2-2ComplexR-HSA-5666139 (Reactome)
DIAPH2-3 ProteinO60879-3 (Uniprot-TrEMBL)
DIAPH2-3ComplexR-HSA-5666087 (Reactome)
DIAPH3 ProteinQ9NSV4 (Uniprot-TrEMBL)
DSN1 ProteinQ9H410 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I1 ProteinO14576 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNC1LI1 ProteinQ9Y6G9 (Uniprot-TrEMBL)
DYNC1LI2 ProteinO43237 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
DYNLL2 ProteinQ96FJ2 (Uniprot-TrEMBL)
ERCC6L ProteinQ2NKX8 (Uniprot-TrEMBL)
EVL ProteinQ9UI08 (Uniprot-TrEMBL)
EVLComplexR-HSA-5665986 (Reactome)
FMNL1 ProteinO95466 (Uniprot-TrEMBL)
FMNL1ComplexR-HSA-5665949 (Reactome)
FMNL2 ProteinQ96PY5 (Uniprot-TrEMBL)
FMNL2ComplexR-HSA-5665952 (Reactome)
FMNL3 ProteinQ8IVF7 (Uniprot-TrEMBL)
FMNL3ComplexR-HSA-5665954 (Reactome)
GDP MetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
INCENP ProteinQ9NQS7 (Uniprot-TrEMBL)
ITGB1 Gene ProteinENSG00000150093 (Ensembl)
ITGB1 GeneGeneProductENSG00000150093 (Ensembl)
ITGB1ProteinP05556 (Uniprot-TrEMBL)
ITGB3BP ProteinQ13352 (Uniprot-TrEMBL)
Integrin cell

surface

interactions
PathwayR-HSA-216083 (Reactome) The extracellular matrix (ECM) is a network of macro-molecules that underlies all epithelia and endothelia and that surrounds all connective tissue cells. This matrix provides the mechanical strength and also influences the behavior and differentiation state of cells in contact with it. The ECM are diverse in composition, but they generally comprise a mixture of fibrillar proteins, polysaccharides synthesized, secreted and organized by neighboring cells. Collagens, fibronectin, and laminins are the principal components involved in cell matrix interactions; other components, such as vitronectin, thrombospondin, and osteopontin, although less abundant, are also important adhesive molecules.
Integrins are the receptors that mediate cell adhesion to ECM. Integrins consists of one alpha and one beta subunit forming a noncovalently bound heterodimer. 18 alpha and 8 beta subunits have been identified in humans that combine to form 24 different receptors.
The integrin dimers can be broadly divided into three families consisting of the beta1, beta2/beta7, and beta3/alphaV integrins. beta1 associates with 12 alpha-subunits and can be further divided into RGD-, collagen-, or laminin binding and the related alpha4/alpha9 integrins that recognise both matrix and vascular ligands. beta2/beta7 integrins are restricted to leukocytes and mediate cell-cell rather than cell-matrix interactions, although some recognize fibrinogen. The beta3/alphaV family members are all RGD receptors and comprise aIIbb3, an important receptor on platelets, and the remaining b-subunits, which all associate with alphaV. It is the collagen receptors and leukocyte-specific integrins that contain alpha A-domains.
KIF18A ProteinQ8NI77 (Uniprot-TrEMBL)
KIF2A ProteinO00139 (Uniprot-TrEMBL)
KIF2B ProteinQ8N4N8 (Uniprot-TrEMBL)
KIF2C ProteinQ99661 (Uniprot-TrEMBL)
KNTC1 ProteinP50748 (Uniprot-TrEMBL)
Kinetochore:CDC42:GTP:DIAPH2-2ComplexR-HSA-5666131 (Reactome)
Kinetochore:CDC42:GTP:p-S196-DIAPH2-2ComplexR-HSA-5666161 (Reactome)
KinetochoreComplexR-HSA-375305 (Reactome)
MAD1L1 ProteinQ9Y6D9 (Uniprot-TrEMBL)
MAD2L1 ProteinQ13257 (Uniprot-TrEMBL)
MAPRE1 ProteinQ15691 (Uniprot-TrEMBL)
MIS12 ProteinQ9H081 (Uniprot-TrEMBL)
MKL1 ProteinQ969V6 (Uniprot-TrEMBL)
MKL1ProteinQ969V6 (Uniprot-TrEMBL)
MLF1IP ProteinQ71F23 (Uniprot-TrEMBL)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
Microtubule protofilament R-HSA-8982424 (Reactome)
Microtubule-bound kinetochoreComplexR-HSA-375303 (Reactome)
MicrotubuleComplexR-HSA-190599 (Reactome)
NDC80 ProteinO14777 (Uniprot-TrEMBL)
NDE1 ProteinQ9NXR1 (Uniprot-TrEMBL)
NDEL1 ProteinQ9GZM8 (Uniprot-TrEMBL)
NSL1 ProteinQ96IY1 (Uniprot-TrEMBL)
NUDC ProteinQ9Y266 (Uniprot-TrEMBL)
NUF2 ProteinQ9BZD4 (Uniprot-TrEMBL)
NUP107 ProteinP57740 (Uniprot-TrEMBL)
NUP133 ProteinQ8WUM0 (Uniprot-TrEMBL)
NUP160 ProteinQ12769 (Uniprot-TrEMBL)
NUP37 ProteinQ8NFH4 (Uniprot-TrEMBL)
NUP43 ProteinQ8NFH3 (Uniprot-TrEMBL)
NUP85 ProteinQ9BW27 (Uniprot-TrEMBL)
NUP98-5 ProteinP52948-5 (Uniprot-TrEMBL)
PAFAH1B1 ProteinP43034 (Uniprot-TrEMBL)
PFN1 ProteinP07737 (Uniprot-TrEMBL)
PFN2 ProteinP35080 (Uniprot-TrEMBL)
PFNComplexR-HSA-203077 (Reactome)
PLK1 ProteinP53350 (Uniprot-TrEMBL)
PMF1 ProteinQ6P1K2 (Uniprot-TrEMBL)
PPP1CC ProteinP36873 (Uniprot-TrEMBL)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2CB ProteinP62714 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R1B ProteinP30154 (Uniprot-TrEMBL)
PPP2R5A ProteinQ15172 (Uniprot-TrEMBL)
PPP2R5B ProteinQ15173 (Uniprot-TrEMBL)
PPP2R5C ProteinQ13362 (Uniprot-TrEMBL)
PPP2R5D ProteinQ14738 (Uniprot-TrEMBL)
PPP2R5E ProteinQ16537 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
Profilin:G-actin:MKL1ComplexR-HSA-5665995 (Reactome)
Profilin:G-actinComplexR-HSA-203080 (Reactome)
RAC1 ProteinP63000 (Uniprot-TrEMBL)
RAC1:GDPComplexR-HSA-445010 (Reactome)
RAC1:GTP:FMNL1:Profilin:G-actinComplexR-HSA-5665660 (Reactome)
RAC1:GTP:FMNL1ComplexR-HSA-5663231 (Reactome)
RAC1:GTPComplexR-HSA-442641 (Reactome)
RANBP2 ProteinP49792 (Uniprot-TrEMBL)
RANGAP1 ProteinP46060 (Uniprot-TrEMBL)
RCC2 ProteinQ9P258 (Uniprot-TrEMBL)
RHOA ProteinP61586 (Uniprot-TrEMBL)
RHOA:GTP:DIAPH1:EVL:Profilin:G-actinComplexR-HSA-5665977 (Reactome)
RHOA:GTP:DIAPH1ComplexR-HSA-5665988 (Reactome)
RHOA:GTP:Mg2+ComplexR-HSA-3858473 (Reactome)
