Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 20:52, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1, 2, 6, 7, 10...9, 16, 18, 29, 3111, 23, 324293111, 3218, 15, 17-19, 30...mitochondrial matrixMRPS18A MRPS18B MRPS5 Phe-tRNA(Phe) 55Sribosome:mRNA:tRNA:MRRFMRPL9 MRPL57 MRPL1 MRPL39 tRNA(Gly) MRPL1 MRPL53 MRPS33 ERAL1 MRPS23 MRPL3 MRPS34 MRPL2 MRPS7 28S ribosomalsubunit:MTIF3ERAL1 MRPL46 GTPGDPMT-TV MRPS5 Phe-tRNA(Phe) MRPS14 MRPS7 GTP MRPS36 MRPS9 GADD45GIP1 tRNA(Lys) MRPS24 MRPS10 MRPL38 MRPS18C MRPL10 MRPL32 55Sribosome:mRNA:fMet-tRNAMitochondrial 12S rRNA MRPS18B MRPS28 MRPL18 Mitochondrial 16S rRNA MRPL55 ERAL1 MRPL11 MRPL14 MRPL52 MRPL16 MRPL46 MRPS23 MRPS11 MRPL52 PiMRPL33 MRPS18B MRPL40 MRPL16 MRPL11 MRPS28 MRPL3 tRNA(Trp) MRPS18A MRPS15 MRPL51 MRPL35 MRPL10 MRPS6 MRPL2 CHCHD1 MRPL28 MRPL10 MRPS5 MRPL17 MRPL42 AURKAIP1 GADD45GIP1 MRPL37 MRPS24 MRPL53 MT-TV MRPL45 MRPL48 MRPL44 TUFM:GTP:aminoacyl-tRNAMRPL57 GADD45GIP1 tRNA(Ser) Mitochondrial 12S rRNA tRNA(Trp) MRPS27 PiMRPL53 MRPS30 fMet-tRNA(fMet) MRPL18 AURKAIP1 MRPL50 Met-tRNA(Met)MRPS14 MRPL49 MRPL11 MRPS30 MTIF2MRPL46 MRPS17 MTIF3 MRPS26 MTIF2 Ala-tRNA(Ala) MRRFMRPS10 MRPL42 MRPL47 MRPS18B MRPL50 MRPS18C Gly-tRNA(Gly) fMet-tRNA(fMet) MRPL28 MRPS18C MRPS5 39S ribosomalsubunitMRPL39 MRPS22 MRPL34 MRPS36 MRPS5 MRPS31 mRNAMRPL16 MRPS30 MRPL4 MRPL30 MRPL2 MRPS35 MRPS9 MRPS5 PTCD3 tRNA(Cys) MRPL55 ICT1 MRPS17 MRPS27 GADD45GIP1 MRPS22 MRPL37 MRPS26 MRPS12 MRPL13 MRPS18A MRPS33 MRPS16 MRPL55 MRPS6 MRPS36 Mitochondrial 16S rRNA MRPS2 MRPS25 MRPS35 MRPL1 Mitochondrial 12S rRNA MRPL32 tRNA(Leu) GADD45GIP1 MRPS35 PTCD3 MRPL28 mRNA MRPL24 MRPS14 MRPS16 CHCHD1 MRPL39 AURKAIP1 MRPL49 MRPL43 MRPL48 MRPL57 Mitochondrial 16S rRNA MRPS25 MRPL55 MRPL14 MRPS14 MRPS21 Arg-tRNA(Arg) Ser-tRNA(Ser) MRPL40 MRPL44 MRPS35 TUFM AURKAIP1 MRPS10 mRNA MRPL43 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPL12 MRPS34 MRPL49 MRPL15 MRPL18 fMet-tRNA(fMet) MRPS26 MRPL35 tRNA(Tyr) tRNA(His) MRPL51 MRPS35 MRPS34 MRPS6 CHCHD1 MRPS18B MRPS2 MRPL4 MRPS26 MRPL52 MRPS11 MRPS30 tRNA(His) MRPL21 MRPS27 MRPL38 ERAL1 MRPS10 Asp-tRNA(Asp) MRPL12 tRNA(Arg) MRPL41 MRPL54 MRPL44 MRPL11 MRPS28 MRPL47 CHCHD1 Mitochondrial 16S rRNA GFM2 