Neddylation (Homo sapiens)

From WikiPathways

Revision as of 16:13, 25 January 2021 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
1, 4, 13, 15-17, 21...79, 9527, 33, 49, 59, 60, 66...71, 97, 128, 137, 1481, 10, 51, 1309518, 91, 106, 134, 14348, 49, 109, 119, 139...7, 9, 12, 17, 24...37, 38, 54, 69, 72...14, 38, 47, 69, 722, 78, 1332, 34, 38, 61, 72...1, 10, 51, 69, 13022, 23, 40, 51, 55...27, 33, 59, 60, 66...2, 34, 61, 781, 10, 84, 12211, 75, 81, 89, 98...12310, 84, 13018, 32, 39, 44, 62...7, 9, 12, 17, 24...5, 50, 71, 97, 112...8, 38, 52, 69, 72...1, 10, 84, 12248, 49, 109, 119, 139...88, 12314, 22, 40, 47, 51...22, 23, 40, 51, 56...1, 10, 84, 1222, 3, 80, 133cytosolnucleoplasmGPS1 FEM1A PSMF1 RBBP5 FBXL13 RBX1 COMMD2 FBXW9 ASB17 FBXW7 FBXL3 FBXW12 CCDC22 FBXL16 COMMD7 G76-NEDD8-C116-AcM-UBE2F FEM1B FBXW10 COMMD3 PSMB1 COMMD1 FBXO17 COMMD2 DCAF10 FBXW11 FBXO11 FBXO6 KLHL41 COMMD7 FBXL8 FBXL5 COMMD8 RBX1 G76-NEDD8-K1881-CUL9 ASB6 ASB18 CCDC22 FBXO22 FBXL12 DCUN1D5 KLHL11 WSB1 FBXL3 RNF7 (RBX2) ASB13 PSMC1 FBXO27 FBXL12 RBX1 COMMD4 COMMD6 DCUN1DsCOMMD8 CCDC22 COMMD10 FEM1B RBX1 FBXW12 DCUN1D2 COMMD3 DCUN1D2 FBXW5 BTRC SKP2 COMMD10 NUB1-1 FBXL5 CUL4A COMMD7 CCDC22 NEURL2 DCUN1D4 FBXW10 PSMB3 LMO7 FBXO22 ASB4 COMMD10 DDB1 FBXO2 G76-NEDD8-C237-UBA3 FBXL3 DCUN1D3 CUL4B 26S proteasomeC111-AcM-UBE2M-G76-NEDD8 FBXO10 FBXO32 SPSB1 UBD COMMD9 FBXW4 DCUN1D2 DCUN1D2 FBXL3 FBXO41 ASB9 FBXL19 UBC(533-608) FBXL20 ASB6 NEDD8-AcM-UBE2FCRLE3ubiquitinligase:COMMDs:CCDC22KLHL9 NEDD8-CUL9:RBX1:CUL7:CCDC8:OBSL1FBXO31 CCNF ASB15 COPS2 CRL4E3ubiquitinligase:COMMDs:CCDC22:DCUN1D1,2,4,5FBXW2 CUL1 FBXO15 ASB18 DCUN1D2 RBBP5 ASB2 FBXW8 FBXL19 COMMDs:CCDC22UBA52(1-76) FBXW2 G76-NEDD8-C237-UBA3 KBTBD6 FBXL20 FBXL20 FBXO15 KLHL2 FBXW12 COMMD1 ELOC KBTBD8 COMMD4 KBTBD7 FBXL16 COMMD2 CUL3 PSMA6 ELOC NEDD8-UBA3:NAE1:NEDD8BTBD6 FBXL7 DCAF13 VHL FBXO44 FBXW5 G76-NEDD8-C111-AcM-UBE2M FBXO7 FBXL14 FBXO44 FEM1B KLHL11 KLHL11 KEAP1 KLHL13 FBXO22 FBXO41 C237-UBA3-G76-NEDD8 VHL FBXW8 FBXW7 CUL4B DDB1 FBXL14 FBXL4 CRLE3ubiquitinligasecomplex:COMMDs:CCDC22:DCUN1DsASB8 DCUN1D1 FBXO21 FBXL14 KLHL21 FBXL3 KLHL13 DCAF6 FBXL7 COMMD2 ASB11 UBE2D3 SOCS6 KBTBD13 K705-CUL4A-G76-NEDD8 SOCS5 SPSB1 FBXO21 PSME2 LRR1 ASB12 COMMD9 COMMD7 CCNF PSME3 FBXO2 SKP2 BTRC WSB1 DCAF4 DCAF5 WSB2 FBXO10 PSMD5 FBXO15 COMMD1 COMMD5 DCUN1D3 mRNA K724-CUL5-G76-NEDD8 PSMD7 ASB1 DCAF8 FBXL19 2xHP-HIF1A UBC(229-304) SPSB4 RBX1 ASB11 ASB8 ANKRD9 SOCS3 G76-NEDD8-K689-CUL2 FBXW10 C116-AcM-UBE2F-G76-NEDD8 FBXL18 NEDD8-AcM-UBE2M:CRL4E3ubiquitinligase:COMMDs:CCDC22:DCUND1,2,4,5RBX1 SOCS3 BTRC WDTC1 COMMD4 COMMD8 ASB14 ASB1 FBXL16 K720-CUL1-G76-NEDD8 DCAF13 COMMD9 BTRC COMMD9 COMMD1 SOCS2 RBBP7 ASB15 FBXL15 COMMD9 2xHP-EPAS1 FBXL13 RBX1 COPS7B FBXL3 LMO7 WSB2 COMMD8 RNF7 (RBX2) PSMB6 UBC(457-532) ASB8 DCUN1D5 FBXO4 COMMD9 UBC(609-684) FBXL21 FBXW9 PSMA1 COMMD1 2xHP-EPAS1 FBXW2 CUL2 PSMD8 ASB4 ASB9 FBXO15 ASB4 NEURL2 VHL FBXO9 FBXL7 FBXO40 RBX1 ATPRBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5ASB8 NEURL2 DCUN1D2 ASB14 FBXO30 LRRC41 SOCS3 UBC(1-76) COPS8 ANKRD9 DCAF5 COMMD3 G76-NEDD8-K705-CUL4A BTBD1 FBXW9 UBC(77-152) FEM1B FBXW8 KLHL2 VHL COMMD5 FBXL5 ASB16 FBXL4 RBX1 PSME3 COMMD6 COMMD2 BTBD6 FBXW8 CRL4 E3 ubiquitinligase:CAND1CCDC22 CUL5 COMMD4 MyrG-DCUN1D3ELOB FBXL18 CISH UBE2D1,2,3CUL9:RBX1FBXO44 SOCS2 ASB10 SKP2 CUL1 FBXW7 PSMC5 FBXL22 SOCS5 BTRC PSMD11 FEM1C DCAF11 KLHL42 RBX1 ASB9 ASB10 FBXO31 LRRC41 FBXW4 DDB2 RBX1 AMPPSMD10 UBC(381-456) DCUN1D1 COMMD4 FBXO15 DCUN1D3 FBXW12 COMMD10 ASB5 ASB8 C111-AcM-UBE2M-G76-NEDD8 KLHL2 ERCC8 FBXO40 FBXO11 DDB1 FBXO4 WSB2 FBXL8 FBXO27 FBXL13 FBXW4 PSMC5 DCUN1D2 FBXO44 SPSB2 FBXO9 DDA1 DCUN1D1 ASB15 SOCS3 FBXL22 FBXL15 DTL COMMD10 PSMB7 KEAP1 RBBP7 DCAF5 COMMD2 ASB9 RBX1 UBC(1-76) FBXO31 DCUN1D2 COMMD5 COMMD10 FBXO7 FBXO32 UBC(457-532) CCDC22 KEAP1 G76-NEDD8-K689-CUL2 PSMB3 FBXO27 COMMD6 COMMDs:CCDC22K689-CUL2-G76-NEDD8 G76-NEDD8-K689-CUL2 PSMD9 FBXW5 DCAF11 FBXW8 SPSB3 KBTBD6 KLHL5 COMMD7 K712-CUL3-G76-NEDD8 ASB10 AcM-UBE2F:NEDD8-UBA3:NAE1:NEDD8NAE1 FBXW11 COMMD3 ASB12 KLHL41 ASB12 FBXO10 COPS3 FBXL19 DCUN1D5 COMMD9 KLHL41 LRRC41 ASB9 COMMD9 FBXL7 FBXO15 FBXO4 WDTC1 SKP1 FBXO27 PSMD1 SPSB1 FBXL7 KLHL5 NEDD8-AcM-UBE2F:CRL5E3ubiquitinligase:COMMDs:CCDC22:DCUN1DsASB12 TULP4 CAND1 PSMD13 COMMD2 DCAF5 COMMD2 NEDD8-AcM-UBE2M:CUL9:RBX1SPSB3 FBXO30 FBXW9 FBXO9 COMMD8 NEDD8(1-88) FBXL4 RBX1 FBXO10 FBXL15 FBXO32 COMMD2 FBXL8 COMMD1 ASB14 ASB13 CUL5 DCUN1D1,2,4,5COMMD5 LMO7 RBX1 ASB2 ERCC8 FBXL15 FBXL21 CCNF KBTBD8 2xHP-HIF1A 2xHP-EPAS1 CUL1 LMO7 DCUN1D3 FBXL7 DCAF8 WSB2 DCUN1D5 COMMD5 KBTBD6 SPSB2 K720-CUL1-G76-NEDD8 ASB6 ELOB KLHL22 FBXW4 COMMD7 UBE2D3 ASB16 FBXL18 COMMD9 COMMD3 ANKRD9 SPSB4 ASB16 FBXW12 BTRC SOCS2 COMMD5 FBXO17 UCHL3 COMMD5 FBXO6 SPSB2 DDA1 NEDD8CRLE3ubiquitinligases:COMMDs:CCDC22:DCUN1DsCOMMD4 COMMD7 COMMD1 DCAF4 COMMD2 COMMD9 FEM1A COMMD1 SHFM1 ANKRD9 ASB5 ASB13 KBTBD7 NUB1DCUN1D4 PSMB6 CUL3 SKP1 ANKRD9 NEDD8(77-88)ZBTB16 COMMD1 PSMB5 COMMD1 FBXL15 FBXO40 FBXW12 PUM2 COMMD1 FBXW12 FBXL12 RBBP5 CCDC22 DCUN1D5 PSMD14 FBXO27 ASB16 ELOB C116-AcM-UBE2F-G76-NEDD8 CCDC8 FBXO7 PSMD10 FBXL20 ASB15 CAND1NAE1 COPS3 FEM1C DCUN1D2 ASB3 FBXW2 PSMD12 PSMA7 DCAF6 RBX1 KLHL3 DCUN1D2 ERCC8 FBXO7 COMMD4 FBXO10 CUL2 COMMD10 CAND1ASB13 FBXO2 NEDD8,UBD:NUB1:26SproteasomeSOCS6 COMMD7 UBB(1-76) KLHL20 FBXO30 COMMD8 FBXW7 PSMB10 COP9CCDC22 ASB15 G76-NEDD8-K859-CUL4B COMMD7 VHL ASB5 FBXL3 COMMD9 COMMD4 COMMD8 FBXL21 FBXL16 FBXO30 PSMA3 CUL1 ELOC COMMD4 DCAF4 DCUN1D4 FBXO32 COMMD8 ASB5 FBXO30 PSMA8 FBXO30 UBB(1-76) FBXL18 DDB1 SPSB1 WSB1 ASB17 COMMD10 COMMD10 SPSB3 ub-BIRC5FBXO27 PSMB4 SOCS3 UCHL3,SENP8LMO7 KBTBD7 KLHL13 G76-NEDD8-K689-CUL2 SPSB4 SKP2 FBXO40 CCNF CISH DCAF8 UBE2D2 KLHL3 PSMB7 PSMD2 COMMD10 FBXL22 FBXW2 TULP4 ASB5 UBE2D1 KLHL21 KCTD6 DTL DCUN1D1 ASB15 ASB3 FBXO4 COMMD9 UBB(153-228) FBXW10 FBXW5 FBXL13 COMMD10 FBXL15 ASB1 CUL3 DCUN1D2 COPS5 FBXO44 COMMD9 COMMD10 COMMD1 COMMD7 WDR5 OBSL1 SPSB1 ASB7 FBXL8 BTBD6 SOCS6 FBXO32 UBC(153-228) DCUN1D2 CUL4B COMMD1 FBXW4 RBX1 CUL7 NEDD8SPSB2 ASB8 CCDC22 LMO7 NEDD8FBXL12 FEM1C COPS7A WDR5 DCUN1D5 FBXW5 DCUN1D4 SKP1 GPS1 FBXL22 CISH FBXO2 COMMD5 COMMD3 RBX1 FBXO7 KLHL2 FBXL12 FBXW11 COMMD3 CUL1 CUL1 DCAF6 KLHL9 FBXO21 FBXL4 COMMD6 G76-NEDD8-K720-CUL1 FBXL16 DCAF7 COMMD3 BIRC5CCNF ASB2 DCUN1D4 KCTD6 SOCS6 ASB6 COMMD6 DCAF17 PSMD9 FBXL18 FBXL5 KLHL3 KLHL13 FBXO21 FBXL8 FBXO7 G76-NEDD8-K712-CUL3 K1881-CUL9-G76-NEDD8 ASB13 FBXO17 BTRC CCDC22 KCTD6 FBXO32 FBXO6 ASB1 COMMD2 COMMD6 COMMD1 COMMD2 SENP8 FBXL4 DDB2 KEAP1 PSMC6 ELOC UBB(153-228) KLHL11 FBXO6 FBXO41 UBB(77-152) MyrG-DCUN1D3 LMO7 UBB(77-152) ASB17 LRRC41 K689-CUL2-G76-NEDD8 COMMD4 ASB16 COMMD6 RNF7 (RBX2) PSMD7 NEURL2 KLHL20 UBC(153-228) COMMD8 ASB4 COPS6 COMMD5 ASB12 KLHL22 FBXO44 DCAF6 COMMD6 FBXW7 COMMD2 FBXW8 DCAF4 WDR5 SPSB1 DCAF11 PSMD14 KLHL5 FBXW4 ASB10 COMMD9 RBX1 HP-HIF3A ASB6 FBXO41 UBC(305-380) ASB7 ATPASB17 AcM-UBE2MCOMMD6 FBXW7 FBXO6 UBA3:NAE1ASB9 COMMD6 FBXO11 UBA3 CCDC22 COMMD3 FBXW10 DDA1 DCUN1D1 DCUN1D5 FBXO31 FBXL4 DCUN1D1 DCUN1D4 NEDD8 PSMD12 NEDD8 FBXO40 AcM-UBE2MANKRD9 TULP4 FBXL13 PSMD5 CUL7 BTBD1 CUL4A ELOB FBXO2 PSMC3 DCAF16 SOCS5 FBXO17 FBXW4 KLHL2 PSMB11 NEURL2 COMMD10 CRL1E3ubiquitinligase:COMMDs:CCDC22KBTBD8 DCAF4 SOCS5 PSMB11 NEURL2 TULP4 FBXL19 COMMD7 PSMC3 DCUN1D4 K689-CUL2-G76-NEDD8 KLHL11 LRRC41 FBXO17 PSME4 KLHL25 WDTC1 SPSB3 PSMD6 CCDC22 SKP2 FBXO21 PSMB5 PSMA6 FBXW11 FBXL12 RBBP5 NEDD8 FBXO17 FBXO32 ELOC KCTD6 KCTD7 ZBTB16 PSME4 PSMD3 SPSB4 LRRC41 COMMD2 FBXO11 FBXL8 ASB5 FBXL4 DCUN1D5 KLHL42 DCUN1D1 UBXN7FBXL22 ASB12 DDB1 WSB1 PSMA4 AcM-UBE2FCOPS7B RPS27A(1-76) PSMB2 CUL2 COMMD1 ASB7 FBXL21 FBXW9 SPSB3 ASB3 FBXL13 HP-HIF3A FBXW2 LRR1 COMMD3 ASB17 ASB17 UBC(77-152) NEDD8-CUL9:RBX1FBXL16 PSMD4 ASB2 FBXW10 UBC(305-380) FBXW9 ASB8 DCAF10 UBB(1-76) FBXW11 WSB2 COMMD8 DCAF7 PPiASB17 COMMD7 FBXO22 COMMD4 COMMD1 FBXO10 hydroxyPro-HIF-alphaFBXO11 COMMD6 COMMD7 COMMD3 COMMD8 COMMD8 H2OFBXL14 SPSB1 COMMD9 AcM-UBE2F FBXO7 KLHL41 DCAF7 NUB1-1 RNF7 (RBX2) DCAF17 SPSB3 DCAF8 COMMD4 ASB5 FBXL5 KBTBD6 FBXO44 ELOC GAN SOCS3 FBXW11 FBXL14 COMMD8 COMMD3 ASB11 FBXO17 LRRC41 ASB6 CRL E3 ubiquitinligasesCUL4A CUL9 KLHL20 COMMD2 COMMD7 SPSB3 COMMD6 CUL5 ASB2 COMMD7 SOCS2 KCTD7 CUL7:CCDC8:OBSL1ASB2 COMMD1 DCAF10 COMMD3 FBXL22 NAE1 CUL2 KLHL3 ASB10 BTRC FBXW10 WSB2 DCAF4 OBSL1 FBXL15 ASB10 FBXO44 DCUN1D1 FBXO41 FBXO22 FBXO4 COPS6 FBXO32 DCUN1D1 PSMA8 DCUN1D4 KBTBD13 ASB16 TULP4 ELOC C111-AcM-UBE2M-G76-NEDD8 DDA1 ELOC FBXW5 LRR1 FBXL12 HP-HIF3A ASB10 DCAF11 TULP4 FBXW9 PSMC2 FBXW10 COMMD3 SPSB4 FBXO27 FBXO6 NAE1 COMMD10 SKP1 COMMD8 DCAF17 PSMB1 BTBD1 G76-NEDD8-K724-CUL5 FBXO9 NUB1-2 DCUN1D3 RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:hydroxyPro-HIF-alphaFBXO40 ASB7 KLHL21 ASB11 DCAF11 COMMD6 PSMD4 FBXW7 COMMD7 FBXL20 ANKRD9 PUM2:DCUN1D3 mRNAFBXO4 UCHL3,SENP8:NEDD8(1-88)KLHL21 RBBP7 ASB9 COMMD8 UCHL3 BTRC FBXL18 PSMD11 FBXW12 FBXO30 BTBD6 RNF7 (RBX2) NEURL2 COMMD6 UBA52(1-76) FBXL20 SPSB2 ERCC8 FBXL3 DCUN1D1 CUL4A FBXO22 FBXO10 NEDD8-AcM-UBE2MFBXW5 DCAF17 CUL5 DCUN1D4 FBXL20 UBB(77-152) KLHL3 ELOC ANKRD9 VHL FBXW9 KBTBD13 ASB17 ASB18 ASB9 DCUN1D3 FBXW2 FBXL8 COP9 signalosomeUBC(229-304) FBXO22 ASB12 DCUN1D5 FBXL14 FBXL18 ASB3 KLHL21 ZBTB16 FBXO30 COMMD4 