TNF signaling (Homo sapiens)
From WikiPathways
Description
TNF binding to TNFR1 results initially in the formation of complex I that consists of TNFR1, TRADD (TNFR1-associated death domain), TRAF2 (TNF receptor associated factor-2), RIPK1 (receptor-interacting serin/threonine protein kinase 1), and E3 ubiquitin ligases BIRC2,BIRC3 (cIAP1/2,cellular inhibitor of apoptosis) and LUBAC (Micheau O and Tschopp J 2003). The conjugation of ubiquitin chains by BIRC2/3 and LUBAC (composed of HOIP, HOIL-1 and SHARPIN ) to RIPK1 allows further recruitment and activation of the TAK1 (also known as mitogen-activated protein kinase kinase kinase 7 (MAP3K7)) complex and IκB kinase (IKK) complex. TAK1 and IKK phosphorylate RIPK1 to limit its cytotoxic activity and activate both nuclear factor kappa�light�chain�enhancer of activated B cells (NFkappaB) and mitogen�activated protein (MAP) kinase signaling pathways promoting cell survival by induction of anti-apoptotic proteins such as BIRC, cellular FLICE (FADD-like IL-1β-converting enzyme)-like inhibitory protein (cFLIP) and secretion of pro-inflammatory cytokines (TNF and IL-6). When the survival pathway is inhibited, the TRADD:TRAF2:RIPK1 detaches from the membrane-bound TNFR1 signaling complex and recruits Fas-associated death domain-containing protein (FADD) and procaspase-8 (also known as complex II). Once recruited to FADD, multiple procaspase-8 molecules interact via their tandem death-effector domains( DED), thereby facilitating both proximity-induced dimerization and proteolytic cleavage of procaspase-8, which are required for initiation of apoptotic cell death (Hughes MA et al. 2009; Oberst A et al. 2010). When caspase activity is inhibited under certain pathophysiological conditions (e.g. caspase-8 inhibitory proteins such as CrmA and vICA after infection with cowpox virus or CMV) or by pharmacological agents, deubiquitinated RIPK1 is physically and functionally engaged by its homolog RIPK3 leading to formation of the necrosome, a necroptosis-inducing complex consisting of RIPK1 and RIPK3 (Tewari M & Dixit VM 1995; Fliss PM & Brune W 2012; Sawai H 2013; Moquin DM et al. 2013; Kalai M et al. 2002; Cho YS et al. 2009, He S et al. 2009, Zhang DW et al., 2009). Within the complex II procaspase-8 can also form heterodimers with cFLIP isoforms, FLIP long (L) and FLIP short (S), which are encoded by the NFkappaB target gene CFLAR (Irmler M et al. 1997; Boatright KM et al. 2004; Yu JW et al. 2009; Pop C et al. 2011). FLIP(S) appears to act purely as an antagonist of caspase-8 activity blocking apoptotic but promoting necroptotic cell death (Feoktistova et al. 2011). The regulatory function of FLIP(L) has been found to differ depending on its expression levels. FLIP(L) was shown to inhibit death receptor (DR)-mediated apoptosis only when expressed at high levels, while low cell levels of FLIP(L) enhanced DR signaling to apoptosis (Boatright KM et al. 2004; Okano H et al. 2003; Yerbes R et al. 2011; Yu JW et al. 2009; Hughes MA et al. 2016). In addition, caspase-8:FLIP(L) heterodimer activity within the TRADD:TRAF2:RIPK1:FADD:CASP8:FLIP(L) complex allowed cleavage of RIPK1 to cause the dissociation of the TRADD:TRAF2:RIP1:FADD:CASP8, thereby inhibiting RIPK1-mediated necroptosis (Feoktistova et al. 2011, 2012). TNF-alpha can also activate sphingomyelinase (SMASE, such as SMPD2,3) proteins to catalyze hydrolysis of sphingomyeline into ceramide (Adam D et al.1996; Adam-Klages S et al. 1998; Ségui B et al. 2001). Activation of neutral SMPD2,3 leads to an accumulation of ceramide at the cell surface and has proinflammatory effects. However, TNF can also activate the pro-apoptotic acidic SMASE via caspase-8 mediated activation of caspase-7 which in turn proteolytically cleaves and activates the 72kDa pro-A-SMase form (Edelmann B et al. 2011). Ceramide induces anti-proliferative and pro-apoptotic responses. Further, ceramide can be converted by ceramidase into sphingosine, which in turn is phosphorylated by sphingosine kinase into sphingosine-1-phosphate (S1P). S1P exerts the opposite biological effects to ceramide by activating cytoprotective signaling to promote cell growth counteracting the apoptotic stimuli (Cuvillier O et al. 1996). Thus, TNF-alpha-induced TNFR1 activation leads to divergent intracellular signaling networks with extensive cross-talk between the pro-apoptotic/necroptotic pathway, and the other NFkappaB, and MAPK pathways providing highly specific cell responses initiated by various types of stimuli. View original pathway at Reactome.</div>
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
via Death Receptors in the presence of
ligandThe caspase-8 zymogens are present in the cells as inactive monomers, which are recruited to the death-inducing signaling complex (DISC) by homophilic interactions with the DED domain of FADD. The monomeric zymogens undergo dimerization and the subsequent conformational changes at the receptor complex, which results in the formation of catalytically active form of procaspase-8.[Boatright KM et al 2003; Donepudi M et al 2003; Keller N et al 2010; Oberst A et al 2010].