MRPL20 MRPL39 MRPS26 MRPS27 GADD45GIP1 OXA1L MRPS18A ICT1 MRPS25 PTCD3 MRPS31 Ile-tRNA(Ile) MRPL37 MRPS12 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPS18A PiVal-tRNA(Val) Mitochondrial 12S rRNA GFM1:GTPMRPL21 Glu-tRNA(Glu) MRPL17 MRPL36 MRPL18 Gln-tRNA(Gln) MRPS21 MRPS17 MRPS17 PTCD3 His-tRNA(His) MRPS23 Mitochondrial 12S rRNA MRPL38 MRPS35 MRPL39 MRPS27 MRPS25 tRNA(Thr) MRPS27 Trp-tRNA(Trp) ICT1 polypeptideMRPL18 MRPL57 MRPS2 MRPL9 MRPL28 MRPL44 MRPS30 MRPS31 MRPL27 MRPL16 MRPL22 MRPL19 PiMRPL49 MRPL22 MRPL33 MRPS10 MRPL33 MRPS11 PTCD3 fMet-tRNA(fMet)MRPL47 TSFMERAL1 MRPS11 MRPS31 Mitochondrial 12S rRNA MRPL11 MRPL21 PTCD3 ICT1 MRPL41 MRPL3 tRNA(Met) MRPL53 MRPL12 MRPL41 MRPS12 MRPL51 MRPL17 MRPL50 Ala-tRNA(Ala) MRPL30 Arg-tRNA(Arg) MRPL33 MRPS22 MRPL37 MRPS18C MRPS2 MRPS33 MRPL14 MRPL4 MRPL4 OXA1L MRPL14 ERAL1 MRPS27 MRPL21 MRPL13 MRPS18A MRPS23 MRPS12 MRPS10 GADD45GIP1 MRPL57 GADD45GIP1 MRPL57 MRPS11 MRPL34 MRPS12 MRPL52 MRPL13 MRPL4 MRPL34 MRPS33 MRPL19 Thr-tRNA(Thr) MRPS30 Mitochondrial 12S rRNA 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPL33 AURKAIP1 MRPL52 MRPL33 MRPS14 GTP MRPL44 Gln-tRNA(Gln) MRPL1 MRPL23 CHCHD1 MRPS31 MRPL34 MRPS30 ICT1 MRPL35 MRPS15 MRPL9 MRPL19 ERAL1 MRPL27 MRPL11 MRPS22 aminoacyl-tRNAMRPL20 MRPS7 MRPS5 Mitochondrial 12S rRNA MRPS17 MRPL39 MRPL48 tRNA(Phe) MRPS33 Gly-tRNA(Gly) MRPS14 MRPL41 MRPS34 Asp-tRNA(Asp) MRPL35 Leu-tRNA(Leu) MRPS30 MRPL1 MRPS11 MRPL34 MRPS28 MRPS16 MRPS33 MRPS18B MRPL17 MRPL18 MT-TV MRPS14 MRPS36 MRPS9 MRPL42 Ser-tRNA(Ser) MRPS26 MRPS11 AURKAIP1 MRPL41 MRPL10 AURKAIP1 GFM2:GDPTrp-tRNA(Trp) MRPL21 MRPS18A MRPL45 MRPS28 MRPL20 MRPS2 tRNA(Glu) MTIF2:GTPMRPL40 MRPL35 MRPL4 MRPL32 MRPS36 MRPL40 MRPL14 MRPL34 MRPS24 MRPL49 MRPL38 MRPL2 MRPL40 MRPL3 tRNA(Gln) Phe-tRNA(Phe) MRPS11 MRPS11 MRPL22 MRPL4 DAP3 MRPS2 AURKAIP1 MRPL11 MRPL50 MRPL32 tRNA(Pro) MRPL52 OXA1L MRPL24 MRPL50 ICT1 MRPL30 MRPL54 MRPL54 MRPL15 Mitochondrial 12S rRNA MRPS36 MRPL39 PTCD3 MRPL35 MRPL19 DAP3 His-tRNA(His) DAP3 ERAL1 tRNA(Tyr) MRPL41 MRPL20 MRPL47 MRPS9 MRPL57 peptidyl-tRNA with elongated peptide MRPS33 MRPS26 MRPL43 MRPL32 MRPL35 MRPS28 MRPL57 MRPS17 MRPL51 DAP3 DAP3 MRPS16 MRPS34 MRPL52 MT-TV MTIF2 MRPL15 MRPS5 MRPL34 