RHOA:GTPComplexR-HSA-5665993 (Reactome)
RHOB ProteinP62745 (Uniprot-TrEMBL)
RHOB:GTP:DIAPH1,DIAPH3ComplexR-HSA-5666074 (Reactome)
RHOB:GTPComplexR-HSA-5666081 (Reactome)
RHOC ProteinP08134 (Uniprot-TrEMBL)
RHOC:GTP:FMNL2ComplexR-HSA-5665742 (Reactome)
RHOC:GTP:FMNL3:G-actinComplexR-HSA-5665773 (Reactome)
RHOC:GTP:FMNL3ComplexR-HSA-5665759 (Reactome)
RHOC:GTPComplexR-HSA-5665750 (Reactome)
RHOD ProteinO00212 (Uniprot-TrEMBL)
RHOD:GTP:DIAPH2-3ComplexR-HSA-5666096 (Reactome)
RHOD:GTP:DIAPH2:SRC-1ComplexR-HSA-5666105 (Reactome)
RHOD:GTPComplexR-HSA-5666092 (Reactome)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
SCAI ProteinQ8N9R8 (Uniprot-TrEMBL)
SCAIProteinQ8N9R8 (Uniprot-TrEMBL)
SEC13 ProteinP55735 (Uniprot-TrEMBL)
SEH1L-1 ProteinQ96EE3-1 (Uniprot-TrEMBL)
SGOL1 ProteinQ5FBB7 (Uniprot-TrEMBL)
SGOL2 ProteinQ562F6 (Uniprot-TrEMBL)
SKA1 ProteinQ96BD8 (Uniprot-TrEMBL)
SKA2 ProteinQ8WVK7 (Uniprot-TrEMBL)
SPC24 ProteinQ8NBT2 (Uniprot-TrEMBL)
SPC25 ProteinQ9HBM1 (Uniprot-TrEMBL)
SPDL1 ProteinQ96EA4 (Uniprot-TrEMBL)
SRC-1 ProteinP12931-1 (Uniprot-TrEMBL)
SRC-1ProteinP12931-1 (Uniprot-TrEMBL)
SRF ProteinP11831 (Uniprot-TrEMBL)
SRF:MKL1:ITGB1 GeneComplexR-HSA-5666050 (Reactome)
SRF:MKL1:SCAIComplexR-HSA-5666007 (Reactome)
SRF:MKL1ComplexR-HSA-5666002 (Reactome)
SRFProteinP11831 (Uniprot-TrEMBL)
SRGAP2 ProteinO75044 (Uniprot-TrEMBL)
SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinComplexR-HSA-5665803 (Reactome)
SRGAP2ProteinO75044 (Uniprot-TrEMBL)
TAOK1 ProteinQ7L7X3 (Uniprot-TrEMBL)
XPO1 ProteinO14980 (Uniprot-TrEMBL)
ZW10 ProteinO43264 (Uniprot-TrEMBL)
ZWILCH ProteinQ9H900 (Uniprot-TrEMBL)
ZWINT ProteinO95229 (Uniprot-TrEMBL)
actin:ATPComplexR-HSA-201857 (Reactome)
p-S196-DIAPH2-2 ProteinO60879-2 (Uniprot-TrEMBL)
pp-DVL1 ProteinO14640 (Uniprot-TrEMBL)
pp-DVL2 ProteinO14641 (Uniprot-TrEMBL)
pp-DVL3 ProteinQ92997 (Uniprot-TrEMBL)
pp-DVLComplexR-HSA-3858467 (Reactome)
ppDVL:DAAM1:RHOA:GTPComplexR-HSA-3858474 (Reactome)
ppDVL:DAAM1ComplexR-HSA-3858472 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-5666160 (Reactome)
ATPR-HSA-5666160 (Reactome)
CDC42:FMNL2:Profilin:G-actinArrowR-HSA-5665751 (Reactome)
CDC42:GTP:FMNL1ArrowR-HSA-5665686 (Reactome)
CDC42:GTP:FMNL2ArrowR-HSA-5665727 (Reactome)
CDC42:GTP:FMNL2R-HSA-5665751 (Reactome)
CDC42:GTPR-HSA-5665686 (Reactome)
CDC42:GTPR-HSA-5665727 (Reactome)
CDC42:GTPR-HSA-5666129 (Reactome)
DAAM1R-HSA-3858489 (Reactome)
DIAPH1,DIAPH3R-HSA-5666070 (Reactome)
DIAPH1R-HSA-5665989 (Reactome)
DIAPH2-2R-HSA-5666129 (Reactome)
DIAPH2-3R-HSA-5666088 (Reactome)
EVLR-HSA-5665982 (Reactome)
FMNL1ArrowR-HSA-5665809 (Reactome)
FMNL1R-HSA-5663232 (Reactome)
FMNL1R-HSA-5665686 (Reactome)
FMNL2R-HSA-5665727 (Reactome)
FMNL2R-HSA-5665748 (Reactome)
FMNL3R-HSA-5665761 (Reactome)
H2OR-HSA-5665809 (Reactome)
ITGB1 GeneR-HSA-5666046 (Reactome)
ITGB1 GeneR-HSA-5666049 (Reactome)
ITGB1ArrowR-HSA-5666049 (Reactome)
Kinetochore:CDC42:GTP:DIAPH2-2ArrowR-HSA-5666129 (Reactome)
Kinetochore:CDC42:GTP:DIAPH2-2R-HSA-5666160 (Reactome)
Kinetochore:CDC42:GTP:DIAPH2-2mim-catalysisR-HSA-5666160 (Reactome)
Kinetochore:CDC42:GTP:p-S196-DIAPH2-2ArrowR-HSA-5666160 (Reactome)
Kinetochore:CDC42:GTP:p-S196-DIAPH2-2ArrowR-HSA-5666169 (Reactome)
KinetochoreR-HSA-5666129 (Reactome)
KinetochoreR-HSA-5666169 (Reactome)
MKL1ArrowR-HSA-5665982 (Reactome)
MKL1ArrowR-HSA-5665999 (Reactome)
MKL1R-HSA-5665998 (Reactome)
MKL1R-HSA-5665999 (Reactome)
MKL1R-HSA-5666001 (Reactome)
Microtubule-bound kinetochoreArrowR-HSA-5666169 (Reactome)
MicrotubuleR-HSA-5666169 (Reactome)
PFNR-HSA-203070 (Reactome)
PiArrowR-HSA-5665809 (Reactome)
Profilin:G-actin:MKL1ArrowR-HSA-5666001 (Reactome)
Profilin:G-actin:MKL1R-HSA-5665982 (Reactome)
Profilin:G-actinArrowR-HSA-203070 (Reactome)
Profilin:G-actinArrowR-HSA-5665809 (Reactome)
Profilin:G-actinR-HSA-5665659 (Reactome)
Profilin:G-actinR-HSA-5665751 (Reactome)
Profilin:G-actinR-HSA-5665767 (Reactome)
Profilin:G-actinR-HSA-5666001 (Reactome)
R-HSA-203070 (Reactome) Profilins PFN1 and PFN2 bind to monomeric actin (G-actin), forming a 1:1 complex and subsequently regulate actin filament barbed end assembly downstream of various signaling pathways (Pring et al. 1992, Korenbaum et al. 1998, Nodelman et al. 1999)
R-HSA-3858489 (Reactome) DAAM1 (Dishevelled-associated activator of morphogenesis) is a formin-homology protein that was identified in a yeast two-hybrid screen for interactors with the DVL PDZ domain (Habas et al, 2001). FH proteins play a well-characterized role in regulating cytoskeletal reorganization (reviewed in Aspenstrom, 2010). DAAM1 contains an N-terminal GTPase binding domain (GBD), two central proline-rich FH domains and a C-terminal diaphanous autoinhibitory domain (DAD). In the absence of a WNT signal, DAAM1 exists in an autoinhibited conformation mediated by an intramolecular interaction between the DBD and DAD regions (Habas et al, 2001; Liu et al, 2007). Upon WNT signaling, a direct interaction between the DAD of DAAM1 and the PDZ domain of DVL relieves the autoinhibition. In the activated conformation, DAAM1 may undergo FH-dependent oligomerization and had been shown to recruit RHOA in a GBD-dependent manner (Habas et al, 2001; Liu et al, 2007).
