RHO GTPases activate formins (Homo sapiens)

From WikiPathways

Revision as of 19:56, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
4, 7, 11, 15, 19...13562, 10, 35, 39, 45...4, 23, 42, 6143, 5541, 482729, 46304, 15, 22, 34, 617, 9, 207, 9, 16, 17, 21...1, 32, 38483930304, 6, 15, 22, 34...634, 23, 28, 40, 42134, 5, 14, 23, 42...25, 30, 31, 33, 524, 22, 46, 6512, 62, 645613endosomecytosolnucleoplasmDIAPH3 NUP37 SGOL2 RHOD ACTB(1-375) SPDL1 CENPE ZW10 DIAPH1 NDEL1 APITD1 CENPN NDE1 PPP2R5C PPP2CB MAPRE1 pp-DVL3 SGOL2 CENPH ERCC6L BUB1B RAC1 AURKB NUP37 SPC25 MAD1L1 DYNC1LI2 GTP PPP2R5B PPP2CB CENPP RPS27 CENPI ACTB(1-375) CENPQ CENPA AURKB CDCA8 CENPP CENPH RHOA INCENP XPO1 KIF2B PMF1 RANGAP1 ACTB(1-375) DIAPH2-3 PAFAH1B1 PPP2CA GTP MIS12 NDEL1 DYNC1H1 SPC25 ITGB3BP NUP98-5 MIS12 SGOL1 GTP SRF ZW10 DYNC1LI2 GDP SEC13 ATP NDC80 GTP CLASP2 RAC1:GTP:FMNL1NUF2 PPP2R1A DIAPH2-3 ADPNUF2 pp-DVL2 SGOL2 NDEL1 KIF2A GTP SEH1L-1 AHCTF1 PPP2R5E SPDL1 MAD1L1 CENPT CKAP5 CLIP1 SRGAP2DYNC1I1 MAD1L1 Mg2+ XPO1 CENPQ BIRC5 PFN1 MKL1 RHOB:GTPRHOC:GTP:FMNL3FMNL1 DIAPH1 DYNC1I2 PPP2R5A SGOL1 CDC20 CENPO FMNL3 RAC1:GTP:FMNL1:Profilin:G-actinNUP85 FMNL3PPP2R5D DYNC1LI2 KIF2B pp-DVL1 RHOA:GTPPFN2 PMF1 CENPI GTP MAD2L1 PPP2R5C CLASP1 PFN1 CDC42 NUP37 DIAPH2-2 CDC42:GTPGTP NUP160 CENPC1 KIF2A ACTB(1-375) BUB3 Microtubule protofilament KNTC1 RCC2 CENPL RHOD:GTPSGOL1 DYNC1LI1 ACTB(1-375) KIF2C PPP2R5C ACTB(1-375) NSL1 NUF2 NUP107 SRFFMNL2 CENPL PPP2R1A NUF2 CENPF ERCC6L CENPC1 DAAM1 ACTG1 PFN2 BUB1 PPP2R1A TAOK1 DSN1 SRF:MKL1:SCAIZWINT PLK1 RHOC DYNC1LI1 CENPF DYNC1LI1 CENPT CDC42:GTP:FMNL1RCC2 CENPT DYNC1H1 DIAPH1 DYNLL2 FMNL2 Beta-cateninindependent WNTsignalingNUDC DYNC1I1 DIAPH2-2ZWINT NUP85 CENPN CENPM CENPP RAC1 ACTG1 RCC2 NDEL1 RPS27 CDC20 CDC42 GTP CENPT ATP PFN1 NUP43 KNTC1 RHOB:GTP:DIAPH1,DIAPH3MKL1 APITD1 DIAPH2-2 FMNL3 Kinetochore:CDC42:GTP:DIAPH2-2NUDC APITD1 SPDL1 MKL1 PPP2CA FMNL1 CENPI FMNL1PPP1CC CENPI Integrin cellsurfaceinteractionsGTP RHOA DYNLL1 GTP G-actinCLASP1 Profilin:G-actinPPP2R5D SRC-1 ITGB3BP CENPC1 SPC25 INCENP NUDC ZWILCH GTP PPP2R5D TAOK1 RHOC:GTP:FMNL2pp-DVL1 ppDVL:DAAM1:RHOA:GTPRHOD PPP2R5A FMNL1 CDC42 ppDVL:DAAM1DYNLL2 MAD2L1 EVL RAC1 RAC1:GTPCENPF KinetochoreBUB1 AHCTF1 NUP160 PPP2R5E CDC42:GTP:FMNL2ZWINT SPC24 CLASP1 RHOC RCC2 KIF2B RANBP2 ZWILCH ATP PPP2R5A PFN2 CENPO DIAPH1 SPC24 NUP85 Kinetochore:CDC42:GTP:p-S196-DIAPH2-2SRF SCAI GTP CKAP5 RHOC:GTP:FMNL3:G-actinPPP2CB CLASP2 BIRC5 RANGAP1 ZWILCH SGOL1 RANBP2 PMF1 RHOD Profilin:G-actin:MKL1DSN1 RHOC PLK1 RHOA DIAPH1,DIAPH3Microtubule-boundkinetochoreITGB3BP ITGB3BP CASC5 ZW10 PPP1CC FMNL2 PPP1CC RHOA:GTP:DIAPH1GTP RHOD:GTP:DIAPH2:SRC-1PAFAH1B1 pp-DVLNUP133 ATP ATPBIRC5 PFN1 CDC42 SRGAP2 NUP98-5 Mg2+ GTP RANBP2 NUP43 SKA2 CENPE NSL1 RHOA ACTG1 KIF2A PFN2 DAAM1NDC80 GTP CENPE DIAPH3 ACTG1 GTP CENPK SRF PFN2 RHOB BUB1 PPP2R1A ACTG1 NSL1 CENPH FMNL2 CENPE CENPL SEC13 SEH1L-1 GTP CKAP5 GTP BUB1B RHOA B9D2 pp-DVL3 CENPQ CENPN FMNL3 ACTG1 MKL1B9D2 PFN2 RANGAP1 CENPH BUB1 DYNC1H1 KIF18A PPP2R5D MAPRE1 NUP107 DYNC1H1 PPP2CA CLIP1 DSN1 ZWILCH NUP98-5 CENPM RHOC:GTPRAC1:GDPNUP85 NDC80 AURKB AHCTF1 DYNC1I2 PPP2R1B SPC25 GTP PPP2R5C CLIP1 XPO1 PPP1CC CLASP2 RHOA:GTP:DIAPH1:EVL:Profilin:G-actinBUB3 BUB3 SKA1 NDE1 RHOC RPS27 PFN2 BUB1B CENPK DYNLL1 GTP PPP2CB CENPM CLIP1 RAC1 NUP133 CENPO AHCTF1 CENPF FMNL1 CENPA PPP2R1B NUP37 MAPRE1 CENPQ RHOA:GTP:Mg2+MLF1IP EVLSEH1L-1 CLASP2 PPP2R5B MLF1IP SGOL2 CDCA8 ITGB1 Gene MKL1 SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinPPP2R5B ZW10 PPP2R5E CENPC1 NSL1 CASC5 NDE1 PPP2CA PPP2R5E H2ODYNLL1 TAOK1 CENPM PAFAH1B1 BIRC5 ZWINT ATP ITGB1p-S196-DIAPH2-2 SPC24 DYNC1LI1 CDC42:FMNL2:Profilin:G-actinMLF1IP ERCC6L DSN1 CENPK XPO1 DIAPH2-3DYNC1I2 GTP SKA2 SPC24 NUP133 ITGB1 GeneSKA2 PPP2R5B KIF2B INCENP CENPP DAAM1 CENPL ATP MicrotubulePFNSRF:MKL1:ITGB1 GeneFMNL2CDC20 SCAINUP160 NDC80 NUP133 PAFAH1B1 SKA2 PPP2R1B CDC42 CENPO CASC5 pp-DVL2 ACTG1 SRC-1DIAPH1 KIF18A SKA1 AURKB PLK1 CENPA MLF1IP BUB3 RANBP2 CENPN MIS12 DYNLL2 PFN1 NUDC CDCA8 DYNLL2 CASC5 SPDL1 KIF2C NUP107 RANGAP1 Microtubule protofilament CKAP5 RHOB PFN1 DYNC1LI2 CDCA8 PMF1 DYNC1I1 KIF2C ACTG1 MAD2L1 NUP98-5 CENPA KNTC1 INCENP CENPK RHOD:GTP:DIAPH2-3CLASP1 SEC13 NUP160 TAOK1 GTP ACTB(1-375) pp-DVL1 GTP ACTB(1-375) NUP107 DYNC1I2 MAPRE1 PFN1 EVL CDC42 MAD2L1 SEH1L-1 KIF2C DYNLL1 PPP2R5A pp-DVL3 PiKIF2A B9D2 ATP PLK1 CDC42 B9D2 NDE1 DYNC1I1 PPP2R1B BUB1B MKL1SRF:MKL1ERCC6L KNTC1 CDC42:GTPCDC20 PFN1 MAD1L1 SKA1 APITD1 GTP KIF18A RAC1 ATP SEC13 NUP43 Cell junctionorganizationpp-DVL2 NUP43 DIAPH1RPS27 MIS12 SKA1 DIAPH2-3 KIF18A PFN2 FMNL1 GTP 614, 226541, 484030614, 225639, 63, 66393, 18, 24, 50, 58...3039, 63, 664, 224, 22, 572713482912, 62, 6439, 63, 668, 26, 36, 49, 511347, 6540


Description

Formins are a family of proteins with 15 members in mammals, organized into 8 subfamilies. Formins are involved in the regulation of actin cytoskeleton. Many but not all formin family members are activated by RHO GTPases. Formins that serve as effectors of RHO GTPases belong to different formin subfamilies but they all share a structural similarity to Drosophila protein diaphanous and are hence named diaphanous-related formins (DRFs).