Leu-tRNA(Leu) TUFM MRPL9 MRPS9 MRPS22 MRPL51 MRPS24 Pro-tRNA(Pro) MRPL57 MRPL30 GADD45GIP1 tRNA(Tyr) MRPL24 MRPL1 MRPL19 MRPS26 DAP3 MRPL43 MRPL45 MRPS2 MRPS6 ICT1 tRNA(Asn) MRPL30 MRPS7 mRNA MRPL12 Mitochondrial 12S rRNA MRPS12 OXA1L MRPS16 tRNA(Ser) MT-TV MRPL18 GFM1 MRPL2 MRPS25 MRPS23 MRPL37 MRPL15 MRPS24 MRPL12 MRPL40 MRPS18C MRPL51 OXA1L MRPS14 tRNA(Phe) Tyr-tRNA(Tyr) tRNA(Trp) MRPL43 MRPL47 MRPL12 MRPS30 MRPL1 MRPS17 MRPL3 MRPL53 MRPL45 PTCD3 MRPS18C MRPS31 Arg-tRNA(Arg) MRPL52 DAP3 MRPL27 MRPS9 MRPS9 MRPS21 MRPS22 MRPL45 MRPS17 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPAsp-tRNA(Asp) MRPS24 MRPS18C MRPL15 MRPS6 tRNA(Asn) MRPL37 MRPL10 MRPS22 MRPL47 MRPS31 MRPL9 MRPL24 MRPS28 Gln-tRNA(Gln) MRPS26 MRPL11 MRPL2 Tyr-tRNA(Tyr) MRPS24 GDP MRPS18C Gln-tRNA(Gln) MRPL38 MRPS28 MRPL13 Asn-tRNA(Asn) MRPL21 MRPS28 DAP3 MRPL11 MRPS26 MRPL55 Mitochondrial 16S rRNA MRPS9 MRPL22 MRPS24 MRPL49 CHCHD1 tRNA(His) MRPS14 MRPL10 MRPL3 MRPL55 MRPL39 MRPS31 MRPL38 MRPL21 GTP MRPL54 MRPL22 DAP3 MRPL51 MRPL20 MRPS23 Leu-tRNA(Leu) AURKAIP1 MRPL51 MRPL14 MRPS33 MRPS33 ICT1 MRPL9 Leu-tRNA(Leu) MRPS2 MRPL44 MRPL57 MRPS21 MRPS11 MRPL46 MRPL32 MRPL41 AURKAIP1 MRPS22 tRNA(Ala) MRPL43 MRPS34 Lys-tRNA(Lys) MRPS30 MRPL38 MRPL2 GDPMRPL46 MRPS6 MRPL48 MRPS21 MRPL18 MRPL48 MRPL1 MRPL48 MRPL15 Trp-tRNA(Trp) ICT1 MRPL10 MRPL16 PTCD3 MRPL9 MRPS6 MRPS34 MRPL28 AURKAIP1 MRPL23 MRPL22 MRPS5 MRPS7 CHCHD1 Mitochondrial 16S rRNA Arg-tRNA(Arg) MRPS10 MRPL19 DAP3 MRPS7 mRNA Cys-tRNA(Cys) His-tRNA(His) ERAL1 tRNAMRPS23 MRPL20 MRPS18B MRPS28 MRPL49 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPTUFM MRPL9 GTP Ala-tRNA(Ala) Asp-tRNA(Asp) Met-tRNA(Met) MRPL44 MRPL36 MRPS15 MRPS6 MRPS15 MRPS9 MRPS12 MRPL15 Asn-tRNA(Asn) MRPS35 MRPS18A MRPL17 MRPL34 MRPS22 MRPL4 MRPS34 MRPS15 MRPS33 MRPL42 MRPS15 MRPS35 MRPS11 Mitochondrial 12S rRNA MRPL28 MRPL54 MRPS36 MRPS5 MRPL43 MRPS6 OXA1L MRPL21 MRPL40 MRPS18C MRPS35 MRPL3 MRPL32 MRPS21 fMet-tRNA(fMet) MRPS21 MRPL55 MRPS22 MRPL40 tRNA(Thr) MRPS17 MRPS24 MRPS34 Met-tRNA(Met) MRPL45 MT-TV MRPL43 Ala-tRNA(Ala) MRPL53 MRPL32 MRPL17 mRNA mRNA MRPL50 MRPS22 MRPL37 MRPL41 MRPL45 MRPL37 MRPS25 MRPL32 10-formyl-THFTUFM ICT1 MRPL4 tRNA(Cys) MRPL1 tRNA(Lys) Asn-tRNA(Asn) MRPL24 