The Reactome module describes necroptosis and pyroptosis.
trimer:TNF-R1
trimercaspase-8:viral
CRMA/SPI-2Annotated Interactions
BAG4, also known as silencer of death domain (SODD), belongs to the BAG family of anti-apoptotic proteins. Mammalian BAG4 was found to associate with TNFR1 preventing receptor signaling in the absence of ligand (Jiang Y et al. 1999; Miki K and Eddy EM 2002). Furthermore, crystallographic data and biochemical analysis showed that TNFR1 forms inactive homodimers or homotrimers in the absence of TNF by the N-terminal domain, the pre ligand assembly domain (PLAD) (Chan FK et al. 2000; Wang YL et al. 2011). Upon TNF-alpha binding BAG4 is quickly released from TNFR1 and three receptor molecules form a complex with the TNF trimer. The TNF-alpha homologue ligand, lymphotoxin-alpha (LTA, also known as TNF-beta), which as homotrimer only occurs as a soluble ligand, also interacts with TNFR1. LTA binds three receptor molecules and triggers the same effects as soluble TNF-alpha (Banner DW et al. 1993; Etemadi N et al. 2013).
The TNF-alpha:TNFR1 receptor complex then transmits the signal leading to cell death or survival. However, it remains unclear whether BAG4 binds to death domain of monomeric TNFR1 to prevent receptor oligomerization or recognizes receptor trimers to facilitate ATP-dependent TNFR1 trimer disassembly (Jiang Y et al. 1999; Miki K and Eddy EM 2002). Additionally, BAG4 is known to interact with HSP70, death receptor 3, and the anti-apoptotic protein Bcl-2 (Antoku et al. 2001; Brockmann et al. 2004; Jiang et al. 1999).
BAG4-overexpressing HeLa cells showed reduced cellular sensitivity to treatment with extracellular TNFalpha and CD95 ligand (Eichholtz-Wirth H et al. 2003). In addition, increased expression level of BAG4 in tumor cells leads to resistance of TNFalpha-induced cell death and is associated with pancreatic cancer, some types of melanoma, acute lymphoblastic leukemia etc.(Ozawa et al. 2000; Tao H et ql. 2007; Reuland SN et al. 2013). The physiological relevance of BAG4 for TNFR1 signaling, however, is difficult to judge because BAG4 knockout mice have no or only a mild effect on pro-inflammatory TNF signaling and give no evidence for an inhibitory role of BAG4 in TNFR1-induced cell death (Takada H et al. 2003; Endres R et al. 2003).
Several E3 ligases are involved in TNFalpha signaling to initiate an immediate and effective host response to infection or injury. Among them are anti-apoptotic regulators BIRC2 and BIRC3, also known as inhibitor of apoptosis proteins (cIAP1/2). BIRC2/3 were found to constitutively associate with TRAF2 and via TRAF2 they were recruited to the TNFR1 signaling complex (Samuel T et al. 2006; Bertrand et al, 2008; Varfolomeev E et al, 2008). BIRC2/3 can directly ubiquitinate RIPK1 within the TNFR1 receptor complex allowing it to bind to the TAB2:TAK1 complex, a process reversed by the deubiquitinase CYLD and A20 (Bertrand et al, 2008; Varfolomeev et al, 2008; Moquin DM et al. 2013; Shembade N et al. 2010; Wertz IE et al. 2004). In conjunction with the ubiquitin conjugating enzyme (E2) enzyme UbcH5a, BIRC2/3 was shown to mediate polymerization of both K63-linked and linear Met1-linked chains on RIPK1 (Varfolomeev E et al, 2008; Bertrand et al, 2008; Blackwell K et al. 2013). TRAF2 promotes BIRC-mediated linear and K63-linked ubiquitination of RIP1(Blackwell K et al. 2013). K11-linked polyubiquitination of RIPK1 may also depend on BIRC2 and BIRC3 (Dynek JN et al. 2010).
In addition, the linear polyubiquitination has been implicated in the NFkB activation. The linear ubiquitin chain assembly complex (LUBAC) ligase consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains (Kirisako T et al. 2006; Walczak H et al. 2012). IKBKG (NEMO), a regulatory component of the IκB kinase (IKK) complex, is a substrate of LUBAC. LUBAC-mediated IKBKG ubiquitination enhances IKBKG interaction with the TNF-alpha receptor signaling complex and stabilizes this protein complex to promote activation of NFkB (Haas TL et al. 2009).
Structural analysis revealed that NPL4 zinc finger 1 (NZF1) of HOIP can simultaneously bind both leucine zipper (CoZi) domains of NEMO (IKBKG) and ubiquitin and that both interactions are involved in the TNF alpha-mediated NFkappaB activation (Fujita H et al. 2014). In addition, NEMO (IKBKG) ubiquitination required RING-between-RING (RBR) domain of HOIL-1L (Smit JJ et al. 2013)
LUBAC consists of the chain-assembling E3 ligase HOIP as well as HOIL-1 and SHARPIN (Kirisako T et al. 2006; Walczak H et al. 2012). Importantly, deletion of the LUBAC component SHARPIN in mice or mutation of HOIL-1 in humans, lead to hyperinflammatory phenotypes, indicating key roles of LUBAC and linear Ub chains in the response to infection and inflammation (Gerlach B et al. 2011; Ikeda F et al. 2011; Tokunaga F et al. 2011; Boisson B et al. 2012).
HOIP belongs to the RING-between-RING (RBR) family of E3 ligases and is the catalytic component of LUBAC (Spratt DE et al. 2014). RBR E3 ligase domain and a conserved C-terminal extension of HOIP are responsible for assembling Met1-linked chains (Smit JJ et al., 2012; Stieglitz B et al. 2012 and 2013). HOIP was reported to act as RING/HECT hybrids, employing RING1 to recognize ubiquitin-loaded E2 while a conserved cysteine in RING2 domain subsequently forms a thioester intermediate with the transferred or “donor� ubiquitin (Stieglitz B et al. 2013). A Ub-associated (UBA) domain mediates interactions with HOIL-1L (Yagi H et al. 2012), while N-terminal PUB domain may be involved in interaction with regulatory proteins such as OTULIN to control NFkappaB signaling (Elliott PR et al. 2014). HOIP also comprises several NPL4 zinc finger (NZF) Ub binding domains (UBDs) that target it to ubiquitinated proteins (Haas et al. 2009; Fujita H et al. 2014).
Structural analysis revealed that NZF1 of HOIP can simultaneously bind both leucine zipper (CoZi) domains of NEMO (IKBKG) and ubiquitin and that both interactions are involved in TNF alpha-mediated NFkappaB activation (Fujita H et al. 2014). In addition, NEMO (IKBKG) ubiquitination required RBR domain of HOIL-1L (Smit JJ et al. 2013).
Factor associated with neutral sphingomyelinase activation (FAN or NSMAF) is an adaptor protein that constitutively binds to the neutral SMASE activation domain (NSD) of TNFR1 (Adam-Klages S et al. 1996). NSMAF (FAN) is thought to directly link TNFR1 to the activation of neutral sphingomyelinase (N-SMASE) such as sphingomyelin phosphodiesterase 2 or 3 (SMPD2, SMPD3).
The TRAFs (TRAF1 to TRAF6) are a group of structurally similar adaptor proteins, in most cases with E3 ligase activity, that are involved in downstream signaling of various cell surface receptors such as TNFR1, TNFR2, CD40, TLRs and TCR (Jang HD et al. 2001; Fotin-Mleczek M et al. 2004; Su X et al. 2006). The hallmark feature of all TRAFs is a C-terminal TRAF-domain of approximately 230 amino acids, which is responsible for homo- and heterooligomerization of TRAF molecules (Rothe M et al. 1994). The differences in amino acid sequences in TRAF-domains define the range of TRAF interaction partners. Another important structural element of TRAFs, with an exception of TRAF1, is the N-terminal RING finger domain that modulates induction of NFkappaB and MAPK activities. As TRAF1 has no RING finger domain, the effects of TRAF1 on NFkB activation are rather unclear. It is believed that TRAF1 regulates TNF receptor activity through its ability to interact with TRAF2 (Rothe M et al.1995; Zheng C et al. 2010; Fotin-Mleczek M et al. 2004). Structural and biochemical studies showed that TRAF1:TRAF2 heterotrimer (1:2) binds BIRC (cIAP2) more strongly than TRAF2 homotrimers, suggesting that TRAF1 may modulate the interaction between TRAF2 and BIRC (cIAP1/2) and thus suppress TNF-alpha induced apoptosis (Zheng C et al. 2010). Noteworthy, TRAF1:TRAF2 heterotrimers and TRAF2 homotrimers also differ in their capability with certain receptors but there seems to be no difference with respect to TNFR1 recruitment (Fotin-Mleczek M et al. 2004). On the contrary, TNF-induced caspase-mediated cleavage of TRAF1 generates a C-terminal fragment with NFkB-inhibitory, pro-apoptotic activity (Leo e et al. 2001; Jang HD et al. 2001; Henkler F et al. 2003). Thus, the current data suggest that depending on its cleavage status TRAF1 may exert either cytoprotective or cytotoxic effect in death domain-containing receptor signaling pathways.
The heteromeric complex TRAF1:TRAF2 has been also implicated in the cross-talk of TNFR1 and TNFR2 (Wicovsky A et al. 2009).
The Reactome pathway shows that upon TNF receptor 1 (TNFR1) stimulation, the E3 ubiquitin ligases such as baculoviral IAP repeat-containing protein (BIRC2/3 or cIAP1/2) mediate polyubiquitination of RIPK1 generating K63-linked chains. TNFAIP3 removes these K63-linked polyubiquitin chains, preventing the interaction of RIPK1 with NFkappaB essential modulator (NEMO) (Wertz IE et al. 2004). Subsequently, TNFAIP3 facilitates addition of K48-linked polyubiquitin chains to RIP1, targeting it for proteasomal degradation (Wertz IE et al. 2004). In this way, TNFAIP3 restricts TNF-induced NFkappaB signaling by sequential deubiquitination and ubiquitin-mediated degradation of RIPK1.
TNFAIP3 (A20) is thought to limit NFkappaB activation, however the inhibitory mechanisms for TNFAIP3 are not fully understood and are partially contradicting. A study with knockin mice expressing DUB-inactive Tnfaip3 C103A mutant reported that the deubiquitinase (DUB) activity was dispensable for LPS- or TNF-stimulated NFkappaB signaling (De A et al 2014). In contrast to Tnfaip3 knockout mice that develop perinatal lethality, the knockin Tnfaip3 C103A mice were normal and did not have an inflammatory phenotype (De A et al 2014). These finding are in agreement with an earlier study reporting that the Tnfaip3 C103A knockin mice were grossly normal for at least 4 months and contained a normal number of lymphocytes (Lu TT et al. 2013). In addition, bone marrow-derived macrophage cells (BMDM) from the knockin mice showed normal LPS- and TNF-induced NFkappaB activation and downstream gene expression, comparable to cells from wild-type mice (De A et al 2014). The study suggests that the deubiquitinase activity of TNFAIP3 in general is not obligate for most of the regulatory functions of TNFAIP3 and alternative mechanisms might be involved in TNFAIP3-mediated NFkappaB regulation (De A et al 2014). Indeed, there is biochemical evidence for different mechanisms that may contribute to TNFAIP3 inhibitory effects on TNFR1 pro-inflammatory signaling in a cell type-dependent manner:
TAX1BP1 functions as an adaptor molecule for TNFAIP3 (A20) to block TNF-alpha-stimulated signaling to NFkappaB (Shembade N et al. 2007).
The Reactome pathway shows that upon TNF receptor 1 (TNFR1) stimulation, the E3 ubiquitin ligases such as baculoviral IAP repeat-containing protein (BIRC2/3 or cIAP1/2) mediate polyubiquitination of RIPK1 generating K63-linked chains. TNFAIP3 removes these K63-linked polyubiquitin chains, preventing the interaction of RIPK1 with NFkappaB essential modulator (NEMO) (Wertz IE et al. 2004). Subsequently, TNFAIP3 facilitates addition of K48-linked polyubiquitin chains to RIP1, targeting it for proteasomal degradation (Wertz IE et al. 2004). In this way, TNFAIP3 restricts TNF-induced NFkappaB signaling by sequential deubiquitination and ubiquitin-mediated degradation of RIPK1.
TNFAIP3 (A20) is thought to limit NFkappaB activation, however the inhibitory mechanisms for TNFAIP3 are not fully understood and are partially contradicting. A study with knockin mice expressing DUB-inactive Tnfaip3 C103A mutant reported that the deubiquitinase (DUB) activity was dispensable for LPS- or TNF-stimulated NFkappaB signaling (De A et al 2014). In contrast to Tnfaip3 knockout mice that develop perinatal lethality, the knockin Tnfaip3 C103A mice were normal and did not have an inflammatory phenotype (De A et al 2014). These finding are in agreement with an earlier study reporting that the Tnfaip3 C103A knockin mice were grossly normal for at least 4 months and contained a normal number of lymphocytes (Lu TT et al. 2013). In addition, bone marrow-derived macrophage cells (BMDM) from the knockin mice showed normal LPS- and TNF-induced NFkappaB activation and downstream gene expression, comparable to cells from wild-type mice (De A et al 2014). The study suggests that the deubiquitinase activity of TNFAIP3 in general is not obligate for most of the regulatory functions of TNFAIP3 and alternative mechanisms might be involved in TNFAIP3-mediated NFkappaB regulation (De A et al 2014). Indeed, there is biochemical evidence for different mechanisms that may contribute to TNFAIP3 inhibitory effects on TNFR1 pro-inflammatory signaling in a cell type-dependent manner:
The TNF-alpha:TNFR1 receptor complex then transmits the signal leading to cell death or survival. However, it remains unclear whether BAG4 binds to death domain of monomeric TNFR1 to prevent receptor oligomerization or recognizes receptor trimers to facilitate ATP-dependent TNFR1 trimer disassembly (Jiang Y et al. 1999; Miki K and Eddy EM 2002). Additionally, BAG4 is known to interact with HSP70, death receptor 3, and the anti-apoptotic protein Bcl-2 (Antoku et al. 2001; Brockmann et al. 2004; Jiang et al. 1999).
BAG4-overexpressing HeLa cells showed reduced cellular sensitivity to treatment with extracellular TNFalpha and CD95 ligand (Eichholtz-Wirth H et al. 2003). In addition, increased expression level of BAG4 in tumor cells leads to resistance of TNFalpha-induced cell death and is associated with pancreatic cancer, some types of melanoma, acute lymphoblastic leukemia etc.(Ozawa et al. 2000; Tao H et ql. 2007; Reuland SN et al. 2013). The physiological relevance of BAG4 for TNFR1 signaling, however, is difficult to judge because BAG4 knockout mice have no or only a mild effect on pro-inflammatory TNF signaling and give no evidence for an inhibitory role of BAG4 in TNFR1-induced cell death (Takada H et al. 2003; Endres R et al. 2003).
trimer:TNF-R1
trimertrimer:TNF-R1
trimertrimer:TNF-R1
trimertrimer:TNF-R1
trimertrimer:TNF-R1
trimercaspase-8:viral
CRMA/SPI-2