G76-NEDD8-K720-CUL1 DCAF13 DTL ASB11 ASB7 ASB18 PSME1 FBXO4 DCAF5 FBXO9 CCNF CCDC22 RPS27A(1-76) G76-NEDD8-C111-AcM-UBE2M CCDC22 WSB2 ASB4 RFWD2 DCUN1D4 G76-NEDD8-C111-AcM-UBE2M NUB1-2 RBX1 UBC(533-608) FBXL12 GAN SKP2 ASB6 COMMD10 NEDD8-CRL5E3ubiquitinligase:COMMDs:CCDC22:DCUN1DsC111-AcM-UBE2M-G76-NEDD8 ASB14 ELOB UBC(77-152) DCAF13 COMMD5 FBXO32 COMMD6 SPSB4 KCTD7 SKP1 FBXO4 DCUN1D1 FBXL19 FBXO40 DCUN1D4 COMMD8 SOCS5 KLHL25 RFWD2 CRL5E3ubiquitinligase:COMMDs:CCDC22COMMD4 COMMD2 FBXL18 FBXL13 FBXL14 SOCS6 FBXO31 PSMC4 K689-CUL2-G76-NEDD8 COMMD3 KLHL25 ZBTB16 ASB7 COMMD6 GAN G76-NEDD8-K1881-CUL9 ELOB RNF7 (RBX2) ASB5 NEDD8-CRL4E3ubiquitinligase:COMMDs:CCDC22:DCUN1D1,2,4,5PSMA5 COMMD10 KLHL5 BTBD6 FBXO11 FBXO27 KLHL25 FBXW7 UBC(533-608) UBXN7 FBXL18 CCDC22 SKP1 FBXL20 ASB11 LMO7 DCUN1D2 UBD CRL1E3ubiquitinligasecomplex:MyrG-DCUN1D3CUL5 LRRC41 AcM-UBE2M COMMD4 ELOB DCUN1D4 PSMA3 COMMD8 WDTC1 COMMD6 FBXL21 G76-NEDD8-C111-AcM-UBE2M RBBP5 FEM1A COMMD1 LRR1 SPSB2 COMMD5 ASB3 NEDD8-AcM-UBE2MDDA1 COMMD3 CUL5 PSMB9 RBBP5 WDR5 DCAF10 ELOB ASB1 FEM1A FBXO17 ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:NEDD8-CUL2:RBX1:COMMDs:CCDC22:DCUN1D1,2,4,5RBX1 K1881-CUL9-G76-NEDD8 COMMD8 COMMD6 DCAF16 PSMC1 FBXW8 FBXO7 FBXW10 PSMB10 KLHL9 SOCS2 KLHL22 UBC(457-532) FBXL19 FBXL8 WDTC1 COMMD7 FBXW7 DCAF17 FBXW8 KBTBD7 NAE1 FBXL7 FBXL13 COMMD5 ASB18 ASB14 FBXO15 NEDD8 FBXL14 FBXL19 PSMC6 G76-NEDD8-C237-UBA3 DCUN1D5 UBE2D1 COMMD2 SOCS3 COMMD9 RPS27A(1-76) C237-UBA3-G76-NEDD8 DCAF6 COMMD4 K689-CUL2-G76-NEDD8 KLHL9 FEM1A TULP4 WSB1 UBC(229-304) COPS5 ASB18 DCUN1D5 COMMD2 COMMD5 FBXL13 DCAF8 SKP2 CISH FBXO17 FBXL5 FBXL16 2xHP-HIF1A DCAF7 CCNF CRL E3 ubiquitinligase:CAND1SOCS2 KLHL25 ASB11 KCTD7 ASB15 G76-NEDD8-C111-AcM-UBE2M CUL4B ELOC KCTD6 FBXO21 CCDC22 LRR1 PSMA2 FBXO22 COPS2 COMMD5 C237-UBA3-G76-NEDD8 SOCS2 ASB4 DDB2 SOCS5 UBC(153-228) COMMD8 SPSB4 ELOB FBXO2 COMMD3 RBBP7 COMMD9 FBXO7 PSMD6 PSMD1 ELOB CUL4B ASB1 RFWD2 CCNF SOCS6 FBXO11 RNF7 (RBX2) PSMD8 RBX1:CUL4:DDB1:DCAFsASB13 CISH FBXO15 PSMD13 FBXO31 NEDD8-CRL1E3ubiquitinligase:COMMDs:CCDC22:DCUN1DsFBXW2 FBXL22 WDTC1 RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:UBXN7FBXL21 DCAF5 ERCC8 FBXO15 KLHL13 AcM-UBE2M:NEDD8-UBA3:NAE1:NEDD8DCUN1D4 FBXO11 DCUN1D5 UBC(381-456) RBX1 BTBD1 DCUN1D2 KBTBD13 FBXL4 G76-NEDD8-K689-CUL2 FBXL22 FBXO10 LMO7 FBXO6 FBXW9 CCDC22 COMMD9 FBXW11 FBXL8 KLHL42 ASB6 WDR5 UbFBXO9 ASB8 SKP1 FBXL21 FBXL3 DCAF16 SOCS2 FBXO41 ASB7 RBX1 KLHL42 CUL3 UBE2D2 FBXW5 FBXL12 ASB3 SOCS3 ASB14 COMMD5 PSMD3 WDR5 SOCS5 KCTD7 FBXL5 CISH FBXO22 GAN CRL4E3ubiquitinligase:COMMDs:CCDC22UBC(305-380) FBXL19 DCUN1D1 NEDD8 DDA1 WSB1 FBXO44 SENP8 FBXW8 WSB1 FBXL7 PSMC2 DCUN1D2 CCNF COMMD3 KBTBD13 FBXW11 KBTBD6 KLHL42 SKP1 UCHL3,SENP8:NEDD8FBXW11 NEDD8-AcM-UBE2M:CRL1E3ubiquitinligase:COMMDs:CCDC22:DCUN1DsCOMMD6 FBXL5 PSMA2 PSMA1 FBXO27 UBC(609-684) FBXO40 DCUN1D4 COMMD3 FBXW2 COMMD7 UBC(381-456) RFWD2 PSME2 ELOB SHFM1 COMMD9 SKP2 ASB2 CCDC22 SPSB4 RNF7 (RBX2) FBXO31 KLHL5 KLHL20 ASB7 CAND1 UCHL3 FBXL21 C111-AcM-UBE2M-G76-NEDD8 FBXW12 ASB13 FEM1B COMMD4 DCAF7 FBXW5 DCAF11 ASB14 DCUN1D1 NEDD8-UBA3:NAE1SPSB2 COMMD1 DCAF13 FEM1C KLHL41 COPS4 COMMD7 ASB1 DCAF7 ASB16 COMMD6 ASB4 DCAF8 DCUN1D3 mRNADCUN1D5 DCAF16 FBXO9 FBXO2 FBXO9 COMMD5 FBXL22 FBXO21 COPS4 ASB11 ASB16 FBXL16 FBXO30 TULP4 FBXO41 K724-CUL5-G76-NEDD8 FBXL15 COMMD10 RBBP7 G76-NEDD8-K724-CUL5 PSMB8 KBTBD8 KEAP1 DCUN1D1 DTL DCUN1D1 COMMD4 GAN CUL1 FBXO41 KBTBD7 COMMD5 ZBTB16 PSMB2 UBE2D1,2,3:UbiquitinSOCS6 UBB(153-228) COMMD2 FBXW4 FBXO9 ELOC DCUN1D3 G76-NEDD8-C237-UBA3 COMMD10 PSMF1 PSMB4 FBXO4 FBXL21 FBXL20 FBXL15 G76-NEDD8-C116-AcM-UBE2F FBXO41 ASB18 COPS8 DDB2 BTBD1 CISH SENP8 COMMD8 FBXL7 DDB2 KLHL22 SPSB3 FBXO11 COMMD3 PSMB9 FBXO6 UBA52(1-76) ASB3 KLHL9 SKP1 SPSB2 FBXO31 DDB2 ASB2 C237-UBA3-G76-NEDD8 CISH FEM1C DTL ASB14 PSMA4 NEDD8,UBDASB3 PSMA5 CUL9 FBXO2 DTL FBXO10 FBXO31 KLHL22 KLHL20 COMMD4 ELOB CCDC8 DDB1 NEDD8 VHL PSME1 SOCS5 VHL VHL WSB1 ASB10 WSB2 FBXO6 FBXW4 CCDC22 DCUN1D4 UBC(609-684) FBXL4 CUL4A KBTBD8 FBXO21 ASB1 COPS7A CCDC22 K859-CUL4B-G76-NEDD8 FBXO2 NEURL2 COMMD2 DCAF16 COMMD4 ERCC8 PSMD2 ELOC COMMD9 ASB13 PSMB8 SPSB1 COMMD10 UBC(1-76) FBXL5 ASB4 DCUN1D3 RFWD2 FBXO21 RBX1 ASB15 DCUN1D5 SOCS6 COMMD5 COMMD7 RBBP7 DCAF10 DCUN1D5 DCAF16 ASB18 RFWD2 ASB12 DCAF13 DCAF17 COMMD1 SKP2 FBXL14 COMMD5 COMMD5 DCAF6 COMMD10 PSMA7 PSMC4 FBXO40 FBXL16 DCAF10 70856485861985116116145614466342646485124644285636411420144191161167076, 138676, 13814411064214411114485634276, 1388526198663102, 107, 14712411411011661162670124124198636, 5376, 1388619124102, 107, 147701451161976, 13863631451161912470145102, 107, 14726102, 107, 1471452626648670102, 107, 147851448667634263145678611070116110116422076, 138124851144220, 9476, 13886145194212476, 13814414512463144857064676, 138644211411674, 771458611464110