MRPL14 MTRF1L MRPL17 MRPS25 MRPS18B tRNA(Ile) MT-TV MRPL36 MRPL16 MRPS33 MRPL21 MRPL37 MRPL50 MRPL23 MRPL12 MRPL27 Glu-tRNA(Glu) tRNA(Gly) MRPS17 MRPS24 MRPL53 MRPL39 MRPL11 tRNA(Ile) MRPS18B peptidyl-tRNA with elongated peptide MRPS24 MRPL14 MRPL18 MRPS35 Ile-tRNA(Ile) MRPL15 MRPL40 28S ribosomalsubunitMRPL36 TUFM MRPS2 MRPL4 MRPS31 MT-TV GFM2 Mitochondrial 16S rRNA MRPS18A MRPS17 MRPL23 tRNA(Ile) MRPS2 MRPL44 MRPS7 MRPS36 MRPL22 Ile-tRNA(Ile) MRPS7 Gly-tRNA(Gly) MRPL1 MRPS27 MRPS28 GTP MRPS2 Mitochondrial 16S rRNA Thr-tRNA(Thr) MRPL43 Gly-tRNA(Gly) MRPL27 Mitochondrial 16S rRNA MRPS10 MRPL52 GFM1:GDPLys-tRNA(Lys) tRNA(Thr) PTCD3 MRPS12 MRPL23 MRPL20 Tyr-tRNA(Tyr) MRPS21 ICT1 Val-tRNA(Val) MRPL36 tRNA(Val) 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPS2 MRPL17 tRNA(Cys) MRPS25 MRPL28 MRPL55 AURKAIP1 MRPL41 MRPL23 Mitochondrial 16S rRNA MRPL24 MRPL40 MRPS27 MRPS6 MRPL38 MTIF3 AURKAIP1 GFM2:GTPIle-tRNA(Ile) OXA1L MRPS28 MRPL27 MRPL46 MRPL39 MRPL52 Lys-tRNA(Lys) MRPL24 MRPL48 MRPS14 peptidyl-tRNA with elongated peptide Glu-tRNA(Glu) MRPL1 MRPL28 MRPL36 MRPL16 MRPL46 tRNA(Gly) MRPL47 MRPL53 MRPL12 MRPL30 MRPS9 MRPL23 tRNA(Pro) Cys-tRNA(Cys) Cys-tRNA(Cys) GFM1 MRPS12 OXA1L MRPS34 tRNA(Asp) MTIF3MRPL2 MRPS6 MRPS28 MRPS18C MRPL49 MRPL54 MRPS5 MRPL35 MRPL40 MRPL10 OXA1L MRPS10 MRPS15 MRPL22 Val-tRNA(Val) DAP3 MRPS16 tRNA(Val) MRPL13 MRPL54 Ser-tRNA(Ser) MRPL44 MRPL9 MRPL21 MRPL22 Cys-tRNA(Cys) PTCD3 MRPS7 CHCHD1 MRPL51 MRPL47 GTP MRPS18B MRPL49 55Sribosome:mRNA:tRNAMRPL34 MRPS35 MRPL4 MRPS12 Thr-tRNA(Thr) MRPS16 GDP MRPS27 tRNA(Leu) MRPL14 MRPS16 MRPL39 MRPL36 MRPL23 MRPL27 MRPS31 MRPL2 CHCHD1 MRPL19 MRPL37 MRPL36 ERAL1 tRNA(Ser) MRPL33 MRPL38 MTRF1L, ICT1tRNA(Ala) tRNA(Gln) MRPL2 Mitochondrial 16S rRNA MTFMTMRPL9 MRPL45 tRNA(Arg) tRNA(Met) MRPL42 TUFM:GDPMRPS15 MRPL55 MRPS30 MRPS18B OXA1L MRPL46 MRPL28 MRPL33 MRPL42 MRPS12 MRPS34 MRPL51 MRPS36 MRPL54 MRPS22 MRPL53 MRPS36 MRPL44 mRNA MRPS21 CHCHD1 MRPL53 MRPL24 MRPL53 DAP3 MRPL30 tRNA(Pro) TSFM MRPL43 tRNA(Leu) MRPS21 MRPL43 Ser-tRNA(Ser) MRPS9 MRPS10 MRPL12 MRPS11 THFMRPS16 GADD45GIP1 MRPL14 MRPS30 MRPL3 tRNA(Met) MRPL27 MRPL35 MRPL18 MT-TV GTP MRPL13 MRPL11 MRPS18B MRPL34 MRPS18C MRPL45 MRPS21 