R-HSA-3858495 (Reactome) Activated DAAM1 recruits RHOA to the DVL complex in a WNT-dependent manner. Activated DAAM1 is able to bind to RHOA in both the GDP and GTP bound form in vitro, but displays higher affinity for GTP-bound RHOA (Habas et al, 2001; Liu et al, 2007). Studies in Xenopus have identified a DVL-associated weak guanine exchange factor (WGEF) that promotes the exchange of GDP for GTP on RHOA and is required for WNT-PCP signaling (Tanegashima et al, 2008). Evidence suggests that a similar GEF activity is associated with the DVL-DAAM1-RHOA complex in human cells, but the protein has not been definitively identified (Habas et al, 2001; Liu et al, 2007). GTP-bound RHOA relieves the auto-inhibition of RHO-associated kinases, allowing them to dimerize and effect changes to cytoskeletal organization (reviewed in Amano et al, 2010; Lai et al, 2009). DAAM1 may also play a more direct role in regulating the cytoskeleton in response to WNT signaling, since FH domains have been shown to bind actin directly to nucleate linear actin cables (Sagot et al, 2002; Watanabe and Higashida, 2004).
R-HSA-5663232 (Reactome) FMNL1 (formin-like protein 1) binds the active, GTP-bound, form of RAC1 (Yayoshi-Yamamoto et al. 2000). Based on the sequence similarity with mouse formin Dia1, binding of RAC1:GTP relieves the autoinhibition of FMNL1 by displacing the C-terminal autoregulatory DAD domain of FMNL1 from the N-terminal FH3 domain (Rose et al. 2005, Lammers et al. 2005). As formins dimerize through their FH2 domains, it is not clear whether the autoinhibitory interaction between FH3 and DAD domains is intramolecular or intermolecular (Xu et al. 2004, Kuhn and Geyer 2014). Endogenous human FMNL1 interacts with endogenous human RAC1 in some leukemia-derived cell lines and promotes their migration (Favaro et al. 2013). FMNL1 gamma, a transcriptional isoform of FMNL1 with a DAD domain that significantly differs in sequence from DAD domains of FMNL1 transcription isoforms alpha and beta, localizes to the membrane and is active in the absence of RHO GTPase signaling. The membrane localization of FMNL1 gamma is regulated by the myristoylation of the N-terminal glycine which is triggered by an unknown mechanism (Han et al. 2009).
R-HSA-5665659 (Reactome) FMNL1, activated by binding to GTP-bound RAC1, binds actin-associated profilins PFN1 and PFN2 through the proline-rich FH1 domain of FMNL1 (Yayoshi-Yamamoto et al. 2000). The interaction with actin is achieved through the FH2 domain of FMNL1 (Romero et al. 2004, Kovar et al. 2006, Kuhn and Geyer 2014). FMNL1 and profilin-mediated reorganization of actin cytoskeleton is involved in the formation of lamellipodia, which regulates the motility of macrophages (Yayoshi-Yamamoto et al. 2000). FMNL1 was shown to regulate the structure of the Golgi complex, where different transcriptional isoforms of FMNL1 may play different roles (Colon-Franco et al. 2011).
R-HSA-5665686 (Reactome) FMNL1 binds activated CDC42 and this interaction is implicated in the phagocytic cup formation, but the precise mechanism has not been elucidated (Seth et al. 2006).
R-HSA-5665727 (Reactome) FMNL2 binds activated (GTP-bound) CDC42. FMNL2 can be myristoylated on its N-terminal glycine. Although myristoylation is not necessary for the interaction with CDC42, it contributes to FMNL2 activation. Based on the sequence similarity with mouse formin Dia1, binding of CDC42:GTP relieves the autoinhibition of FMNL2 by displacing the C-terminal autoregulatory DAD domain of FMNL2 from the N-terminal FH3 domain (Rose et al. 2005, Lammers et al. 2005). Since formins function as dimers, it is unclear whether the autoinhibitory interaction between FH3 and DAD domain is intramolecular or intermolecular (Xu et al. 2004, Kuhn and Geyer 2014). FMNL2 can also interact with RAC1 in vitro, but it seems that this interaction is not physiologically relevant (Block et al. 2012).