Description

NEDD8 is a small ubiquitin-like molecule that is conjugated to substrate proteins through an E1 to E3 enzyme cascade similar to that for ubiquitin. The best characterized target of neddylation is the cullin scaffold subunit of cullin-RING E3 ubiquitin ligases (CRLs), which themselves target numerous cellular proteins for degradation by the proteasome (Hori et al, 1999; reviewed in Soucy et al, 2010; Lyedeard et al, 2013). The multisubunit CRL complexes are compositionally diverse, but each contains a scaffolding cullin protein (CUL1, 2, 3, 4A, 4B, 5, 7 or 9) and a RING box-containing E3 ligase subunit RBX, along with other adaptor and substrate-interacting subunits. RBX2 (also known as RNF7) interacts preferentially with CUL5, while RBX1 is the primary E3 for most other cullin family members (reviewed in Mahon et al, 2014). Neddylation of the cullin subunit increases the ubiquitination activity of the CRL complex (Podust et al, 2000; Read et al, 2000; Wu et al, 2000; Kawakami et al, 2001; Ohh et al, 2002; Yu et al, 2015). In addition to CRL complexes, a number of other less-well characterized NEDD8 targets have been identified. These include other E3 ubiquitin ligases such as SMURF1 and MDM2, receptor tyrosine kinases such as EGFR and TGF beta RII, and proteins that contribute to transcriptional regulation, among others (Xie et al, 2014; Watson et al, 2010; Oved et al, 2006; Zuo et al, 2013; Xirodimas et al, 2004; Singh et al, 2007; Abida et al, 2007; Liu et al 2010; Watson et al, 2006; Loftus et al, 2012; Aoki et al, 2013; reviewed in Enchev et al, 2015).
Like ubiquitin, NEDD8 undergoes post-translational processing to generate the mature form. UCHL3- or SENP8-mediated proteolysis removes the C-terminal 5 amino acids of NEDD8, generating a novel C-terminal glycine residue for conjugation to the cysteine residues in the E1, E2 enzymes or lysine residues in the substrate protein, usually the E3 NEDD8 ligase itself (Wada et al, 1998; reviewed in Enchev et al, 2015). Most substrates in vivo appear to be singly neddylated on one or more lysine residues, but NEDD8 chains have been formed on cullin substrates in vitro and on histone H4 in cultured human cells after DNA damage (Jones et al, 2008; Ohki et al, 2009; Xirodimas et al, 2008; Jeram et al, 2010; Ma et al, 2013; reviewed in Enchev et al, 2015). The significance of NEDD8 chains is still not clear.
NEDD8 has a single heterodimeric E1 enzyme, consisting of NAE1 (also known as APPBP1) and UBA3, and two E2 enzymes, UBE2M and UBE2F, which are N-terminally acetylated (Walden et al, 2003; Bohnsack et al, 2003; Huang et al, 2004; Huang et al, 2005; Huang et al, 2009; Scott et al, 2011a; Monda et al, 2013; reviewed in Enchev et al, 2015). All NEDD8 E3 enzymes reported to date also function as E3 ubiquitin ligases, and most belong to the RING domain class. The best characterized NEDD8 E3 enzymes are the CRL complexes described above. RBX1-containing complexes interact preferentially with UBE2M, while UBE2F is the E2 for RBX2-containing complexes (Huang et al, 2009; Monda et al, 2013).
Neddylation is regulated in vivo by interaction with DCUN1D proteins (also called DCNLs). The 5 human DCUN1D proteins interact both with cullins and with the NEDD8 E2 proteins and thereby increase the kinetic efficiency of neddylation (Kurz et al, 2005; Kurz et al, 2008; Scott et al, 2010; Scott et al, 2011a; Scott et al, 2014; Monda et al, 2013). Glomulin (GLMN) is another regulator of CRL function that binds to the neddylated cullin and competitively inhibits interaction with the ubiquitin E2 enzyme (Arai et al, 2003; Tron et al, 2012; Duda et al, 2012; reviewed in Mahon et al, 2014).
The multisubunit COP9 signalosome is the only cullin deneddylase, while SENP8 (also known as DEN1) contributes to deneddylation of other non-cullin NEDD8 targets (Cope et al, 2002; Emberley et al, 2012; Chan et al, 2008; Wu et al, 2003; reviewed in Wei et al, 2008; Enchev et al, 2015). In the deneddylated state, cullins bind to CAND1 (cullin associated NEDD8-dissociated protein1), which displaces the COP9 signalosome and promotes the exchange of the ubiquitin substrate-specific adaptor. This allows CRL complexes to be reconfigured to target other subtrates for ubiquitination (Liu et al, 2002; Schmidt et al, 2009; Pierce et al, 2013; reviewed in Mahon et al, 2014).

View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 8951664
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF, Schulman BA.; ''A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8.''; PubMed Europe PMC Scholia
  2. Li Z, Pei XH, Yan J, Yan F, Cappell KM, Whitehurst AW, Xiong Y.; ''CUL9 mediates the functions of the 3M complex and ubiquitylates survivin to maintain genome integrity.''; PubMed Europe PMC Scholia
  3. Nikolaev AY, Li M, Puskas N, Qin J, Gu W.; ''Parc: a cytoplasmic anchor for p53.''; PubMed Europe PMC Scholia
  4. Watson IR, Blanch A, Lin DC, Ohh M, Irwin MS.; ''Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function.''; PubMed Europe PMC Scholia
  5. Tanaka T, Kawashima H, Yeh ET, Kamitani T.; ''Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L.''; PubMed Europe PMC Scholia
  6. Olma MH, Roy M, Le Bihan T, Sumara I, Maerki S, Larsen B, Quadroni M, Peter M, Tyers M, Pintard L.; ''An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases.''; PubMed Europe PMC Scholia
  7. Boh BK, Smith PG, Hagen T.; ''Neddylation-induced conformational control regulates cullin RING ligase activity in vivo.''; PubMed Europe PMC Scholia
  8. Scott DC, Rhee DY, Duda DM, Kelsall IR, Olszewski JL, Paulo JA, de Jong A, Ovaa H, Alpi AF, Harper JW, Schulman BA.; ''Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation.''; PubMed Europe PMC Scholia
  9. Saha A, Deshaies RJ.; ''Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation.''; PubMed Europe PMC Scholia
  10. Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA.; ''Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity.''; PubMed Europe PMC Scholia
  11. Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A.; ''Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex.''; PubMed Europe PMC Scholia
  12. Min KW, Hwang JW, Lee JS, Park Y, Tamura TA, Yoon JB.; ''TIP120A associates with cullins and modulates ubiquitin ligase activity.''; PubMed Europe PMC Scholia
  13. Tron AE, Arai T, Duda DM, Kuwabara H, Olszewski JL, Fujiwara Y, Bahamon BN, Signoretti S, Schulman BA, DeCaprio JA.; ''The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7.''; PubMed Europe PMC Scholia
  14. Hannah J, Zhou P.; ''Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B.''; PubMed Europe PMC Scholia
  15. Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V, Palombella VJ.; ''Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha.''; PubMed Europe PMC Scholia
  16. Emberley ED, Mosadeghi R, Deshaies RJ.; ''Deconjugation of Nedd8 from Cul1 is directly regulated by Skp1-F-box and substrate, and the COP9 signalosome inhibits deneddylated SCF by a noncatalytic mechanism.''; PubMed Europe PMC Scholia
  17. Liu J, Furukawa M, Matsumoto T, Xiong Y.; ''NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases.''; PubMed Europe PMC Scholia
  18. Cai W, Yang H.; ''The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions.''; PubMed Europe PMC Scholia
  19. Nara H, Onoda T, Rahman M, Araki A, Juliana FM, Tanaka N, Asao H.; ''Regulation of interleukin-21 receptor expression and its signal transduction by WSB-2.''; PubMed Europe PMC Scholia
  20. Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMed Europe PMC Scholia
  21. Soucy TA, Dick LR, Smith PG, Milhollen MA, Brownell JE.; ''The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy.''; PubMed Europe PMC Scholia
  22. Meyer-Schaller N, Chou YC, Sumara I, Martin DD, Kurz T, Katheder N, Hofmann K, Berthiaume LG, Sicheri F, Peter M.; ''The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes.''; PubMed Europe PMC Scholia
  23. Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA.; ''N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex.''; PubMed Europe PMC Scholia
  24. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP.; ''Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex.''; PubMed Europe PMC Scholia
  25. Ohki Y, Funatsu N, Konishi N, Chiba T.; ''The mechanism of poly-NEDD8 chain formation in vitro.''; PubMed Europe PMC Scholia
  26. Lange S, Perera S, Teh P, Chen J.; ''Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover.''; PubMed Europe PMC Scholia
  27. Denti S, Fernandez-Sanchez ME, Rogge L, Bianchi E.; ''The COP9 signalosome regulates Skp2 levels and proliferation of human cells.''; PubMed Europe PMC Scholia
  28. Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ.; ''Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1.''; PubMed Europe PMC Scholia
  29. Ma T, Chen Y, Zhang F, Yang CY, Wang S, Yu X.; ''RNF111-dependent neddylation activates DNA damage-induced ubiquitination.''; PubMed Europe PMC Scholia
  30. Zuo W, Huang F, Chiang YJ, Li M, Du J, Ding Y, Zhang T, Lee HW, Jeong LS, Chen Y, Deng H, Feng XH, Luo S, Gao C, Chen YG.; ''c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor.''; PubMed Europe PMC Scholia
  31. Abida WM, Nikolaev A, Zhao W, Zhang W, Gu W.; ''FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity.''; PubMed Europe PMC Scholia
  32. Lewis MD, Roberts BJ.; ''Role of nuclear and cytoplasmic localization in the tumour-suppressor activity of the von Hippel-Lindau protein.''; PubMed Europe PMC Scholia
  33. Wu S, Zhu W, Nhan T, Toth JI, Petroski MD, Wolf DA.; ''CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire.''; PubMed Europe PMC Scholia
  34. Zhao J, Tenev T, Martins LM, Downward J, Lemoine NR.; ''The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner.''; PubMed Europe PMC Scholia
  35. Bohnsack RN, Haas AL.; ''Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer.''; PubMed Europe PMC Scholia
  36. Sugasawa K.; ''The CUL4 enigma: culling DNA repair factors.''; PubMed Europe PMC Scholia
  37. Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ.; ''Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery.''; PubMed Europe PMC Scholia
  38. Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA.; ''Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation.''; PubMed Europe PMC Scholia
  39. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG.; ''HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.''; PubMed Europe PMC Scholia
  40. Kurz T, Chou YC, Willems AR, Meyer-Schaller N, Hecht ML, Tyers M, Peter M, Sicheri F.; ''Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation.''; PubMed Europe PMC Scholia
  41. Yu C, Mao H, Novitsky EJ, Tang X, Rychnovsky SD, Zheng N, Huang L.; ''Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8.''; PubMed Europe PMC Scholia
  42. D'Angiolella V, Donato V, Vijayakumar S, Saraf A, Florens L, Washburn MP, Dynlacht B, Pagano M.; ''SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation.''; PubMed Europe PMC Scholia
  43. Aoki I, Higuchi M, Gotoh Y.; ''NEDDylation controls the target specificity of E2F1 and apoptosis induction.''; PubMed Europe PMC Scholia
  44. Bonicalzi ME, Groulx I, de Paulsen N, Lee S.; ''Role of exon 2-encoded beta -domain of the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  45. Loftus SJ, Liu G, Carr SM, Munro S, La Thangue NB.; ''NEDDylation regulates E2F-1-dependent transcription.''; PubMed Europe PMC Scholia
  46. Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan ZQ, Huang L.; ''A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins.''; PubMed Europe PMC Scholia
  47. Sang Y, Yan F, Ren X.; ''The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications.''; PubMed Europe PMC Scholia
  48. Maine GN, Burstein E.; ''COMMD proteins: COMMing to the scene.''; PubMed Europe PMC Scholia