DRFs activated by RHO GTPases contain a GTPase binding domain (GBD) at their N-terminus, followed by formin homology domains 3, 1, and 2 (FH3, FH1, FH2) and a diaphanous autoregulatory domain (DAD) at the C-terminus. Most DRFs contain a dimerization domain (DD) and a coiled-coil region (CC) in between FH3 and FH1 domains (reviewed by Kuhn and Geyer 2014). RHO GTPase-activated DRFs are autoinhibited through the interaction between FH3 and DAD which is disrupted upon binding to an active RHO GTPase (Li and Higgs 2003, Lammers et al. 2005, Nezami et al. 2006). Since formins dimerize, it is not clear whether the FH3-DAD interaction is intra- or intermolecular. FH2 domain is responsible for binding to the F-actin and contributes to the formation of head-to-tail formin dimers (Xu et al. 2004). The proline-rich FH1 domain interacts with the actin-binding proteins profilins, thereby facilitating actin recruitment to formins and accelerating actin polymerization (Romero et al. 2004, Kovar et al. 2006).<p>Different formins are activated by different RHO GTPases in different cell contexts. FMNL1 (formin-like protein 1) is activated by binding to the RAC1:GTP and is involved in the formation of lamellipodia in macrophages (Yayoshi-Yamamoto et al. 2000) and is involved in the regulation of the Golgi complex structure (Colon-Franco et al. 2011). Activation of FMNL1 by CDC42:GTP contributes to the formation of the phagocytic cup (Seth et al. 2006). Activation of FMNL2 (formin-like protein 2) and FMNL3 (formin-like protein 3) by RHOC:GTP is involved in cancer cell motility and invasiveness (Kitzing et al. 2010, Vega et al. 2011). DIAPH1, activated by RHOA:GTP, promotes elongation of actin filaments and activation of SRF-mediated transcription which is inhibited by unpolymerized actin (Miralles et al. 2003). RHOF-mediated activation of DIAPH1 is implicated in formation of stress fibers (Fan et al. 2010). Activation of DIAPH1 and DIAPH3 by RHOB:GTP leads to actin coat formation around endosomes and regulates endosome motility and trafficking (Fernandez-Borja et al. 2005, Wallar et al. 2007). Endosome trafficking is also regulated by DIAPH2 transcription isoform 3 (DIAPH2-3) which, upon activation by RHOD:GTP, recruits SRC kinase to endosomes (Tominaga et al. 2000, Gasman et al. 2003). DIAPH2 transcription isoform 2 (DIAPH2-2) is involved in mitosis where, upon being activated by CDC42:GTP, it facilitates the capture of astral microtubules by kinetochores (Yasuda et al. 2004, Cheng et al. 2011). DIAPH2 is implicated in ovarian maintenance and premature ovarian failure (Bione et al. 1998). DAAM1, activated by RHOA:GTP, is involved in linking WNT signaling to cytoskeleton reorganization (Habas et al. 2001). View original pathway at:Reactome.</div>

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5663220
Reactome-version 
Reactome version: 64
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Li D, Sewer MB.; ''RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking.''; PubMed Europe PMC Scholia
  2. Gao GX, Dong HJ, Gu HT, Gao Y, Pan YZ, Yang Y, Chen XQ.; ''[PI3-kinase mediates activity of RhoA and interaction of RhoA with mDia1 in thrombin-induced platelet aggregation].''; PubMed Europe PMC Scholia
  3. Boudreau NJ, Jones PL.; ''Extracellular matrix and integrin signalling: the shape of things to come.''; PubMed Europe PMC Scholia
  4. Fernandez-Borja M, Janssen L, Verwoerd D, Hordijk P, Neefjes J.; ''RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1.''; PubMed Europe PMC Scholia
  5. Wong GT, Gavin BJ, McMahon AP.; ''Differential transformation of mammary epithelial cells by Wnt genes.''; PubMed Europe PMC Scholia
  6. Block J, Breitsprecher D, Kühn S, Winterhoff M, Kage F, Geffers R, Duwe P, Rohn JL, Baum B, Brakebusch C, Geyer M, Stradal TE, Faix J, Rottner K.; ''FMNL2 drives actin-based protrusion and migration downstream of Cdc42.''; PubMed Europe PMC Scholia
  7. Gao B.; ''Wnt regulation of planar cell polarity (PCP).''; PubMed Europe PMC Scholia
  8. Kühn S, Geyer M.; ''Formins as effector proteins of Rho GTPases.''; PubMed Europe PMC Scholia
  9. Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier MF.; ''Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis.''; PubMed Europe PMC Scholia
  10. Thompson ME, Heimsath EG, Gauvin TJ, Higgs HN, Kull FJ.; ''FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation.''; PubMed Europe PMC Scholia
  11. Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E.; ''The way Wnt works: components and mechanism.''; PubMed Europe PMC Scholia
  12. Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M, Yonemura S, Terada Y, Ishizaki T, Narumiya S.; ''Cdc42 and mDia3 regulate microtubule attachment to kinetochores.''; PubMed Europe PMC Scholia
  13. Bione S, Sala C, Manzini C, Arrigo G, Zuffardi O, Banfi S, Borsani G, Jonveaux P, Philippe C, Zuccotti M, Ballabio A, Toniolo D.; ''A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility.''; PubMed Europe PMC Scholia
  14. Lammers M, Rose R, Scrima A, Wittinghofer A.; ''The regulation of mDia1 by autoinhibition and its release by Rho*GTP.''; PubMed Europe PMC Scholia
  15. Colón-Franco JM, Gomez TS, Billadeau DD.; ''Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex.''; PubMed Europe PMC Scholia
  16. Brandt DT, Baarlink C, Kitzing TM, Kremmer E, Ivaska J, Nollau P, Grosse R.; ''SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of beta1-integrin.''; PubMed Europe PMC Scholia
  17. Cheeseman IM, Desai A.; ''Molecular architecture of the kinetochore-microtubule interface.''; PubMed Europe PMC Scholia
  18. Miralles F, Posern G, Zaromytidou AI, Treisman R.; ''Actin dynamics control SRF activity by regulation of its coactivator MAL.''; PubMed Europe PMC Scholia
  19. Faull RJ, Ginsberg MH.; ''Inside-out signaling through integrins.''; PubMed Europe PMC Scholia
  20. Nodelman IM, Bowman GD, Lindberg U, Schutt CE.; ''X-ray structure determination of human profilin II: A comparative structural analysis of human profilins.''; PubMed Europe PMC Scholia
  21. Kitzing TM, Wang Y, Pertz O, Copeland JW, Grosse R.; ''Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC.''; PubMed Europe PMC Scholia
  22. Vega FM, Fruhwirth G, Ng T, Ridley AJ.; ''RhoA and RhoC have distinct roles in migration and invasion by acting through different targets.''; PubMed Europe PMC Scholia
  23. Lal H, Verma SK, Foster DM, Golden HB, Reneau JC, Watson LE, Singh H, Dostal DE.; ''Integrins and proximal signaling mechanisms in cardiovascular disease.''; PubMed Europe PMC Scholia
  24. White DJ, Puranen S, Johnson MS, Heino J.; ''The collagen receptor subfamily of the integrins.''; PubMed Europe PMC Scholia
  25. Seth A, Otomo C, Rosen MK.; ''Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpha and mDia1.''; PubMed Europe PMC Scholia
  26. Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS.; ''Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling.''; PubMed Europe PMC Scholia