R-HSA-5665748 (Reactome) FMNL2 specifically interacts with the GTP-bound RHOC, which relieves FMNL2 autoinhibition and contributes to RHOC-mediated ameboid cell motility involved in cancer cell invasion (Kitzing et al. 2010). Myristoylation of the N-terminal glycine may be required for the full activation of FMNL2 (Moriya et al. 2012).
R-HSA-5665751 (Reactome) Once activated by binding to GTP-bound CDC42, FMNL2 interacts with actin bound profilin(s) and drives elongation but not nucleation of actin filaments (Block et al. 2012). The interaction between formins and profilins is achieved through the proline-rich FH1 domain of formins, while the interaction with actin is achieved through the FH2 domain of formins (Romero et al. 2004, Kovar et al. 2006, Kuhn and Geyer 2014).
R-HSA-5665761 (Reactome) FMNL3 binds activated (GTP-bound) RHOC. RHOC-mediated activation of FMNL3 promotes polarized cell migration which may be involved in cancer cell invasion (Vega et al. 2011). Myristoylation of the N-terminal glycine may be required for the full activation of FMNL3 (Moriya et al. 2012).
R-HSA-5665767 (Reactome) Activated FMNL3 (presumably associated with RHOC:GTP) has the ability to directly bind G-actin through knob and coiled-coil subdomains of the FMNL3 FH2 domain. The proline-rich FH1 domain which precedes the FH2 domain presumably interacts with profilins bound to G-actin (Romero et al. 2004, Kovar et al. 2006, Kuhn and Geyer 2014). FMNL3 contributes to the elongation of actin filaments (Heimsath and Higgs 2012, Thompson et al. 2013). Activated FMNL3 may also trigger microtubule alignment during angiogenesis (Hetheridge et al. 2012).
R-HSA-5665802 (Reactome) SRGAP2 binds FMNL1 activated by RAC1:GTP by simultaneously interacting with RAC1 and FMNL1. SRGAP2 co-localizes with RAC1, FMNL1, profilin and actin at the plasma membrane after RAC1-mediated activation of FMNL1 (Mason et al. 2011).
R-HSA-5665809 (Reactome) SRGAP2 is a GTPase activating protein that stimulates the GTPase activity of RAC1 bound to FMNL1. GTP hydrolysis produces inactive GDP-bound RAC1 which is unable to bind and activate FMNL1. SRGAP2 thereby limits the duration of FMNL1-mediated elongation of actin filaments downstream of RAC1:GTP (Mason et al. 2011).
R-HSA-5665982 (Reactome) Once activated by binding to RHOA:GTP, DIAPH1 binds profilin:G-actin complexes together with EVL (VASP) homotetramers and promotes elongation of actin filaments (Copeland and Treisman 2002, Grosse et al. 2003, Kursula et al. 2008, Breitsprecher et al. 2008). Binding of nonpolymerized actin (G-actin) to DIAPH1 and EVL releases MKL1 (MAL) transcription co-factor which is inhibited when bound to G-actin (Miralles et al. 2003).
R-HSA-5665989 (Reactome) DIAPH1 is activated by binding of the DIAPH1 dimer to GTP-bound (active) RHOA. Binding to RHOA releaves the autoinhibitory interaction of DIAPH1 FH3 and DAD domains (Otomo et al. 2005). Phosphorylation of RHOA at serine residue S188 may be required for RHOA binding to DIAPH1 (Li and Sewer 2010). The interaction between RHOA and DIAPH1 may also be positively regulated by PI3K signaling (Gao et al. 2009).
R-HSA-5665998 (Reactome) In the nucleus, MKL1 binds SRF transcription factor and enables transcription of SRF-target genes (Miralles et al. 2003).
R-HSA-5665999 (Reactome) The release of MKL1 (MAL) from nonpolymerized actin (G-actin), after profilin:G-actin complexes bind DIAPH1 and EVL (VASP) downstream of activated RHOA, enables MKL1 to translocate from the cytosol to the nucleus (Miralles et al. 2003).
R-HSA-5666001 (Reactome) MKL1 (MAL) transcription cofactor is negatively regulated by binding to nonpolymerized actin (G-actin) (Miralles et al. 2003).
R-HSA-5666008 (Reactome) SCAI forms a ternary complex with MKL1 and SRF, inhibiting the transcriptional activity of the SRF:MKL1 complex. SCAI negatively regulates cancer cell invasion facilitated by the SRF:MKL1-mediated transcription downstream of RHOA and DIAPH1, and therefore acts as a tumor suppressor (Brandt et al. 2009).
R-HSA-5666046 (Reactome) SRF:MKL1 transcription complex binds the promoter region of the integrin beta-1 (ITGB1) gene (Brandt et al. 2009).
R-HSA-5666049 (Reactome) SRF:MKL1 binding to the promoter region of the integrin beta-1 gene stimulates ITGB1 expression downstream of RHOA:GTP:DIAPH1-induced actin cytoskeleton changes. Binding of SCAI to SRF:MKL1 inhibits RHOA:GTP:DIAPH1-induced ITGB1 transcription (Brandt et al. 2009).
R-HSA-5666070 (Reactome) Activated RHOB (RHOB:GTP) recruits DIAPH1 or DIAPH3 to endosomes where they regulate actin coat formation around endosomes and endosome motility/trafficking (Fernandez-Borja et al. 2005, Wallar et al. 2007).
R-HSA-5666088 (Reactome) Activated RHOD (RHOD:GTP) binds DIAPH2 transcription isoform DIAPH2-3 (DIAPH2C) and recruits it to endosomes. RHOD and DIAPH2 regulate endosome motility through SRC-dependent regulation of actin dynamics (Gasman et al. 2003).
R-HSA-5666104 (Reactome) RHOD:GTP:DIAPH2-3 complex recruits SRC to endosomes. SRC recruitment is necessary for RHOD:GTP:DIAPH2-3-mediated regulation of endosome-associated actin cytoskeleton and endosome motility (Gasman et al. 2003). SRC directly binds to DIAPH2 (Tominaga et al. 2000).
R-HSA-5666129 (Reactome) Activated CDC42 (CDC42:GTP) can localize to kinetochores of metaphase cells and recruit DIAPH2 transcriptional isoform DIAPH2-2 (DIA-12C, mDia3) to kinetochores. The CDC42:GTP:DIAPH2-2 complex regulates the attachment of microtubules to kinetochores (Yasuda et al. 2004).
R-HSA-5666160 (Reactome) Aurora kinase B (AURKB), which is part of the kinetochore, phosphorylates DIAPH2-2 (DIA-12C, mDia3) on serine residue S196 in the FH3 (DID) domain and probably on several other residues in the FH3 and FH2 domains. AURKB-mediated phosphorylation of DIAPH2-2 is necessary for the regulation of microtubule binding to kinetochores by the CDC42:GTP:DIAPH2-2 complex (Cheng et al. 2011).
R-HSA-5666169 (Reactome) The recruitment of DIAPH2-2 (DIA-12C, mDia3) to kinetochores by activated CDC42 (CDC42:GTP) and DIAPH2-2 phosphorylation by AURKB positively regulates the attachment of microtubules to kinetochores (Yasuda et al. 2004, Cheng et al. 2011).

The human kinetochore, is a complex proteinaceous structure that assembles on centromeric DNA and mediates the association of mitotic chromosomes with spindle microtubules in prometaphase. The molecular composition of the human kinetochore is reviewed in detail in Cheeseman et al., 2008. This complex structure is composed of numerous protein complexes and networks including: the constitutive centromere-associated network (CCAN) containing several sub-networks such as (CENP-H, I, K), (CENP-50/U, O, P, Q, R), the KMN network (containing KNL1, the Mis12 complex, and the Ndc80 complex), the chromosomal passenger complex, the mitotic checkpoint complex, the nucleoporin 107-160 complex and the RZZ complex.
At prometaphase, following breakdown of the nuclear envelope, the kinetochores of condensed chromosomes begin to interact with spindle microtubules. In humans, 15-20 microtubules are bound to each kinetochore (McEwen et al., 2001), and the attachment of 15 microtubules to the kinetochore is shown in this reaction. Recently, it was found that the core kinetochore-microtubule attachment site is within the KMN network and is likely to be formed by two closely apposed low-affinity microtubule-binding sites, one in the Ndc80 complex and a second in KNL1 (Cheeseman et al., 2006).

RAC1:GDPArrowR-HSA-5665809 (Reactome)
RAC1:GTP:FMNL1:Profilin:G-actinArrowR-HSA-5665659 (Reactome)
RAC1:GTP:FMNL1:Profilin:G-actinR-HSA-5665802 (Reactome)
RAC1:GTP:FMNL1ArrowR-HSA-5663232 (Reactome)
RAC1:GTP:FMNL1R-HSA-5665659 (Reactome)
RAC1:GTPR-HSA-5663232 (Reactome)
RHOA:GTP:DIAPH1:EVL:Profilin:G-actinArrowR-HSA-5665982 (Reactome)
RHOA:GTP:DIAPH1ArrowR-HSA-5665989 (Reactome)
RHOA:GTP:DIAPH1R-HSA-5665982 (Reactome)
RHOA:GTP:Mg2+R-HSA-3858495 (Reactome)
RHOA:GTPR-HSA-5665989 (Reactome)
RHOB:GTP:DIAPH1,DIAPH3ArrowR-HSA-5666070 (Reactome)
RHOB:GTPR-HSA-5666070 (Reactome)
RHOC:GTP:FMNL2ArrowR-HSA-5665748 (Reactome)
RHOC:GTP:FMNL3:G-actinArrowR-HSA-5665767 (Reactome)
RHOC:GTP:FMNL3ArrowR-HSA-5665761 (Reactome)
RHOC:GTP:FMNL3R-HSA-5665767 (Reactome)
RHOC:GTPR-HSA-5665748 (Reactome)
RHOC:GTPR-HSA-5665761 (Reactome)
RHOD:GTP:DIAPH2-3ArrowR-HSA-5666088 (Reactome)
RHOD:GTP:DIAPH2-3R-HSA-5666104 (Reactome)
RHOD:GTP:DIAPH2:SRC-1ArrowR-HSA-5666104 (Reactome)
RHOD:GTPR-HSA-5666088 (Reactome)
SCAIR-HSA-5666008 (Reactome)
SRC-1R-HSA-5666104 (Reactome)
SRF:MKL1:ITGB1 GeneArrowR-HSA-5666046 (Reactome)
SRF:MKL1:ITGB1 GeneArrowR-HSA-5666049 (Reactome)
SRF:MKL1:SCAIArrowR-HSA-5666008 (Reactome)
SRF:MKL1:SCAITBarR-HSA-5666049 (Reactome)
SRF:MKL1ArrowR-HSA-5665998 (Reactome)
SRF:MKL1R-HSA-5666008 (Reactome)
SRF:MKL1R-HSA-5666046 (Reactome)
SRFR-HSA-5665998 (Reactome)
SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinArrowR-HSA-5665802 (Reactome)
SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinR-HSA-5665809 (Reactome)
SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinmim-catalysisR-HSA-5665809 (Reactome)
SRGAP2ArrowR-HSA-5665809 (Reactome)
SRGAP2R-HSA-5665802 (Reactome)
actin:ATPR-HSA-203070 (Reactome)
pp-DVLR-HSA-3858489 (Reactome)
ppDVL:DAAM1:RHOA:GTPArrowR-HSA-3858495 (Reactome)
ppDVL:DAAM1ArrowR-HSA-3858489 (Reactome)
ppDVL:DAAM1R-HSA-3858495 (Reactome)

Personal tools