MRPL12 DAP3 MRPL19 MRPS26 ICT1 MRPL37 MRPS30 MRPL42 mRNA MRPL9 MRPS16 Pro-tRNA(Pro) MRPL45 MRPS33 MT-TV MRPL3 GADD45GIP1 MRPL27 MRPS5 tRNA(Glu) MRPS36 MRPL41 MRPS11 MRPL19 MRPS18A MRPS16 MRPS12 MRPL48 MRPL19 MRPL23 TUFM:TSFMMRPS22 MRPS25 His-tRNA(His) MRPL50 MRPL13 MRPL42 MRPS26 MRPS14 MRPL23 MRPL14 MRPL27 MRPL13 MRPS18C MRPS23 MRPL18 MRPL48 Val-tRNA(Val) MRPL24 MRPL35 Pro-tRNA(Pro) MRPS18B MRPS12 MRPS33 MRPS25 tRNA(Lys) MRPL24 tRNA(Asn) ERAL1 MRPL17 MRPS23 MRPL3 MRPS14 tRNA(Met)MRPS21 MRPS23 MRPL24 MRPL20 MRPL2 MRPL13 MRPS6 GDP GDPMRPL27 ERAL1 PTCD3 MRPS16 MRPL30 MRPL54 tRNA(Glu) MRPL28 MRPL44 MRPL13 MRPS10 Met-tRNA(Met) MRPS24 MRPS6 MRPL15 GFM1 MRPL30 MTRF1L MRPS2 MRPL19 55Sribosome:MRRF:GFM2:GTPMet-tRNA(Met) PiMRPS17 MRPL36 MRPL20 MRPS7 MRPS23 MRPL45 MRPS27 MRPL52 CHCHD1 fMet-tRNA(fMet) MRPL57 MRPL33 MRPS9 MRPL17 fMet-tRNA(fMet) MRPS35 MRPL49 MRPL42 MRPL10 MRPL50 CHCHD1 MRPL36 MRPL32 MRPS25 MRPS26 MRPL55 MRPS10 MRPL54 MRPL16 MRPS5 MRPS18A MRPL23 peptidyl-tRNA with elongated peptide PTCD3 MRPS18A MRPL32 mRNA Thr-tRNA(Thr) MRPL35 MRPS34 MRPL33 GFM2 MRPL10 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAMRPS9 MRPL41 MRRF MRPS18A MRPL28 MRPS27 MRPS16 MRPL21 MRPL15 MRPL46 tRNA(Arg) MRRF MRPL54 GTP MRPL20 GTP MRPS7 MRPL10 Trp-tRNA(Trp) MRPS17 Pro-tRNA(Pro) MRPS27 MRPS24 MRPS18C MRPL47 MRPS10 GTPMRPS35 MRPL22 MRPL50 Asn-tRNA(Asn) MRPL16 MRPS15 MRPS14 Tyr-tRNA(Tyr) MRPS36 MRPL13 MRPS7 tRNA(Val) MRPS15 MRPL17 MRPL46 Lys-tRNA(Lys) MRPL42 Mitochondrial 12S rRNA MRPS7 MRPS25 MRPS31 tRNA(Asp) ERAL1 MRPS25 MRPL3 MRPL33 GTP CHCHD1 MRPL30 MRPL51 Mitochondrial 12S rRNA MRPS15 MRPS21 MRPL30 MRPS23 MRPS15 MRPL47 OXA1L MRPL46 MRPL34 Glu-tRNA(Glu) MRPL20 ICT1 TUFM:GTPMRPS36 MRPL16 tRNA(Asp) mRNA MRPL36 MRPS31 MRPS23 MRPL47 Phe-tRNA(Phe) MRPL55 tRNA(Ala) MRPL49 MRPL16 tRNA(Phe) MRPL15 tRNA(Gln) MRPL50 MRPL42 MRPS31 MRPL12 MRPL38 MRPS34 MRPL22 MRPL48 MRPS15 MRPL38 MRPL48 MT-TV 5, 262, 20, 21, 345, 265, 265, 269, 17, 305, 265, 265, 265, 265, 20, 26, 355, 265, 265, 265, 265, 26


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 65
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
OXA1L ProteinQ15070 (Uniprot-TrEMBL)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools