tRNA processing in the mitochondrion (Homo sapiens)

From WikiPathways

Revision as of 11:41, 2 November 2020 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
5, 9, 10, 13, 14, 21...3, 8, 17, 191, 2, 4, 6, 7, 10...1, 2, 4, 6, 7, 10...mitochondrionmitochondrial matrixcytosolMT-TD 12S rRNA5',3' cleavedpre-tRNApre-MT-TQpre-MT-TP MT-TL1 MT-TS2 MT-TL2 MT-ATP8 mRNAMT-TP pre-MT-TCpre-MT-TYpre-MT-TY MT-ND4 mRNApre-MT-TQ pre-MT-TF pre-MT-TS1pre-MT-TL1pre-MT-TM MT-TV L strand transcriptMT-CO2 mRNApre-MT-TK ELAC2pre-MT-TApre-MT-TIMT-TM KIAA0391 MT-CO1 mRNAMT-TG H strand transcriptMT-ND6 mRNApre-MT-TWpre-MT-TKpre-MT-TW TRNT1pre-MT-TL2 pre-MT-THpre-MT-TA MT-TQ pre-MT-TRMT-ND4L mRNAMT-TE MT-TA MT-CO3 mRNAMT-ND2 mRNApre-MT-TN pre-MT-TI MT-CYB mRNAMT-ND1 mRNApre-MT-TTCleaved tRNA with 3'CCAPPimtRNase Ppre-MT-TMpre-MT-TNpre-MT-TDMT-TR pre-MT-TPMT-TF MT-ND5 mRNAMT-TI pre-MT-TE TRMT10C 16S rRNApre-MT-TGHSD17B10 ATPCTPpre-MT-TG pre-MT-TD pre-MT-TFpre-MT-TH MT-TT pre-MT-TL1 MT-TW MT-ND3 mRNAMT-TK MT-TN MT-TY pre-MT-TV pre-MT-TEpre-MT-TS2pre-MT-TL2pre-MT-TVpre-MT-TT pre-MT-TS2 pre-MT-TS1 MT-TS1 MT-ATP6 mRNAMT-TH pre-MT-TC pre-MT-TR MT-TC 111, 46


Description

Each strand of the circular mitochondrial genome is transcribed to yield long polycistronic transcripts, the heavy strand transcript and the light strand transcript, which are then cleaved to yield tRNAs, rRNAs, and mRNAs (Mercer et al. 2011, reviewed in Suzuki et al. 2011, Rossmanith 2012, Powell et al. 2015). Mitochondrial RNase P, which is completely distinct from nuclear RNase P in having different protein subunits and no RNA component, cleaves at the 5' ends of tRNAs. RNase Z, an isoform of ELAC2 in mitochondria, cleaves at the 3' ends of tRNAs. (A different isoform of ELAC2 serves as RNase Z in the nucleus.) Unknown nucleases make additional cleavages near the 5' end of MT-CO3, the 5' end of CO1, the 5' end of CYB, and the 3' end of ND6. TRNT1 (CCA-adding enzyme) then post-transcriptionally polymerizes the universal acceptor sequence CCA onto the 3' ends of the cleaved tRNAs. In yeast, plants, and protozoa additional tRNAs encoded in the nucleus are imported into mitochondria from the cytosol (reviewed in Schneider 2011), however human mitochondria encode a complete complement of 22 tRNAs required for translation and tRNA import has not been observed in mammals. Mutations that affect mitochondrial tRNA processing cause human diseases that are generally characterized by abnormalities in energy-requiring tissues such as brain and muscle (reviewed in Suzuki et al. 2011, Sarin and Leidel 2014). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6785470
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Van Haute L, Pearce SF, Powell CA, D'Souza AR, Nicholls TJ, Minczuk M.; ''Mitochondrial transcript maturation and its disorders.''; PubMed Europe PMC Scholia
  2. Sanchez MI, Mercer TR, Davies SM, Shearwood AM, Nygård KK, Richman TR, Mattick JS, Rackham O, Filipovska A.; ''RNA processing in human mitochondria.''; PubMed Europe PMC Scholia
  3. Nagaike T, Suzuki T, Tomari Y, Takemoto-Hori C, Negayama F, Watanabe K, Ueda T.; ''Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases.''; PubMed Europe PMC Scholia
  4. Suzuki T, Nagao A, Suzuki T.; ''Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases.''; PubMed Europe PMC Scholia
  5. Brzezniak LK, Bijata M, Szczesny RJ, Stepien PP.; ''Involvement of human ELAC2 gene product in 3' end processing of mitochondrial tRNAs.''; PubMed Europe PMC Scholia
  6. Reinhard L, Sridhara S, Hällberg BM.; ''Structure of the nuclease subunit of human mitochondrial RNase P.''; PubMed Europe PMC Scholia
  7. Li F, Liu X, Zhou W, Yang X, Shen Y.; ''Auto-inhibitory Mechanism of the Human Mitochondrial RNase P Protein Complex.''; PubMed Europe PMC Scholia
  8. Salinas-Giegé T, Giegé R, Giegé P.; ''tRNA biology in mitochondria.''; PubMed Europe PMC Scholia
  9. Schneider A.; ''Mitochondrial tRNA import and its consequences for mitochondrial translation.''; PubMed Europe PMC Scholia
  10. Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W.; ''A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase--extensive moonlighting in mitochondrial tRNA biogenesis.''; PubMed Europe PMC Scholia
  11. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, Filipovska A, Mattick JS.; ''The human mitochondrial transcriptome.''; PubMed Europe PMC Scholia
  12. Rossmanith W.; ''Of P and Z: mitochondrial tRNA processing enzymes.''; PubMed Europe PMC Scholia
  13. Vilardo E, Rossmanith W.; ''Molecular insights into HSD10 disease: impact of SDR5C1 mutations on the human mitochondrial RNase P complex.''; PubMed Europe PMC Scholia
  14. Chakraborty PK, Schmitz-Abe K, Kennedy EK, Mamady H, Naas T, Durie D, Campagna DR, Lau A, Sendamarai AK, Wiseman DH, May A, Jolles S, Connor P, Powell C, Heeney MM, Giardina PJ, Klaassen RJ, Kannengiesser C, Thuret I, Thompson AA, Marques L, Hughes S, Bonney DK, Bottomley SS, Wynn RF, Laxer RM, Minniti CP, Moppett J, Bordon V, Geraghty M, Joyce PB, Markianos K, Rudner AD, Holcik M, Fleming MD.; ''Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD).''; PubMed Europe PMC Scholia
  15. Powell CA, Nicholls TJ, Minczuk M.; ''Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease.''; PubMed Europe PMC Scholia
  16. Haack TB, Kopajtich R, Freisinger P, Wieland T, Rorbach J, Nicholls TJ, Baruffini E, Walther A, Danhauser K, Zimmermann FA, Husain RA, Schum J, Mundy H, Ferrero I, Strom TM, Meitinger T, Taylor RW, Minczuk M, Mayr JA, Prokisch H.; ''ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy.''; PubMed Europe PMC Scholia
  17. Rossmanith W.; ''Localization of human RNase Z isoforms: dual nuclear/mitochondrial targeting of the ELAC2 gene product by alternative translation initiation.''; PubMed Europe PMC Scholia
  18. Sarin LP, Leidel SA.; ''Modify or die?--RNA modification defects in metazoans.''; PubMed Europe PMC Scholia
  19. Ofman R, Ruiter JP, Feenstra M, Duran M, Poll-The BT, Zschocke J, Ensenauer R, Lehnert W, Sass JO, Sperl W, Wanders RJ.; ''2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene.''; PubMed Europe PMC Scholia
  20. Holzmann J, Frank P, Löffler E, Bennett KL, Gerner C, Rossmanith W.; ''RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme.''; PubMed Europe PMC Scholia
  21. Levinger L, Serjanov D.; ''Pathogenesis-related mutations in the T-loops of human mitochondrial tRNAs affect 3' end processing and tRNA structure.''; PubMed Europe PMC Scholia
  22. Tomari Y, Hino N, Nagaike T, Suzuki T, Ueda T.; ''Decreased CCA-addition in human mitochondrial tRNAs bearing a pathogenic A4317G or A10044G mutation.''; PubMed Europe PMC Scholia
  23. Sasarman F, Thiffault I, Weraarpachai W, Salomon S, Maftei C, Gauthier J, Ellazam B, Webb N, Antonicka H, Janer A, Brunel-Guitton C, Elpeleg O, Mitchell G, Shoubridge EA.; ''The 3' addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1.''; PubMed Europe PMC Scholia
  24. Howard MJ, Lim WH, Fierke CA, Koutmos M.; ''Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114900view16:41, 25 January 2021ReactomeTeamReactome version 75
113346view11:41, 2 November 2020ReactomeTeamReactome version 74
112555view15:52, 9 October 2020ReactomeTeamReactome version 73
101469view11:33, 1 November 2018ReactomeTeamreactome version 66
101007view21:12, 31 October 2018ReactomeTeamreactome version 65
100543view19:47, 31 October 2018ReactomeTeamreactome version 64
100091view16:31, 31 October 2018ReactomeTeamreactome version 63
99641view15:02, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93826view13:39, 16 August 2017ReactomeTeamreactome version 61
93376view11:21, 9 August 2017ReactomeTeamreactome version 61
88355view16:26, 1 August 2016FehrhartOntology Term : 'tRNA maturation pathway' added !
86462view09:18, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
12S rRNARnaENST00000389680 (Ensembl)
16S rRNARnaENST00000387347 (Ensembl)
5',3' cleaved pre-tRNAComplexR-HSA-6786862 (Reactome)
ATPMetaboliteCHEBI:30616 (ChEBI)
CTPMetaboliteCHEBI:17677 (ChEBI)
Cleaved tRNA with 3' CCAComplexR-HSA-6786887 (Reactome)
ELAC2ProteinQ9BQ52 (Uniprot-TrEMBL)
H strand transcriptR-HSA-6786802 (Reactome)
HSD17B10 ProteinQ99714 (Uniprot-TrEMBL)
KIAA0391 ProteinO15091 (Uniprot-TrEMBL)
L strand transcriptR-HSA-6786868 (Reactome)
MT-ATP6 mRNARnaENST00000361899 (Ensembl)
MT-ATP8 mRNARnaENST00000361851 (Ensembl)
MT-CO1 mRNARnaENST00000361624 (Ensembl)
MT-CO2 mRNARnaENST00000361739 (Ensembl)
MT-CO3 mRNARnaENST00000362079 (Ensembl)
MT-CYB mRNARnaENST00000361789 (Ensembl)
MT-ND1 mRNARnaENST00000361390 (Ensembl)
MT-ND2 mRNARnaENST00000361453 (Ensembl)
MT-ND3 mRNARnaENST00000361227 (Ensembl)
MT-ND4 mRNARnaENST00000361381 (Ensembl)
MT-ND4L mRNARnaENST00000361335 (Ensembl)
MT-ND5 mRNARnaENST00000361567 (Ensembl)
MT-ND6 mRNARnaENST00000361681 (Ensembl)
MT-TA ProteinENST00000387392 (Ensembl)
MT-TC ProteinENST00000387405 (Ensembl)
MT-TD ProteinENST00000387419 (Ensembl)
MT-TE ProteinENST00000387459 (Ensembl)
MT-TF ProteinENST00000387314 (Ensembl)
MT-TG ProteinENST00000387429 (Ensembl)
MT-TH ProteinENST00000387441 (Ensembl)
MT-TI ProteinENST00000387365 (Ensembl)
MT-TK ProteinENST00000387421 (Ensembl)
MT-TL1 ProteinENST00000386347 (Ensembl)
MT-TL2 ProteinENST00000387456 (Ensembl)
MT-TM ProteinENST00000387377 (Ensembl)
MT-TN ProteinENST00000387400 (Ensembl)
MT-TP ProteinENST00000387461 (Ensembl)
MT-TQ ProteinENST00000387372 (Ensembl)
MT-TR ProteinENST00000387439 (Ensembl)
MT-TS1 ProteinENST00000387416 (Ensembl)
MT-TS2 ProteinENST00000387449 (Ensembl)
MT-TT ProteinENST00000387460 (Ensembl)
MT-TV ProteinENST00000387342 (Ensembl)
MT-TW ProteinENST00000387382 (Ensembl)
MT-TY ProteinENST00000387409 (Ensembl)
PPiMetaboliteCHEBI:29888 (ChEBI)
TRMT10C ProteinQ7L0Y3 (Uniprot-TrEMBL)
TRNT1ProteinQ96Q11 (Uniprot-TrEMBL)
mtRNase PComplexR-HSA-6785726 (Reactome)
pre-MT-TA ProteinENST00000387392 (Ensembl)
pre-MT-TARnaENST00000387392 (Ensembl)
pre-MT-TC ProteinENST00000387405 (Ensembl)
pre-MT-TCRnaENST00000387405 (Ensembl)
pre-MT-TD ProteinENST00000387419 (Ensembl)
pre-MT-TDRnaENST00000387419 (Ensembl)
pre-MT-TE ProteinENST00000387459 (Ensembl)
pre-MT-TERnaENST00000387459 (Ensembl)
pre-MT-TF ProteinENST00000387314 (Ensembl)
pre-MT-TFRnaENST00000387314 (Ensembl)
pre-MT-TG ProteinENST00000387429 (Ensembl)
pre-MT-TGRnaENST00000387429 (Ensembl)
pre-MT-TH ProteinENST00000387441 (Ensembl)
pre-MT-THRnaENST00000387441 (Ensembl)
pre-MT-TI ProteinENST00000387365 (Ensembl)
pre-MT-TIRnaENST00000387365 (Ensembl)
pre-MT-TK ProteinENST00000387421 (Ensembl)
pre-MT-TKRnaENST00000387421 (Ensembl)
pre-MT-TL1 ProteinENST00000386347 (Ensembl)
pre-MT-TL1RnaENST00000386347 (Ensembl)
pre-MT-TL2 ProteinENST00000387456 (Ensembl)
pre-MT-TL2RnaENST00000387456 (Ensembl)
pre-MT-TM ProteinENST00000387377 (Ensembl)
pre-MT-TMRnaENST00000387377 (Ensembl)
pre-MT-TN ProteinENST00000387400 (Ensembl)
pre-MT-TNRnaENST00000387400 (Ensembl)
pre-MT-TP ProteinENST00000387461 (Ensembl)
pre-MT-TPRnaENST00000387461 (Ensembl)
pre-MT-TQ ProteinENST00000387372 (Ensembl)
pre-MT-TQRnaENST00000387372 (Ensembl)
pre-MT-TR ProteinENST00000387439 (Ensembl)
pre-MT-TRRnaENST00000387439 (Ensembl)
pre-MT-TS1 ProteinENST00000387416 (Ensembl)
pre-MT-TS1RnaENST00000387416 (Ensembl)
pre-MT-TS2 ProteinENST00000387449 (Ensembl)
pre-MT-TS2RnaENST00000387449 (Ensembl)
pre-MT-TT ProteinENST00000387460 (Ensembl)
pre-MT-TTRnaENST00000387460 (Ensembl)
pre-MT-TV ProteinENST00000387342 (Ensembl)
pre-MT-TVRnaENST00000387342 (Ensembl)
pre-MT-TW ProteinENST00000387382 (Ensembl)
pre-MT-TWRnaENST00000387382 (Ensembl)
pre-MT-TY ProteinENST00000387409 (Ensembl)
pre-MT-TYRnaENST00000387409 (Ensembl)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
12S rRNAArrowR-HSA-6785722 (Reactome)
16S rRNAArrowR-HSA-6785722 (Reactome)
5',3' cleaved pre-tRNAR-HSA-6786881 (Reactome)
ATPR-HSA-6786881 (Reactome)
CTPR-HSA-6786881 (Reactome)
Cleaved tRNA with 3' CCAArrowR-HSA-6786881 (Reactome)
ELAC2mim-catalysisR-HSA-6785722 (Reactome)
ELAC2mim-catalysisR-HSA-6786854 (Reactome)
H strand transcriptR-HSA-6785722 (Reactome)
L strand transcriptR-HSA-6786854 (Reactome)
MT-ATP6 mRNAArrowR-HSA-6785722 (Reactome)
MT-ATP8 mRNAArrowR-HSA-6785722 (Reactome)
MT-CO1 mRNAArrowR-HSA-6785722 (Reactome)
MT-CO2 mRNAArrowR-HSA-6785722 (Reactome)
MT-CO3 mRNAArrowR-HSA-6785722 (Reactome)
MT-CYB mRNAArrowR-HSA-6785722 (Reactome)
MT-ND1 mRNAArrowR-HSA-6785722 (Reactome)
MT-ND2 mRNAArrowR-HSA-6785722 (Reactome)
MT-ND3 mRNAArrowR-HSA-6785722 (Reactome)
MT-ND4 mRNAArrowR-HSA-6785722 (Reactome)
MT-ND4L mRNAArrowR-HSA-6785722 (Reactome)
MT-ND5 mRNAArrowR-HSA-6785722 (Reactome)
MT-ND6 mRNAArrowR-HSA-6786854 (Reactome)
PPiArrowR-HSA-6786881 (Reactome)
R-HSA-6785722 (Reactome) RNase P, ELAC2, and additional unknown nucleases cleave H strand transcripts to release the various tRNAs, rRNAs, and mRNAs contained in the long polycistronic transcripts.
Mitochondrial RNase P, comprising 3 protein subunits and no RNA moiety (Holzmann et al. 2008), endonucleolytically cleaves polycistronic mitochondrial transcripts at the 5' ends of the tRNA sequences (Sanchez et al. 2011, Howard et al. 2012, Vilardo et al. 2012, Li et al. 2015, Reinhard et al. 2015, Vilardo and Rossmanith 2015). A subcomplex of RNase P also functions as a tRNA methyltransferase and the SDR5C1 subunit is an amino acid and fatty acid dehydrogenase. Mutations in the SDR5C1 subunit of RNase P cause HSD10 disease, which is characterized by progressive neurodegeneration and cardiomyopathy (Vilardo and Rossmanith 2015)
ELAC2 cleaves polycistronic mitochondrial transcripts at the 3' ends of the tRNA sequences (Brzezniak et al. 2011, Sanchez et al. 2011). Different isoforms of ELAC2 are present in the nucleus and mitochondria (Rossmanith 2011). Mutations in ELAC2 cause cardiac hypertrophy (Haack et al. 2013) and disorders of oxidative phosphorylation (reviewed in Van Haute et al. 2015).
Unknown nucleases also cleave the H strand transcript at sites 5' to MT-CO3, 5' to MT-CO1, and 5' to MT-CYB (reviewed in Van Haute et al. 2015).
R-HSA-6786854 (Reactome) RNase P, ELAC2, and additional unknown nucleases cleave L strand transcripts to release the tRNAs and an mRNA contained in the long polycistronic transcripts.
Mitochondrial RNase P, comprising 3 protein subunits and no RNA moiety (Holzmann et al. 2008), endonucleolytically cleaves polycistronic mitochondrial transcripts at the 5' ends of the tRNA sequences (Sanchez et al. 2011, Howard et al. 2012, Vilardo et al. 2012, Li et al. 2015, Reinhard et al. 2015, Vilardo and Rossmanith 2015). A subcomplex of RNase P also functions as a tRNA methyltransferase and the SDR5C1 subunit is an amino acid and fatty acid dehydrogenase. Mutations in the SDR5C1 subunit of RNase P cause HSD10 disease, which is characterized by progressive neurodegeneration and cardiomyopathy (Vilardo and Rossmanith 2015)
ELAC2 cleaves polycistronic mitochondrial transcripts at the 3' ends of the tRNA sequences (Brzezniak et al. 2011, Sanchez et al. 2011). Different isoforms of ELAC2 are present in the nucleus and mitochondria (Rossmanith 2011). Mutations in ELAC2 cause cardiac hypertrophy (Haack et al. 2013).
Unknown nucleases also cleave the L strand transcript at a site 3' to MT-ND6 (reviewed in Van Haute et al. 2015).
R-HSA-6786881 (Reactome) TRNT1 (CCA-adding enzyme) polymerizes a nontemplated CCA sequence on the 3' end of mitochondrial tRNA (Nagaike et al. 2001). Mutations in TRNT1 or tRNAs that affect the rate of CCA addition cause pathological consequences in humans (Tomari et al. 2003, Chakraborty et al. 2014, Sasarman et al. 2015).
TRNT1mim-catalysisR-HSA-6786881 (Reactome)
mtRNase PArrowR-HSA-6785722 (Reactome)
mtRNase PArrowR-HSA-6786854 (Reactome)
pre-MT-TAArrowR-HSA-6786854 (Reactome)
pre-MT-TCArrowR-HSA-6786854 (Reactome)
pre-MT-TDArrowR-HSA-6785722 (Reactome)
pre-MT-TEArrowR-HSA-6786854 (Reactome)
pre-MT-TFArrowR-HSA-6785722 (Reactome)
pre-MT-TGArrowR-HSA-6785722 (Reactome)
pre-MT-THArrowR-HSA-6785722 (Reactome)
pre-MT-TIArrowR-HSA-6785722 (Reactome)
pre-MT-TKArrowR-HSA-6785722 (Reactome)
pre-MT-TL1ArrowR-HSA-6785722 (Reactome)
pre-MT-TL2ArrowR-HSA-6785722 (Reactome)
pre-MT-TMArrowR-HSA-6785722 (Reactome)
pre-MT-TNArrowR-HSA-6786854 (Reactome)
pre-MT-TPArrowR-HSA-6786854 (Reactome)
pre-MT-TQArrowR-HSA-6786854 (Reactome)
pre-MT-TRArrowR-HSA-6785722 (Reactome)
pre-MT-TS1ArrowR-HSA-6786854 (Reactome)
pre-MT-TS2ArrowR-HSA-6785722 (Reactome)
pre-MT-TTArrowR-HSA-6785722 (Reactome)
pre-MT-TVArrowR-HSA-6785722 (Reactome)
pre-MT-TWArrowR-HSA-6785722 (Reactome)
pre-MT-TYArrowR-HSA-6786854 (Reactome)
Personal tools