  27. Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A.; ''Structural and mechanistic insights into the interaction between Rho and mammalian Dia.''; PubMed Europe PMC Scholia
  28. Watanabe N, Higashida C.; ''Formins: processive cappers of growing actin filaments.''; PubMed Europe PMC Scholia
  29. Korenbaum E, Nordberg P, Björkegren-Sjögren C, Schutt CE, Lindberg U, Karlsson R.; ''The role of profilin in actin polymerization and nucleotide exchange.''; PubMed Europe PMC Scholia
  30. Mason FM, Heimsath EG, Higgs HN, Soderling SH.; ''Bi-modal regulation of a formin by srGAP2.''; PubMed Europe PMC Scholia
  31. van Amerongen R.; ''Alternative Wnt pathways and receptors.''; PubMed Europe PMC Scholia
  32. Nezami AG, Poy F, Eck MJ.; ''Structure of the autoinhibitory switch in formin mDia1.''; PubMed Europe PMC Scholia
  33. Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D.; ''An actin nucleation mechanism mediated by Bni1 and profilin.''; PubMed Europe PMC Scholia
  34. Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK.; ''Structural basis of Rho GTPase-mediated activation of the formin mDia1.''; PubMed Europe PMC Scholia
  35. Cheng L, Zhang J, Ahmad S, Rozier L, Yu H, Deng H, Mao Y.; ''Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment.''; PubMed Europe PMC Scholia
  36. Li F, Higgs HN.; ''The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition.''; PubMed Europe PMC Scholia
  37. Xu Y, Moseley JB, Sagot I, Poy F, Pellman D, Goode BL, Eck MJ.; ''Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture.''; PubMed Europe PMC Scholia
  38. Heimsath EG, Higgs HN.; ''The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends.''; PubMed Europe PMC Scholia
  39. Grosse R, Copeland JW, Newsome TP, Way M, Treisman R.; ''A role for VASP in RhoA-Diaphanous signalling to actin dynamics and SRF activity.''; PubMed Europe PMC Scholia
  40. Habas R, Kato Y, He X.; ''Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1.''; PubMed Europe PMC Scholia
  41. Kursula P, Kursula I, Massimi M, Song YH, Downer J, Stanley WA, Witke W, Wilmanns M.; ''High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP.''; PubMed Europe PMC Scholia
  42. Aspenström P.; ''Formin-binding proteins: modulators of formin-dependent actin polymerization.''; PubMed Europe PMC Scholia
  43. Arnaout MA, Goodman SL, Xiong JP.; ''Coming to grips with integrin binding to ligands.''; PubMed Europe PMC Scholia
  44. Hetheridge C, Scott AN, Swain RK, Copeland JW, Higgs HN, Bicknell R, Mellor H.; ''The formin FMNL3 is a cytoskeletal regulator of angiogenesis.''; PubMed Europe PMC Scholia
  45. Copeland JW, Treisman R.; ''The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization.''; PubMed Europe PMC Scholia
  46. Favaro P, Traina F, Machado-Neto JA, Lazarini M, Lopes MR, Pereira JK, Costa FF, Infante E, Ridley AJ, Saad ST.; ''FMNL1 promotes proliferation and migration of leukemia cells.''; PubMed Europe PMC Scholia
  47. Otomo T, Tomchick DR, Otomo C, Machius M, Rosen MK.; ''Crystal structure of the Formin mDia1 in autoinhibited conformation.''; PubMed Europe PMC Scholia
  48. Yayoshi-Yamamoto S, Taniuchi I, Watanabe T.; ''FRL, a novel formin-related protein, binds to Rac and regulates cell motility and survival of macrophages.''; PubMed Europe PMC Scholia
  49. Liu ST, Rattner JB, Jablonski SA, Yen TJ.; ''Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells.''; PubMed Europe PMC Scholia
  50. Fan L, Pellegrin S, Scott A, Mellor H.; ''The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells.''; PubMed Europe PMC Scholia
  51. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A.; ''The conserved KMN network constitutes the core microtubule-binding site of the kinetochore.''; PubMed Europe PMC Scholia
  52. Gasman S, Kalaidzidis Y, Zerial M.; ''RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase.''; PubMed Europe PMC Scholia
  53. Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD.; ''Control of the assembly of ATP- and ADP-actin by formins and profilin.''; PubMed Europe PMC Scholia
  54. Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR, Cleveland DW.; ''The human CENP-A centromeric nucleosome-associated complex.''; PubMed Europe PMC Scholia
  55. Du SJ, Purcell SM, Christian JL, McGrew LL, Moon RT.; ''Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos.''; PubMed Europe PMC Scholia
  56. Pring M, Weber A, Bubb MR.; ''Profilin-actin complexes directly elongate actin filaments at the barbed end.''; PubMed Europe PMC Scholia
  57. Breitsprecher D, Kiesewetter AK, Linkner J, Urbanke C, Resch GP, Small JV, Faix J.; ''Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation.''; PubMed Europe PMC Scholia
  58. De A.; ''Wnt/Ca2+ signaling pathway: a brief overview.''; PubMed Europe PMC Scholia
  59. Amano M, Nakayama M, Kaibuchi K.; ''Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity.''; PubMed Europe PMC Scholia
  60. Liu W, Sato A, Khadka D, Bharti R, Diaz H, Runnels LW, Habas R.; ''Mechanism of activation of the Formin protein Daam1.''; PubMed Europe PMC Scholia
  61. Han Y, Eppinger E, Schuster IG, Weigand LU, Liang X, Kremmer E, Peschel C, Krackhardt AM.; ''Formin-like 1 (FMNL1) is regulated by N-terminal myristoylation and induces polarized membrane blebbing.''; PubMed Europe PMC Scholia
  62. Lai SL, Chien AJ, Moon RT.; ''Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis.''; PubMed Europe PMC Scholia
  63. Wallar BJ, Deward AD, Resau JH, Alberts AS.; ''RhoB and the mammalian Diaphanous-related formin mDia2 in endosome trafficking.''; PubMed Europe PMC Scholia
  64. Moriya K, Yamamoto T, Takamitsu E, Matsunaga Y, Kimoto M, Fukushige D, Kimoto C, Suzuki T, Utsumi T.; ''Protein N-myristoylation is required for cellular morphological changes induced by two formin family proteins, FMNL2 and FMNL3.''; PubMed Europe PMC Scholia
  65. Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR, Desai A, Fukagawa T.; ''The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres.''; PubMed Europe PMC Scholia
  66. Tanegashima K, Zhao H, Dawid IB.; ''WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
116650view11:41, 9 May 2021EweitzModified title
114971view16:49, 25 January 2021ReactomeTeamReactome version 75
113415view11:49, 2 November 2020ReactomeTeamReactome version 74
112617view15:59, 9 October 2020ReactomeTeamReactome version 73
101533view11:40, 1 November 2018ReactomeTeamreactome version 66
101068view21:22, 31 October 2018ReactomeTeamreactome version 65
100598view19:56, 31 October 2018ReactomeTeamreactome version 64
100148view16:41, 31 October 2018ReactomeTeamreactome version 63
99698view15:10, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93766view13:34, 16 August 2017ReactomeTeamreactome version 61
93290view11:19, 9 August 2017ReactomeTeamreactome version 61
89082view07:56, 22 August 2016EgonwOntology Term : 'signaling pathway' added !
86375view09:16, 11 July 2016ReactomeTeamreactome version 56
83377view11:04, 18 November 2015ReactomeTeamVersion54
81552view13:05, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ACTB(1-375) ProteinP60709 (Uniprot-TrEMBL)
ACTG1 ProteinP63261 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
AHCTF1 ProteinQ8WYP5 (Uniprot-TrEMBL)
APITD1 ProteinQ8N2Z9 (Uniprot-TrEMBL)
ATP MetaboliteCHEBI:15422 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
AURKB ProteinQ96GD4 (Uniprot-TrEMBL)
B9D2 ProteinQ9BPU9 (Uniprot-TrEMBL)
BIRC5 ProteinO15392 (Uniprot-TrEMBL)
BUB1 ProteinO43683 (Uniprot-TrEMBL)
BUB1B ProteinO60566 (Uniprot-TrEMBL)
BUB3 ProteinO43684 (Uniprot-TrEMBL)
Beta-catenin

independent WNT

signaling
PathwayR-HSA-3858494 (Reactome) Humans and mice have 19 identified WNT proteins that were originally classified as either 'canonical' or 'non-canonical' depending upon whether they were able to transform the mouse mammary epithelial cell line C57MG and to induce secondary axis formation in Xenopus (Wong et al, 1994; Du et al, 1995). So-called canonical WNTs, including Wnt1, 3, 3a and 7, initiate signaling pathways that destabilize the destruction complex and allow beta-catenin to accumulate and translocate to the nucleus where it promotes transcription (reviewed in Saito-Diaz et al, 2013). Non-canonical WNTs, including Wnt 2, 4, 5a, 5b, 6, 7b, and Wnt11 activate beta-catenin-independent responses that regulate many aspects of morphogenesis and development, often by impinging on the cytoskeleton (reviewed in van Amerongen, 2012). Two of the main beta-catenin-independent pathways are the Planar Cell Polarity (PCP) pathway, which controls the establishment of polarity in the plane of a field of cells, and the WNT/Ca2+ pathway, which promotes the release of intracellular calcium and regulates numerous downstream effectors (reviewed in Gao, 2012; De, 2011).
CASC5 ProteinQ8NG31 (Uniprot-TrEMBL)
CDC20 ProteinQ12834 (Uniprot-TrEMBL)
CDC42 ProteinP60953 (Uniprot-TrEMBL)
CDC42:FMNL2:Profilin:G-actinComplexR-HSA-5665752 (Reactome)
CDC42:GTP:FMNL1ComplexR-HSA-5665688 (Reactome)
CDC42:GTP:FMNL2ComplexR-HSA-5665735 (Reactome)
CDC42:GTPComplexR-HSA-182921 (Reactome)
CDC42:GTPComplexR-HSA-5666123 (Reactome)
CDCA8 ProteinQ53HL2 (Uniprot-TrEMBL)
CENPA ProteinP49450 (Uniprot-TrEMBL)
CENPC1 ProteinQ03188 (Uniprot-TrEMBL)
CENPE ProteinQ02224 (Uniprot-TrEMBL)
CENPF ProteinP49454 (Uniprot-TrEMBL)
CENPH ProteinQ9H3R5 (Uniprot-TrEMBL)
CENPI ProteinQ92674 (Uniprot-TrEMBL)
CENPK ProteinQ9BS16 (Uniprot-TrEMBL)
CENPL ProteinQ8N0S6 (Uniprot-TrEMBL)
CENPM ProteinQ9NSP4 (Uniprot-TrEMBL)
CENPN ProteinQ96H22 (Uniprot-TrEMBL)
CENPO ProteinQ9BU64 (Uniprot-TrEMBL)
CENPP ProteinQ6IPU0 (Uniprot-TrEMBL)
CENPQ ProteinQ7L2Z9 (Uniprot-TrEMBL)
CENPT ProteinQ96BT3 (Uniprot-TrEMBL)
CKAP5 ProteinQ14008 (Uniprot-TrEMBL)
CLASP1 ProteinQ7Z460 (Uniprot-TrEMBL)
CLASP2 ProteinO75122 (Uniprot-TrEMBL)
CLIP1 ProteinP30622 (Uniprot-TrEMBL)
Cell junction organizationPathwayR-HSA-446728 (Reactome) Cell junction organization in Reactome currently covers aspects of cell-cell junction organization, cell-extracellular matrix interactions, and Type I hemidesmosome assembly.
DAAM1 ProteinQ9Y4D1 (Uniprot-TrEMBL)
DAAM1ProteinQ9Y4D1 (Uniprot-TrEMBL)
DIAPH1 ProteinO60610 (Uniprot-TrEMBL)
DIAPH1,DIAPH3ComplexR-HSA-5666066 (Reactome)
DIAPH1ComplexR-HSA-5665967 (Reactome)
DIAPH2-2 ProteinO60879-2 (Uniprot-TrEMBL)
DIAPH2-2ComplexR-HSA-5666139 (Reactome)
DIAPH2-3 ProteinO60879-3 (Uniprot-TrEMBL)
DIAPH2-3ComplexR-HSA-5666087 (Reactome)
DIAPH3 ProteinQ9NSV4 (Uniprot-TrEMBL)
DSN1 ProteinQ9H410 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I1 ProteinO14576 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNC1LI1 ProteinQ9Y6G9 (Uniprot-TrEMBL)
DYNC1LI2 ProteinO43237 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
DYNLL2 ProteinQ96FJ2 (Uniprot-TrEMBL)
ERCC6L ProteinQ2NKX8 (Uniprot-TrEMBL)
EVL ProteinQ9UI08 (Uniprot-TrEMBL)
EVLComplexR-HSA-5665986 (Reactome)
FMNL1 ProteinO95466 (Uniprot-TrEMBL)
FMNL1ComplexR-HSA-5665949 (Reactome)
FMNL2 ProteinQ96PY5 (Uniprot-TrEMBL)
FMNL2ComplexR-HSA-5665952 (Reactome)
FMNL3 ProteinQ8IVF7 (Uniprot-TrEMBL)
FMNL3ComplexR-HSA-5665954 (Reactome)
G-actinComplexR-HSA-201857 (Reactome)
GDP MetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
INCENP ProteinQ9NQS7 (Uniprot-TrEMBL)
ITGB1 Gene ProteinENSG00000150093 (Ensembl)
ITGB1 GeneGeneProductENSG00000150093 (Ensembl)
ITGB1ProteinP05556 (Uniprot-TrEMBL)
ITGB3BP ProteinQ13352 (Uniprot-TrEMBL)
Integrin cell

surface

interactions
PathwayR-HSA-216083 (Reactome) The extracellular matrix (ECM) is a network of macro-molecules that underlies all epithelia and endothelia and that surrounds all connective tissue cells. This matrix provides the mechanical strength and also influences the behavior and differentiation state of cells in contact with it. The ECM are diverse in composition, but they generally comprise a mixture of fibrillar proteins, polysaccharides synthesized, secreted and organized by neighboring cells. Collagens, fibronectin, and laminins are the principal components involved in cell matrix interactions; other components, such as vitronectin, thrombospondin, and osteopontin, although less abundant, are also important adhesive molecules.
Integrins are the receptors that mediate cell adhesion to ECM. Integrins consists of one alpha and one beta subunit forming a noncovalently bound heterodimer. 18 alpha and 8 beta subunits have been identified in humans that combine to form 24 different receptors.
The integrin dimers can be broadly divided into three families consisting of the beta1, beta2/beta7, and beta3/alphaV integrins. beta1 associates with 12 alpha-subunits and can be further divided into RGD-, collagen-, or laminin binding and the related alpha4/alpha9 integrins that recognise both matrix and vascular ligands. beta2/beta7 integrins are restricted to leukocytes and mediate cell-cell rather than cell-matrix interactions, although some recognize fibrinogen. The beta3/alphaV family members are all RGD receptors and comprise aIIbb3, an important receptor on platelets, and the remaining b-subunits, which all associate with alphaV. It is the collagen receptors and leukocyte-specific integrins that contain alpha A-domains.
KIF18A ProteinQ8NI77 (Uniprot-TrEMBL)
KIF2A ProteinO00139 (Uniprot-TrEMBL)
KIF2B ProteinQ8N4N8 (Uniprot-TrEMBL)
KIF2C ProteinQ99661 (Uniprot-TrEMBL)
KNTC1 ProteinP50748 (Uniprot-TrEMBL)
Kinetochore:CDC42:GTP:DIAPH2-2ComplexR-HSA-5666131 (Reactome)
Kinetochore:CDC42:GTP:p-S196-DIAPH2-2ComplexR-HSA-5666161 (Reactome)
KinetochoreComplexR-HSA-375305 (Reactome)
MAD1L1 ProteinQ9Y6D9 (Uniprot-TrEMBL)
MAD2L1 ProteinQ13257 (Uniprot-TrEMBL)
MAPRE1 ProteinQ15691 (Uniprot-TrEMBL)
MIS12 ProteinQ9H081 (Uniprot-TrEMBL)
MKL1 ProteinQ969V6 (Uniprot-TrEMBL)
MKL1ProteinQ969V6 (Uniprot-TrEMBL)
MLF1IP ProteinQ71F23 (Uniprot-TrEMBL)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
Microtubule protofilament R-HSA-8982424 (Reactome)
Microtubule-bound kinetochoreComplexR-HSA-375303 (Reactome)
MicrotubuleComplexR-HSA-190599 (Reactome)
NDC80 ProteinO14777 (Uniprot-TrEMBL)
NDE1 ProteinQ9NXR1 (Uniprot-TrEMBL)
NDEL1 ProteinQ9GZM8 (Uniprot-TrEMBL)
NSL1 ProteinQ96IY1 (Uniprot-TrEMBL)
NUDC ProteinQ9Y266 (Uniprot-TrEMBL)
NUF2 ProteinQ9BZD4 (Uniprot-TrEMBL)
NUP107 ProteinP57740 (Uniprot-TrEMBL)
NUP133 ProteinQ8WUM0 (Uniprot-TrEMBL)
NUP160 ProteinQ12769 (Uniprot-TrEMBL)
NUP37 ProteinQ8NFH4 (Uniprot-TrEMBL)
NUP43 ProteinQ8NFH3 (Uniprot-TrEMBL)
NUP85 ProteinQ9BW27 (Uniprot-TrEMBL)
NUP98-5 ProteinP52948-5 (Uniprot-TrEMBL)
PAFAH1B1 ProteinP43034 (Uniprot-TrEMBL)
PFN1 ProteinP07737 (Uniprot-TrEMBL)
PFN2 ProteinP35080 (Uniprot-TrEMBL)
PFNComplexR-HSA-203077 (Reactome)
PLK1 ProteinP53350 (Uniprot-TrEMBL)
PMF1 ProteinQ6P1K2 (Uniprot-TrEMBL)
PPP1CC ProteinP36873 (Uniprot-TrEMBL)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2CB ProteinP62714 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R1B ProteinP30154 (Uniprot-TrEMBL)
PPP2R5A ProteinQ15172 (Uniprot-TrEMBL)
PPP2R5B ProteinQ15173 (Uniprot-TrEMBL)
PPP2R5C ProteinQ13362 (Uniprot-TrEMBL)
PPP2R5D ProteinQ14738 (Uniprot-TrEMBL)
PPP2R5E ProteinQ16537 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
Profilin:G-actin:MKL1ComplexR-HSA-5665995 (Reactome)
Profilin:G-actinComplexR-HSA-203080 (Reactome)
RAC1 ProteinP63000 (Uniprot-TrEMBL)
RAC1:GDPComplexR-HSA-445010 (Reactome)
RAC1:GTP:FMNL1:Profilin:G-actinComplexR-HSA-5665660 (Reactome)
RAC1:GTP:FMNL1ComplexR-HSA-5663231 (Reactome)
RAC1:GTPComplexR-HSA-442641 (Reactome)
RANBP2 ProteinP49792 (Uniprot-TrEMBL)
RANGAP1 ProteinP46060 (Uniprot-TrEMBL)
RCC2 ProteinQ9P258 (Uniprot-TrEMBL)
RHOA ProteinP61586 (Uniprot-TrEMBL)
RHOA:GTP:DIAPH1:EVL:Profilin:G-actinComplexR-HSA-5665977 (Reactome)
RHOA:GTP:DIAPH1ComplexR-HSA-5665988 (Reactome)
RHOA:GTP:Mg2+ComplexR-HSA-3858473 (Reactome)
RHOA:GTPComplexR-HSA-5665993 (Reactome)
RHOB ProteinP62745 (Uniprot-TrEMBL)
RHOB:GTP:DIAPH1,DIAPH3ComplexR-HSA-5666074 (Reactome)
RHOB:GTPComplexR-HSA-5666081 (Reactome)
RHOC ProteinP08134 (Uniprot-TrEMBL)
RHOC:GTP:FMNL2ComplexR-HSA-5665742 (Reactome)
RHOC:GTP:FMNL3:G-actinComplexR-HSA-5665773 (Reactome)
RHOC:GTP:FMNL3ComplexR-HSA-5665759 (Reactome)
RHOC:GTPComplexR-HSA-5665750 (Reactome)
RHOD ProteinO00212 (Uniprot-TrEMBL)
RHOD:GTP:DIAPH2-3ComplexR-HSA-5666096 (Reactome)
RHOD:GTP:DIAPH2:SRC-1ComplexR-HSA-5666105 (Reactome)
RHOD:GTPComplexR-HSA-5666092 (Reactome)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
SCAI ProteinQ8N9R8 (Uniprot-TrEMBL)
SCAIProteinQ8N9R8 (Uniprot-TrEMBL)
SEC13 ProteinP55735 (Uniprot-TrEMBL)
SEH1L-1 ProteinQ96EE3-1 (Uniprot-TrEMBL)
SGOL1 ProteinQ5FBB7 (Uniprot-TrEMBL)
SGOL2 ProteinQ562F6 (Uniprot-TrEMBL)
SKA1 ProteinQ96BD8 (Uniprot-TrEMBL)
SKA2 ProteinQ8WVK7 (Uniprot-TrEMBL)
SPC24 ProteinQ8NBT2 (Uniprot-TrEMBL)
SPC25 ProteinQ9HBM1 (Uniprot-TrEMBL)
SPDL1 ProteinQ96EA4 (Uniprot-TrEMBL)
SRC-1 ProteinP12931-1 (Uniprot-TrEMBL)
SRC-1ProteinP12931-1 (Uniprot-TrEMBL)
SRF ProteinP11831 (Uniprot-TrEMBL)
SRF:MKL1:ITGB1 GeneComplexR-HSA-5666050 (Reactome)
SRF:MKL1:SCAIComplexR-HSA-5666007 (Reactome)
SRF:MKL1ComplexR-HSA-5666002 (Reactome)
SRFProteinP11831 (Uniprot-TrEMBL)
SRGAP2 ProteinO75044 (Uniprot-TrEMBL)
SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinComplexR-HSA-5665803 (Reactome)
SRGAP2ProteinO75044 (Uniprot-TrEMBL)
TAOK1 ProteinQ7L7X3 (Uniprot-TrEMBL)
XPO1 ProteinO14980 (Uniprot-TrEMBL)
ZW10 ProteinO43264 (Uniprot-TrEMBL)
ZWILCH ProteinQ9H900 (Uniprot-TrEMBL)
ZWINT ProteinO95229 (Uniprot-TrEMBL)
p-S196-DIAPH2-2 ProteinO60879-2 (Uniprot-TrEMBL)
pp-DVL1 ProteinO14640 (Uniprot-TrEMBL)
pp-DVL2 ProteinO14641 (Uniprot-TrEMBL)
pp-DVL3 ProteinQ92997 (Uniprot-TrEMBL)
pp-DVLComplexR-HSA-3858467 (Reactome)
ppDVL:DAAM1:RHOA:GTPComplexR-HSA-3858474 (Reactome)
ppDVL:DAAM1ComplexR-HSA-3858472 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-5666160 (Reactome)
ATPR-HSA-5666160 (Reactome)
CDC42:FMNL2:Profilin:G-actinArrowR-HSA-5665751 (Reactome)
CDC42:GTP:FMNL1ArrowR-HSA-5665686 (Reactome)
CDC42:GTP:FMNL2ArrowR-HSA-5665727 (Reactome)
CDC42:GTP:FMNL2R-HSA-5665751 (Reactome)
CDC42:GTPR-HSA-5665686 (Reactome)
CDC42:GTPR-HSA-5665727 (Reactome)
CDC42:GTPR-HSA-5666129 (Reactome)
DAAM1R-HSA-3858489 (Reactome)
DIAPH1,DIAPH3R-HSA-5666070 (Reactome)
DIAPH1R-HSA-5665989 (Reactome)
DIAPH2-2R-HSA-5666129 (Reactome)
DIAPH2-3R-HSA-5666088 (Reactome)
EVLR-HSA-5665982 (Reactome)
FMNL1ArrowR-HSA-5665809 (Reactome)
FMNL1R-HSA-5663232 (Reactome)
FMNL1R-HSA-5665686 (Reactome)
FMNL2R-HSA-5665727 (Reactome)
FMNL2R-HSA-5665748 (Reactome)
FMNL3R-HSA-5665761 (Reactome)
G-actinR-HSA-203070 (Reactome)
H2OR-HSA-5665809 (Reactome)
ITGB1 GeneR-HSA-5666046 (Reactome)
ITGB1 GeneR-HSA-5666049 (Reactome)
ITGB1ArrowR-HSA-5666049 (Reactome)
Kinetochore:CDC42:GTP:DIAPH2-2ArrowR-HSA-5666129 (Reactome)
Kinetochore:CDC42:GTP:DIAPH2-2R-HSA-5666160 (Reactome)
Kinetochore:CDC42:GTP:DIAPH2-2mim-catalysisR-HSA-5666160 (Reactome)
Kinetochore:CDC42:GTP:p-S196-DIAPH2-2ArrowR-HSA-5666160 (Reactome)
Kinetochore:CDC42:GTP:p-S196-DIAPH2-2ArrowR-HSA-5666169 (Reactome)
KinetochoreR-HSA-5666129 (Reactome)
KinetochoreR-HSA-5666169 (Reactome)
MKL1ArrowR-HSA-5665982 (Reactome)
MKL1ArrowR-HSA-5665999 (Reactome)
MKL1R-HSA-5665998 (Reactome)
MKL1R-HSA-5665999 (Reactome)
MKL1R-HSA-5666001 (Reactome)
Microtubule-bound kinetochoreArrowR-HSA-5666169 (Reactome)
MicrotubuleR-HSA-5666169 (Reactome)
PFNR-HSA-203070 (Reactome)
PiArrowR-HSA-5665809 (Reactome)
Profilin:G-actin:MKL1ArrowR-HSA-5666001 (Reactome)
Profilin:G-actin:MKL1R-HSA-5665982 (Reactome)
Profilin:G-actinArrowR-HSA-203070 (Reactome)
Profilin:G-actinArrowR-HSA-5665809 (Reactome)
Profilin:G-actinR-HSA-5665659 (Reactome)
Profilin:G-actinR-HSA-5665751 (Reactome)
Profilin:G-actinR-HSA-5665767 (Reactome)
Profilin:G-actinR-HSA-5666001 (Reactome)
R-HSA-203070 (Reactome) Profilins PFN1 and PFN2 bind to monomeric actin (G-actin), forming a 1:1 complex and subsequently regulate actin filament barbed end assembly downstream of various signaling pathways (Pring et al. 1992, Korenbaum et al. 1998, Nodelman et al. 1999)
R-HSA-3858489 (Reactome) DAAM1 (Dishevelled-associated activator of morphogenesis) is a formin-homology protein that was identified in a yeast two-hybrid screen for interactors with the DVL PDZ domain (Habas et al, 2001). FH proteins play a well-characterized role in regulating cytoskeletal reorganization (reviewed in Aspenstrom, 2010). DAAM1 contains an N-terminal GTPase binding domain (GBD), two central proline-rich FH domains and a C-terminal diaphanous autoinhibitory domain (DAD). In the absence of a WNT signal, DAAM1 exists in an autoinhibited conformation mediated by an intramolecular interaction between the DBD and DAD regions (Habas et al, 2001; Liu et al, 2007). Upon WNT signaling, a direct interaction between the DAD of DAAM1 and the PDZ domain of DVL relieves the autoinhibition. In the activated conformation, DAAM1 may undergo FH-dependent oligomerization and had been shown to recruit RHOA in a GBD-dependent manner (Habas et al, 2001; Liu et al, 2007).
R-HSA-3858495 (Reactome) Activated DAAM1 recruits RHOA to the DVL complex in a WNT-dependent manner. Activated DAAM1 is able to bind to RHOA in both the GDP and GTP bound form in vitro, but displays higher affinity for GTP-bound RHOA (Habas et al, 2001; Liu et al, 2007). Studies in Xenopus have identified a DVL-associated weak guanine exchange factor (WGEF) that promotes the exchange of GDP for GTP on RHOA and is required for WNT-PCP signaling (Tanegashima et al, 2008). Evidence suggests that a similar GEF activity is associated with the DVL-DAAM1-RHOA complex in human cells, but the protein has not been definitively identified (Habas et al, 2001; Liu et al, 2007). GTP-bound RHOA relieves the auto-inhibition of RHO-associated kinases, allowing them to dimerize and effect changes to cytoskeletal organization (reviewed in Amano et al, 2010; Lai et al, 2009). DAAM1 may also play a more direct role in regulating the cytoskeleton in response to WNT signaling, since FH domains have been shown to bind actin directly to nucleate linear actin cables (Sagot et al, 2002; Watanabe and Higashida, 2004).
R-HSA-5663232 (Reactome) FMNL1 (formin-like protein 1) binds the active, GTP-bound, form of RAC1 (Yayoshi-Yamamoto et al. 2000). Based on the sequence similarity with mouse formin Dia1, binding of RAC1:GTP relieves the autoinhibition of FMNL1 by displacing the C-terminal autoregulatory DAD domain of FMNL1 from the N-terminal FH3 domain (Rose et al. 2005, Lammers et al. 2005). As formins dimerize through their FH2 domains, it is not clear whether the autoinhibitory interaction between FH3 and DAD domains is intramolecular or intermolecular (Xu et al. 2004, Kuhn and Geyer 2014). Endogenous human FMNL1 interacts with endogenous human RAC1 in some leukemia-derived cell lines and promotes their migration (Favaro et al. 2013). FMNL1 gamma, a transcriptional isoform of FMNL1 with a DAD domain that significantly differs in sequence from DAD domains of FMNL1 transcription isoforms alpha and beta, localizes to the membrane and is active in the absence of RHO GTPase signaling. The membrane localization of FMNL1 gamma is regulated by the myristoylation of the N-terminal glycine which is triggered by an unknown mechanism (Han et al. 2009).
R-HSA-5665659 (Reactome) FMNL1, activated by binding to GTP-bound RAC1, binds actin-associated profilins PFN1 and PFN2 through the proline-rich FH1 domain of FMNL1 (Yayoshi-Yamamoto et al. 2000). The interaction with actin is achieved through the FH2 domain of FMNL1 (Romero et al. 2004, Kovar et al. 2006, Kuhn and Geyer 2014). FMNL1 and profilin-mediated reorganization of actin cytoskeleton is involved in the formation of lamellipodia, which regulates the motility of macrophages (Yayoshi-Yamamoto et al. 2000). FMNL1 was shown to regulate the structure of the Golgi complex, where different transcriptional isoforms of FMNL1 may play different roles (Colon-Franco et al. 2011).
R-HSA-5665686 (Reactome) FMNL1 binds activated CDC42 and this interaction is implicated in the phagocytic cup formation, but the precise mechanism has not been elucidated (Seth et al. 2006).
R-HSA-5665727 (Reactome) FMNL2 binds activated (GTP-bound) CDC42. FMNL2 can be myristoylated on its N-terminal glycine. Although myristoylation is not necessary for the interaction with CDC42, it contributes to FMNL2 activation. Based on the sequence similarity with mouse formin Dia1, binding of CDC42:GTP relieves the autoinhibition of FMNL2 by displacing the C-terminal autoregulatory DAD domain of FMNL2 from the N-terminal FH3 domain (Rose et al. 2005, Lammers et al. 2005). Since formins function as dimers, it is unclear whether the autoinhibitory interaction between FH3 and DAD domain is intramolecular or intermolecular (Xu et al. 2004, Kuhn and Geyer 2014). FMNL2 can also interact with RAC1 in vitro, but it seems that this interaction is not physiologically relevant (Block et al. 2012).
R-HSA-5665748 (Reactome) FMNL2 specifically interacts with the GTP-bound RHOC, which relieves FMNL2 autoinhibition and contributes to RHOC-mediated ameboid cell motility involved in cancer cell invasion (Kitzing et al. 2010). Myristoylation of the N-terminal glycine may be required for the full activation of FMNL2 (Moriya et al. 2012).
R-HSA-5665751 (Reactome) Once activated by binding to GTP-bound CDC42, FMNL2 interacts with actin bound profilin(s) and drives elongation but not nucleation of actin filaments (Block et al. 2012). The interaction between formins and profilins is achieved through the proline-rich FH1 domain of formins, while the interaction with actin is achieved through the FH2 domain of formins (Romero et al. 2004, Kovar et al. 2006, Kuhn and Geyer 2014).
R-HSA-5665761 (Reactome) FMNL3 binds activated (GTP-bound) RHOC. RHOC-mediated activation of FMNL3 promotes polarized cell migration which may be involved in cancer cell invasion (Vega et al. 2011). Myristoylation of the N-terminal glycine may be required for the full activation of FMNL3 (Moriya et al. 2012).
R-HSA-5665767 (Reactome) Activated FMNL3 (presumably associated with RHOC:GTP) has the ability to directly bind G-actin through knob and coiled-coil subdomains of the FMNL3 FH2 domain. The proline-rich FH1 domain which precedes the FH2 domain presumably interacts with profilins bound to G-actin (Romero et al. 2004, Kovar et al. 2006, Kuhn and Geyer 2014). FMNL3 contributes to the elongation of actin filaments (Heimsath and Higgs 2012, Thompson et al. 2013). Activated FMNL3 may also trigger microtubule alignment during angiogenesis (Hetheridge et al. 2012).
R-HSA-5665802 (Reactome) SRGAP2 binds FMNL1 activated by RAC1:GTP by simultaneously interacting with RAC1 and FMNL1. SRGAP2 co-localizes with RAC1, FMNL1, profilin and actin at the plasma membrane after RAC1-mediated activation of FMNL1 (Mason et al. 2011).
R-HSA-5665809 (Reactome) SRGAP2 is a GTPase activating protein that stimulates the GTPase activity of RAC1 bound to FMNL1. GTP hydrolysis produces inactive GDP-bound RAC1 which is unable to bind and activate FMNL1. SRGAP2 thereby limits the duration of FMNL1-mediated elongation of actin filaments downstream of RAC1:GTP (Mason et al. 2011).
R-HSA-5665982 (Reactome) Once activated by binding to RHOA:GTP, DIAPH1 binds profilin:G-actin complexes together with EVL (VASP) homotetramers and promotes elongation of actin filaments (Copeland and Treisman 2002, Grosse et al. 2003, Kursula et al. 2008, Breitsprecher et al. 2008). Binding of nonpolymerized actin (G-actin) to DIAPH1 and EVL releases MKL1 (MAL) transcription co-factor which is inhibited when bound to G-actin (Miralles et al. 2003).
R-HSA-5665989 (Reactome) DIAPH1 is activated by binding of the DIAPH1 dimer to GTP-bound (active) RHOA. Binding to RHOA releaves the autoinhibitory interaction of DIAPH1 FH3 and DAD domains (Otomo et al. 2005). Phosphorylation of RHOA at serine residue S188 may be required for RHOA binding to DIAPH1 (Li and Sewer 2010). The interaction between RHOA and DIAPH1 may also be positively regulated by PI3K signaling (Gao et al. 2009).
R-HSA-5665998 (Reactome) In the nucleus, MKL1 binds SRF transcription factor and enables transcription of SRF-target genes (Miralles et al. 2003).
R-HSA-5665999 (Reactome) The release of MKL1 (MAL) from nonpolymerized actin (G-actin), after profilin:G-actin complexes bind DIAPH1 and EVL (VASP) downstream of activated RHOA, enables MKL1 to translocate from the cytosol to the nucleus (Miralles et al. 2003).
R-HSA-5666001 (Reactome) MKL1 (MAL) transcription cofactor is negatively regulated by binding to nonpolymerized actin (G-actin) (Miralles et al. 2003).
R-HSA-5666008 (Reactome) SCAI forms a ternary complex with MKL1 and SRF, inhibiting the transcriptional activity of the SRF:MKL1 complex. SCAI negatively regulates cancer cell invasion facilitated by the SRF:MKL1-mediated transcription downstream of RHOA and DIAPH1, and therefore acts as a tumor suppressor (Brandt et al. 2009).
R-HSA-5666046 (Reactome) SRF:MKL1 transcription complex binds the promoter region of the integrin beta-1 (ITGB1) gene (Brandt et al. 2009).
R-HSA-5666049 (Reactome) SRF:MKL1 binding to the promoter region of the integrin beta-1 gene stimulates ITGB1 expression downstream of RHOA:GTP:DIAPH1-induced actin cytoskeleton changes. Binding of SCAI to SRF:MKL1 inhibits RHOA:GTP:DIAPH1-induced ITGB1 transcription (Brandt et al. 2009).
R-HSA-5666070 (Reactome) Activated RHOB (RHOB:GTP) recruits DIAPH1 or DIAPH3 to endosomes where they regulate actin coat formation around endosomes and endosome motility/trafficking (Fernandez-Borja et al. 2005, Wallar et al. 2007).
R-HSA-5666088 (Reactome) Activated RHOD (RHOD:GTP) binds DIAPH2 transcription isoform DIAPH2-3 (DIAPH2C) and recruits it to endosomes. RHOD and DIAPH2 regulate endosome motility through SRC-dependent regulation of actin dynamics (Gasman et al. 2003).
R-HSA-5666104 (Reactome) RHOD:GTP:DIAPH2-3 complex recruits SRC to endosomes. SRC recruitment is necessary for RHOD:GTP:DIAPH2-3-mediated regulation of endosome-associated actin cytoskeleton and endosome motility (Gasman et al. 2003). SRC directly binds to DIAPH2 (Tominaga et al. 2000).
R-HSA-5666129 (Reactome) Activated CDC42 (CDC42:GTP) can localize to kinetochores of metaphase cells and recruit DIAPH2 transcriptional isoform DIAPH2-2 (DIA-12C, mDia3) to kinetochores. The CDC42:GTP:DIAPH2-2 complex regulates the attachment of microtubules to kinetochores (Yasuda et al. 2004).
R-HSA-5666160 (Reactome) Aurora kinase B (AURKB), which is part of the kinetochore, phosphorylates DIAPH2-2 (DIA-12C, mDia3) on serine residue S196 in the FH3 (DID) domain and probably on several other residues in the FH3 and FH2 domains. AURKB-mediated phosphorylation of DIAPH2-2 is necessary for the regulation of microtubule binding to kinetochores by the CDC42:GTP:DIAPH2-2 complex (Cheng et al. 2011).
R-HSA-5666169 (Reactome) The recruitment of DIAPH2-2 (DIA-12C, mDia3) to kinetochores by activated CDC42 (CDC42:GTP) and DIAPH2-2 phosphorylation by AURKB positively regulates the attachment of microtubules to kinetochores (Yasuda et al. 2004, Cheng et al. 2011).

The human kinetochore, is a complex proteinaceous structure that assembles on centromeric DNA and mediates the association of mitotic chromosomes with spindle microtubules in prometaphase. The molecular composition of the human kinetochore is reviewed in detail in Cheeseman et al., 2008. This complex structure is composed of numerous protein complexes and networks including: the constitutive centromere-associated network (CCAN) containing several sub-networks such as (CENP-H, I, K), (CENP-50/U, O, P, Q, R), the KMN network (containing KNL1, the Mis12 complex, and the Ndc80 complex), the chromosomal passenger complex, the mitotic checkpoint complex, the nucleoporin 107-160 complex and the RZZ complex.
At prometaphase, following breakdown of the nuclear envelope, the kinetochores of condensed chromosomes begin to interact with spindle microtubules. In humans, 15-20 microtubules are bound to each kinetochore (McEwen et al., 2001), and the attachment of 15 microtubules to the kinetochore is shown in this reaction. Recently, it was found that the core kinetochore-microtubule attachment site is within the KMN network and is likely to be formed by two closely apposed low-affinity microtubule-binding sites, one in the Ndc80 complex and a second in KNL1 (Cheeseman et al., 2006).

RAC1:GDPArrowR-HSA-5665809 (Reactome)
RAC1:GTP:FMNL1:Profilin:G-actinArrowR-HSA-5665659 (Reactome)
RAC1:GTP:FMNL1:Profilin:G-actinR-HSA-5665802 (Reactome)
RAC1:GTP:FMNL1ArrowR-HSA-5663232 (Reactome)
RAC1:GTP:FMNL1R-HSA-5665659 (Reactome)
RAC1:GTPR-HSA-5663232 (Reactome)
RHOA:GTP:DIAPH1:EVL:Profilin:G-actinArrowR-HSA-5665982 (Reactome)
RHOA:GTP:DIAPH1ArrowR-HSA-5665989 (Reactome)
RHOA:GTP:DIAPH1R-HSA-5665982 (Reactome)
RHOA:GTP:Mg2+R-HSA-3858495 (Reactome)
RHOA:GTPR-HSA-5665989 (Reactome)
RHOB:GTP:DIAPH1,DIAPH3ArrowR-HSA-5666070 (Reactome)
RHOB:GTPR-HSA-5666070 (Reactome)
RHOC:GTP:FMNL2ArrowR-HSA-5665748 (Reactome)
RHOC:GTP:FMNL3:G-actinArrowR-HSA-5665767 (Reactome)
RHOC:GTP:FMNL3ArrowR-HSA-5665761 (Reactome)
RHOC:GTP:FMNL3R-HSA-5665767 (Reactome)
RHOC:GTPR-HSA-5665748 (Reactome)
RHOC:GTPR-HSA-5665761 (Reactome)
RHOD:GTP:DIAPH2-3ArrowR-HSA-5666088 (Reactome)
RHOD:GTP:DIAPH2-3R-HSA-5666104 (Reactome)
RHOD:GTP:DIAPH2:SRC-1ArrowR-HSA-5666104 (Reactome)
RHOD:GTPR-HSA-5666088 (Reactome)
SCAIR-HSA-5666008 (Reactome)
SRC-1R-HSA-5666104 (Reactome)
SRF:MKL1:ITGB1 GeneArrowR-HSA-5666046 (Reactome)
SRF:MKL1:ITGB1 GeneArrowR-HSA-5666049 (Reactome)
SRF:MKL1:SCAIArrowR-HSA-5666008 (Reactome)
SRF:MKL1:SCAITBarR-HSA-5666049 (Reactome)
SRF:MKL1ArrowR-HSA-5665998 (Reactome)
SRF:MKL1R-HSA-5666008 (Reactome)
SRF:MKL1R-HSA-5666046 (Reactome)
SRFR-HSA-5665998 (Reactome)
SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinArrowR-HSA-5665802 (Reactome)
SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinR-HSA-5665809 (Reactome)
SRGAP2:RAC1:GTP:FMNL1:Profilin:G-actinmim-catalysisR-HSA-5665809 (Reactome)
SRGAP2ArrowR-HSA-5665809 (Reactome)
SRGAP2R-HSA-5665802 (Reactome)
pp-DVLR-HSA-3858489 (Reactome)
ppDVL:DAAM1:RHOA:GTPArrowR-HSA-3858495 (Reactome)
ppDVL:DAAM1ArrowR-HSA-3858489 (Reactome)
ppDVL:DAAM1R-HSA-3858495 (Reactome)

Personal tools