  49. Maine GN, Mao X, Komarck CM, Burstein E.; ''COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase.''; PubMed Europe PMC Scholia
  50. Hipp MS, Raasi S, Groettrup M, Schmidtke G.; ''NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation.''; PubMed Europe PMC Scholia
  51. Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF, Schulman BA.; ''E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification.''; PubMed Europe PMC Scholia
  52. Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N.; ''Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases.''; PubMed Europe PMC Scholia
  53. Lee J, Zhou P.; ''DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase.''; PubMed Europe PMC Scholia
  54. Mehle A, Goncalves J, Santa-Marta M, McPike M, Gabuzda D.; ''Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation.''; PubMed Europe PMC Scholia
  55. Gutierrez GJ, Ronai Z.; ''Ubiquitin and SUMO systems in the regulation of mitotic checkpoints.''; PubMed Europe PMC Scholia
  56. Kim AY, Bommeljé CC, Lee BE, Yonekawa Y, Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, Ramanathan Y, Singh B.; ''SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation.''; PubMed Europe PMC Scholia
  57. Podust VN, Brownell JE, Gladysheva TB, Luo RS, Wang C, Coggins MB, Pierce JW, Lightcap ES, Chau V.; ''A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination.''; PubMed Europe PMC Scholia
  58. Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP.; ''Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity.''; PubMed Europe PMC Scholia
  59. Schmidt MW, McQuary PR, Wee S, Hofmann K, Wolf DA.; ''F-box-directed CRL complex assembly and regulation by the CSN and CAND1.''; PubMed Europe PMC Scholia
  60. Peth A, Berndt C, Henke W, Dubiel W.; ''Downregulation of COP9 signalosome subunits differentially affects the CSN complex and target protein stability.''; PubMed Europe PMC Scholia
  61. Watanabe Y.; ''Temporal and spatial regulation of targeting aurora B to the inner centromere.''; PubMed Europe PMC Scholia
  62. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH.; ''Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  63. Franz J, Jerome J, Lear T, Gong Q, Weathington NM.; ''The Human IL-22 Receptor Is Regulated through the Action of the Novel E3 Ligase Subunit FBXW12, Which Functions as an Epithelial Growth Suppressor.''; PubMed Europe PMC Scholia
  64. Watanabe K, Yumimoto K, Nakayama KI.; ''FBXO21 mediates the ubiquitylation and proteasomal degradation of EID1.''; PubMed Europe PMC Scholia
  65. Xirodimas DP, Sundqvist A, Nakamura A, Shen L, Botting C, Hay RT.; ''Ribosomal proteins are targets for the NEDD8 pathway.''; PubMed Europe PMC Scholia
  66. Enchev RI, Scott DC, da Fonseca PC, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP.; ''Structural basis for a reciprocal regulation between SCF and CSN.''; PubMed Europe PMC Scholia
  67. Gong L, Yeh ET.; ''Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway.''; PubMed Europe PMC Scholia
  68. Gummlich L, Rabien A, Jung K, Dubiel W.; ''Deregulation of the COP9 signalosome-cullin-RING ubiquitin-ligase pathway: mechanisms and roles in urological cancers.''; PubMed Europe PMC Scholia
  69. Mahon C, Krogan NJ, Craik CS, Pick E.; ''Cullin E3 ligases and their rewiring by viral factors.''; PubMed Europe PMC Scholia
  70. Wang X, Newkirk RF, Carre W, Ghose P, Igobudia B, Townsel JG, Cogburn LA.; ''Regulation of ANKRD9 expression by lipid metabolic perturbations.''; PubMed Europe PMC Scholia
  71. Schmidtke G, Aichem A, Groettrup M.; ''FAT10ylation as a signal for proteasomal degradation.''; PubMed Europe PMC Scholia
  72. Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N, Kato S, Tanaka K.; ''Covalent modification of all members of human cullin family proteins by NEDD8.''; PubMed Europe PMC Scholia
  73. Watson IR, Li BK, Roche O, Blanch A, Ohh M, Irwin MS.; ''Chemotherapy induces NEDP1-mediated destabilization of MDM2.''; PubMed Europe PMC Scholia
  74. Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM, Klausner RD.; ''The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins.''; PubMed Europe PMC Scholia
  75. Groulx I, Lee S.; ''Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  76. Putilina T, Jaworski C, Gentleman S, McDonald B, Kadiri M, Wong P.; ''Analysis of a human cDNA containing a tissue-specific alternatively spliced LIM domain.''; PubMed Europe PMC Scholia
  77. Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC, Conaway JW, Nakayama KI.; ''VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases.''; PubMed Europe PMC Scholia
  78. Yan J, Yan F, Li Z, Sinnott B, Cappell KM, Yu Y, Mo J, Duncan JA, Chen X, Cormier-Daire V, Whitehurst AW, Xiong Y.; ''The 3M complex maintains microtubule and genome integrity.''; PubMed Europe PMC Scholia
  79. Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP.; ''Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system.''; PubMed Europe PMC Scholia
  80. Andrews P, He YJ, Xiong Y.; ''Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53 and promotes cell growth by antagonizing p53 function.''; PubMed Europe PMC Scholia
  81. Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M.; ''Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex.''; PubMed Europe PMC Scholia
  82. Monda JK, Scott DC, Miller DJ, Lydeard J, King D, Harper JW, Bennett EJ, Schulman BA.; ''Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes.''; PubMed Europe PMC Scholia
  83. Kawakami T, Chiba T, Suzuki T, Iwai K, Yamanaka K, Minato N, Suzuki H, Shimbara N, Hidaka Y, Osaka F, Omata M, Tanaka K.; ''NEDD8 recruits E2-ubiquitin to SCF E3 ligase.''; PubMed Europe PMC Scholia
  84. Huang DT, Paydar A, Zhuang M, Waddell MB, Holton JM, Schulman BA.; ''Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1.''; PubMed Europe PMC Scholia
  85. Genau HM, Huber J, Baschieri F, Akutsu M, Dötsch V, Farhan H, Rogov V, Behrends C.; ''CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1-RAC1 signaling.''; PubMed Europe PMC Scholia
  86. Tan MK, Lim HJ, Bennett EJ, Shi Y, Harper JW.; ''Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover.''; PubMed Europe PMC Scholia
  87. Ohh M, Kim WY, Moslehi JJ, Chen Y, Chau V, Read MA, Kaelin WG.; ''An intact NEDD8 pathway is required for Cullin-dependent ubiquitylation in mammalian cells.''; PubMed Europe PMC Scholia
  88. Wu K, Yamoah K, Dolios G, Gan-Erdene T, Tan P, Chen A, Lee CG, Wei N, Wilkinson KD, Wang R, Pan ZQ.; ''DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1.''; PubMed Europe PMC Scholia
  89. Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW.; ''Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex.''; PubMed Europe PMC Scholia
  90. Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW, Kurz T, Schulman BA.; ''A dual E3 mechanism for Rub1 ligation to Cdc53.''; PubMed Europe PMC Scholia
  91. Bandau S, Knebel A, Gage ZO, Wood NT, Alexandru G.; ''UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1α accumulation.''; PubMed Europe PMC Scholia
  92. Wu K, Chen A, Pan ZQ.; ''Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization.''; PubMed Europe PMC Scholia
  93. Kelsall IR, Duda DM, Olszewski JL, Hofmann K, Knebel A, Langevin F, Wood N, Wightman M, Schulman BA, Alpi AF.; ''TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes.''; PubMed Europe PMC Scholia
  94. Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMed Europe PMC Scholia
  95. Huang G, Stock C, Bommeljé CC, Weeda VB, Shah K, Bains S, Buss E, Shaha M, Rechler W, Ramanathan SY, Singh B.; ''SCCRO3 (DCUN1D3) antagonizes the neddylation and oncogenic activity of SCCRO (DCUN1D1).''; PubMed Europe PMC Scholia
  96. Keuss MJ, Thomas Y, Mcarthur R, Wood NT, Knebel A, Kurz T.; ''Characterization of the mammalian family of DCN-type NEDD8 E3 ligases.''; PubMed Europe PMC Scholia
  97. Tanaka T, Nakatani T, Kamitani T.; ''Inhibition of NEDD8-conjugation pathway by novel molecules: potential approaches to anticancer therapy.''; PubMed Europe PMC Scholia
  98. Lee S, Neumann M, Stearman R, Stauber R, Pause A, Pavlakis GN, Klausner RD.; ''Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  99. Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RL, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ.; ''Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins.''; PubMed Europe PMC Scholia
  100. Cope GA, Deshaies RJ.; ''Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels.''; PubMed Europe PMC Scholia
  101. Singh RK, Iyappan S, Scheffner M.; ''Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of Mdm2.''; PubMed Europe PMC Scholia
  102. Matsuzawa K, Izawa S, Ohkura T, Ohkura H, Ishiguro K, Yoshida A, Takiyama Y, Haneda M, Shigemasa C, Yamamoto K, Taniguchi S.; ''Implication of intracellular localization of transcriptional repressor PLZF in thyroid neoplasms.''; PubMed Europe PMC Scholia
  103. Berra E, Roux D, Richard DE, Pouysségur J.; ''Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm.''; PubMed Europe PMC Scholia
  104. Arai T, Kasper JS, Skaar JR, Ali SH, Takahashi C, DeCaprio JA.; ''Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis.''; PubMed Europe PMC Scholia
  105. Liu G, Xirodimas DP.; ''NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways.''; PubMed Europe PMC Scholia
  106. Heir P, Sufan RI, Greer SN, Poon BP, Lee JE, Ohh M.; ''DCNL1 functions as a substrate sensor and activator of cullin 2-RING ligase.''; PubMed Europe PMC Scholia
  107. Costoya JA, Hobbs RM, Pandolfi PP.; ''Cyclin-dependent kinase antagonizes promyelocytic leukemia zinc-finger through phosphorylation.''; PubMed Europe PMC Scholia
  108. Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H.; ''CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex.''; PubMed Europe PMC Scholia
  109. Burstein E, Hoberg JE, Wilkinson AS, Rumble JM, Csomos RA, Komarck CM, Maine GN, Wilkinson JC, Mayo MW, Duckett CS.; ''COMMD proteins, a novel family of structural and functional homologs of MURR1.''; PubMed Europe PMC Scholia
  110. Lührig S, Kolb S, Mellies N, Nolte J.; ''The novel BTB-kelch protein, KBTBD8, is located in the Golgi apparatus and translocates to the spindle apparatus during mitosis.''; PubMed Europe PMC Scholia
  111. Fang L, Wang X, Yamoah K, Chen PL, Pan ZQ, Huang L.; ''Characterization of the human COP9 signalosome complex using affinity purification and mass spectrometry.''; PubMed Europe PMC Scholia
  112. Kito K, Yeh ET, Kamitani T.; ''NUB1, a NEDD8-interacting protein, is induced by interferon and down-regulates the NEDD8 expression.''; PubMed Europe PMC Scholia
  113. Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T.; ''CSN- and CAND1-dependent remodelling of the budding yeast SCF complex.''; PubMed Europe PMC Scholia
  114. Starostina NG, Simpliciano JM, McGuirk MA, Kipreos ET.; ''CRL2(LRR-1) targets a CDK inhibitor for cell cycle control in C. elegans and actin-based motility regulation in human cells.''; PubMed Europe PMC Scholia
  115. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ.; ''Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.''; PubMed Europe PMC Scholia
  116. Shiyanov P, Nag A, Raychaudhuri P.; ''Cullin 4A associates with the UV-damaged DNA-binding protein DDB.''; PubMed Europe PMC Scholia
  117. Chan Y, Yoon J, Wu JT, Kim HJ, Pan KT, Yim J, Chien CT.; ''DEN1 deneddylates non-cullin proteins in vivo.''; PubMed Europe PMC Scholia
  118. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG.; ''Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein.''; PubMed Europe PMC Scholia
  119. Phillips-Krawczak CA, Singla A, Starokadomskyy P, Deng Z, Osborne DG, Li H, Dick CJ, Gomez TS, Koenecke M, Zhang JS, Dai H, Sifuentes-Dominguez LF, Geng LN, Kaufmann SH, Hein MY, Wallis M, McGaughran J, Gecz J, Sluis Bv, Billadeau DD, Burstein E.; ''COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A.''; PubMed Europe PMC Scholia
  120. Yu F, White SB, Zhao Q, Lee FS.; ''Dynamic, site-specific interaction of hypoxia-inducible factor-1alpha with the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  121. Lydeard JR, Schulman BA, Harper JW.; ''Building and remodelling Cullin-RING E3 ubiquitin ligases.''; PubMed Europe PMC Scholia
  122. Walden H, Podgorski MS, Huang DT, Miller DW, Howard RJ, Minor DL, Holton JM, Schulman BA.; ''The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1.''; PubMed Europe PMC Scholia
  123. Wada H, Kito K, Caskey LS, Yeh ET, Kamitani T.; ''Cleavage of the C-terminus of NEDD8 by UCH-L3.''; PubMed Europe PMC Scholia
  124. Li ZH, Zhang XH, Li GY.; ''[Study on the fusion expression of FBXO30: a novel member of F-box protein family].''; PubMed Europe PMC Scholia
  125. Wei N, Serino G, Deng XW.; ''The COP9 signalosome: more than a protease.''; PubMed Europe PMC Scholia
  126. Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, Kochupurakkal BS, Katz M, Lavi S, Cesareni G, Yarden Y.; ''Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases.''; PubMed Europe PMC Scholia
  127. Yu F, White SB, Zhao Q, Lee FS.; ''HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation.''; PubMed Europe PMC Scholia
  128. Tanji K, Tanaka T, Kamitani T.; ''Interaction of NUB1 with the proteasome subunit S5a.''; PubMed Europe PMC Scholia
  129. Tanimoto K, Makino Y, Pereira T, Poellinger L.; ''Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  130. Enchev RI, Schulman BA, Peter M.; ''Protein neddylation: beyond cullin-RING ligases.''; PubMed Europe PMC Scholia
  131. Duda DM, Olszewski JL, Tron AE, Hammel M, Lambert LJ, Waddell MB, Mittag T, DeCaprio JA, Schulman BA.; ''Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface.''; PubMed Europe PMC Scholia
  132. Petroski MD, Deshaies RJ.; ''Function and regulation of cullin-RING ubiquitin ligases.''; PubMed Europe PMC Scholia
  133. Skaar JR, Florens L, Tsutsumi T, Arai T, Tron A, Swanson SK, Washburn MP, DeCaprio JA.; ''PARC and CUL7 form atypical cullin RING ligase complexes.''; PubMed Europe PMC Scholia
  134. Sufan RI, Ohh M.; ''Role of the NEDD8 modification of Cul2 in the sequential activation of ECV complex.''; PubMed Europe PMC Scholia
  135. Jeram SM, Srikumar T, Zhang XD, Anne Eisenhauer H, Rogers R, Pedrioli PG, Matunis M, Raught B.; ''An improved SUMmOn-based methodology for the identification of ubiquitin and ubiquitin-like protein conjugation sites identifies novel ubiquitin-like protein chain linkages.''; PubMed Europe PMC Scholia
  136. Scott DC, Sviderskiy VO, Monda JK, Lydeard JR, Cho SE, Harper JW, Schulman BA.; ''Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8.''; PubMed Europe PMC Scholia
  137. Kamitani T, Kito K, Fukuda-Kamitani T, Yeh ET.; ''Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1.''; PubMed Europe PMC Scholia
  138. Hu Q, Guo C, Li Y, Aronow BJ, Zhang J.; ''LMO7 mediates cell-specific activation of the Rho-myocardin-related transcription factor-serum response factor pathway and plays an important role in breast cancer cell migration.''; PubMed Europe PMC Scholia
  139. Mao X, Gluck N, Chen B, Starokadomskyy P, Li H, Maine GN, Burstein E.; ''COMMD1 (copper metabolism MURR1 domain-containing protein 1) regulates Cullin RING ligases by preventing CAND1 (Cullin-associated Nedd8-dissociated protein 1) binding.''; PubMed Europe PMC Scholia
  140. Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T.; ''The role of cullin 5-containing ubiquitin ligases.''; PubMed Europe PMC Scholia
  141. Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, Chai N, Wu J, Deng H, Wang HR, Cao Y, Zhao F, Cui Y, Wang J, He F, Zhang L.; ''The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis.''; PubMed Europe PMC Scholia
  142. Starokadomskyy P, Gluck N, Li H, Chen B, Wallis M, Maine GN, Mao X, Zaidi IW, Hein MY, McDonald FJ, Lenzner S, Zecha A, Ropers HH, Kuss AW, McGaughran J, Gecz J, Burstein E.; ''CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling.''; PubMed Europe PMC Scholia
  143. den Besten W, Verma R, Kleiger G, Oania RS, Deshaies RJ.; ''NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway.''; PubMed Europe PMC Scholia
  144. Li QZ, Wang CY, Shi JD, Ruan QG, Eckenrode S, Davoodi-Semiromi A, Kukar T, Gu Y, Lian W, Wu D, She JX.; ''Molecular cloning and characterization of the mouse and human TUSP gene, a novel member of the tubby superfamily.''; PubMed Europe PMC Scholia
  145. Katayama K, Noguchi K, Sugimoto Y.; ''FBXO15 regulates P-glycoprotein/ABCB1 expression through the ubiquitin--proteasome pathway in cancer cells.''; PubMed Europe PMC Scholia
  146. Lipkowitz S, Weissman AM.; ''RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis.''; PubMed Europe PMC Scholia
  147. Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, Najafov A, Liu M, Li Y, Han X, Xiao J, Jin Z, Peng T, Gao Y, Cai Y, Qi C, Zhang Q, Sun A, Lipinski M, Zhu H, Xiong Y, Pandolfi PP, Li H, Yu Q, Yuan J.; ''G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L.''; PubMed Europe PMC Scholia
  148. Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, Hipp MS, Groettrup M.; ''The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114664view16:13, 25 January 2021ReactomeTeamReactome version 75
113112view11:17, 2 November 2020ReactomeTeamReactome version 74
112346view15:27, 9 October 2020ReactomeTeamReactome version 73
101246view11:14, 1 November 2018ReactomeTeamreactome version 66
100785view20:41, 31 October 2018ReactomeTeamreactome version 65
100327view19:18, 31 October 2018ReactomeTeamreactome version 64
99873view16:01, 31 October 2018ReactomeTeamreactome version 63
99430view14:36, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93621view11:29, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
26S proteasomeComplexR-HSA-68819 (Reactome)
2xHP-EPAS1 ProteinQ99814 (Uniprot-TrEMBL)
2xHP-HIF1A ProteinQ16665 (Uniprot-TrEMBL)
AMPMetaboliteCHEBI:16027 (ChEBI)
ANKRD9 ProteinQ96BM1 (Uniprot-TrEMBL)
ASB1 ProteinQ9Y576 (Uniprot-TrEMBL)
ASB10 ProteinQ8WXI3 (Uniprot-TrEMBL)
ASB11 ProteinQ8WXH4 (Uniprot-TrEMBL)
ASB12 ProteinQ8WXK4 (Uniprot-TrEMBL)
ASB13 ProteinQ8WXK3 (Uniprot-TrEMBL)
ASB14 ProteinA6NK59 (Uniprot-TrEMBL)
ASB15 ProteinQ8WXK1 (Uniprot-TrEMBL)
ASB16 ProteinQ96NS5 (Uniprot-TrEMBL)
ASB17 ProteinQ8WXJ9 (Uniprot-TrEMBL)
ASB18 ProteinQ6ZVZ8 (Uniprot-TrEMBL)
ASB2 ProteinQ96Q27 (Uniprot-TrEMBL)
ASB3 ProteinQ9Y575 (Uniprot-TrEMBL)
ASB4 ProteinQ9Y574 (Uniprot-TrEMBL)
ASB5 ProteinQ8WWX0 (Uniprot-TrEMBL)
ASB6 ProteinQ9NWX5 (Uniprot-TrEMBL)
ASB7 ProteinQ9H672 (Uniprot-TrEMBL)
ASB8 ProteinQ9H765 (Uniprot-TrEMBL)
ASB9 ProteinQ96DX5 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:30616 (ChEBI)
AcM-UBE2F ProteinQ969M7 (Uniprot-TrEMBL)
AcM-UBE2F:NEDD8-UBA3:NAE1:NEDD8ComplexR-HSA-8951762 (Reactome)
AcM-UBE2FProteinQ969M7 (Uniprot-TrEMBL)
AcM-UBE2M ProteinP61081 (Uniprot-TrEMBL)
AcM-UBE2M:NEDD8-UBA3:NAE1:NEDD8ComplexR-HSA-8951749 (Reactome)
AcM-UBE2MProteinP61081 (Uniprot-TrEMBL)
BIRC5ProteinO15392 (Uniprot-TrEMBL)
BTBD1 ProteinQ9H0C5 (Uniprot-TrEMBL)
BTBD6 ProteinQ96KE9 (Uniprot-TrEMBL)
BTRC ProteinQ9Y297 (Uniprot-TrEMBL)
C111-AcM-UBE2M-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
C116-AcM-UBE2F-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
C237-UBA3-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
CAND1 ProteinQ86VP6 (Uniprot-TrEMBL)
CAND1ProteinQ86VP6 (Uniprot-TrEMBL)
CCDC22 ProteinO60826 (Uniprot-TrEMBL)
CCDC8 ProteinQ9H0W5 (Uniprot-TrEMBL)
CCNF ProteinP41002 (Uniprot-TrEMBL)
CISH ProteinQ9NSE2 (Uniprot-TrEMBL)
COMMD1 ProteinQ8N668 (Uniprot-TrEMBL)
COMMD10 ProteinQ9Y6G5 (Uniprot-TrEMBL)
COMMD2 ProteinQ86X83 (Uniprot-TrEMBL)
COMMD3 ProteinQ9UBI1 (Uniprot-TrEMBL)
COMMD4 ProteinQ9H0A8 (Uniprot-TrEMBL)
COMMD5 ProteinQ9GZQ3 (Uniprot-TrEMBL)
COMMD6 ProteinQ7Z4G1 (Uniprot-TrEMBL)
COMMD7 ProteinQ86VX2 (Uniprot-TrEMBL)
COMMD8 ProteinQ9NX08 (Uniprot-TrEMBL)
COMMD9 ProteinQ9P000 (Uniprot-TrEMBL)
COMMDs:CCDC22ComplexR-HSA-8955646 (Reactome)
COMMDs:CCDC22ComplexR-HSA-8955650 (Reactome)
COP9 signalosomeComplexR-HSA-5697024 (Reactome)
COP9ComplexR-HSA-416968 (Reactome)
COPS2 ProteinP61201 (Uniprot-TrEMBL)
COPS3 ProteinQ9UNS2 (Uniprot-TrEMBL)
COPS4 ProteinQ9BT78 (Uniprot-TrEMBL)
COPS5 ProteinQ92905 (Uniprot-TrEMBL)
COPS6 ProteinQ7L5N1 (Uniprot-TrEMBL)
COPS7A ProteinQ9UBW8 (Uniprot-TrEMBL)
COPS7B ProteinQ9H9Q2 (Uniprot-TrEMBL)
COPS8 ProteinQ99627 (Uniprot-TrEMBL)
CRL

E3 ubiquitin ligase

complex:COMMDs:CCDC22:DCUN1Ds
ComplexR-HSA-8956019 (Reactome)
CRL

E3 ubiquitin

ligase:COMMDs:CCDC22
ComplexR-HSA-8955229 (Reactome)
CRL E3 ubiquitin ligase:CAND1ComplexR-HSA-8955224 (Reactome)
CRL E3 ubiquitin ligasesComplexR-HSA-8955222 (Reactome)
CRL1

E3 ubiquitin ligase

complex:MyrG-DCUN1D3
ComplexR-HSA-8956203 (Reactome)
CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22
ComplexR-HSA-8955230 (Reactome)
CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1D1,2,4,5
ComplexR-HSA-8955960 (Reactome)
CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22
ComplexR-HSA-8955268 (Reactome)
CRL4 E3 ubiquitin ligase:CAND1ComplexR-HSA-8955244 (Reactome)
CRL5

E3 ubiquitin

ligase:COMMDs:CCDC22
ComplexR-HSA-8955216 (Reactome)
CUL1 ProteinQ13616 (Uniprot-TrEMBL)
CUL2 ProteinQ13617 (Uniprot-TrEMBL)
CUL3 ProteinQ13618 (Uniprot-TrEMBL)
CUL4A ProteinQ13619 (Uniprot-TrEMBL)
CUL4B ProteinQ13620 (Uniprot-TrEMBL)
CUL5 ProteinQ93034 (Uniprot-TrEMBL)
CUL7 ProteinQ14999 (Uniprot-TrEMBL)
CUL7:CCDC8:OBSL1ComplexR-HSA-8955945 (Reactome)
CUL9 ProteinQ8IWT3 (Uniprot-TrEMBL)
CUL9:RBX1ComplexR-HSA-8855013 (Reactome)
DCAF10 ProteinQ5QP82 (Uniprot-TrEMBL)
DCAF11 ProteinQ8TEB1 (Uniprot-TrEMBL)
DCAF13 ProteinQ9NV06 (Uniprot-TrEMBL)
DCAF16 ProteinQ9NXF7 (Uniprot-TrEMBL)
DCAF17 ProteinQ5H9S7 (Uniprot-TrEMBL)
DCAF4 ProteinQ8WV16 (Uniprot-TrEMBL)
DCAF5 ProteinQ96JK2 (Uniprot-TrEMBL)
DCAF6 ProteinQ58WW2 (Uniprot-TrEMBL)
DCAF7 ProteinP61962 (Uniprot-TrEMBL)
DCAF8 ProteinQ5TAQ9 (Uniprot-TrEMBL)
DCUN1D1 ProteinQ96GG9 (Uniprot-TrEMBL)
DCUN1D1,2,4,5ComplexR-HSA-8952551 (Reactome)
DCUN1D2 ProteinQ6PH85 (Uniprot-TrEMBL)
DCUN1D3 ProteinQ8IWE4 (Uniprot-TrEMBL)
DCUN1D3 mRNA ProteinENST00000324344 (Ensembl)
DCUN1D3 mRNARnaENST00000324344 (Ensembl)
DCUN1D4 ProteinQ92564 (Uniprot-TrEMBL)
DCUN1D5 ProteinQ9BTE7 (Uniprot-TrEMBL)
DCUN1DsComplexR-HSA-8952553 (Reactome)
DDA1 ProteinQ9BW61 (Uniprot-TrEMBL)
DDB1 ProteinQ16531 (Uniprot-TrEMBL)
DDB2 ProteinQ92466 (Uniprot-TrEMBL)
DTL ProteinQ9NZJ0 (Uniprot-TrEMBL)
ELOB ProteinQ15370 (Uniprot-TrEMBL)
ELOC ProteinQ15369 (Uniprot-TrEMBL)
ERCC8 ProteinQ13216 (Uniprot-TrEMBL)
FBXL12 ProteinQ9NXK8 (Uniprot-TrEMBL)
FBXL13 ProteinQ8NEE6 (Uniprot-TrEMBL)
FBXL14 ProteinQ8N1E6 (Uniprot-TrEMBL)
FBXL15 ProteinQ9H469 (Uniprot-TrEMBL)
FBXL16 ProteinQ8N461 (Uniprot-TrEMBL)
FBXL18 ProteinQ96ME1 (Uniprot-TrEMBL)
FBXL19 ProteinQ6PCT2 (Uniprot-TrEMBL)
FBXL20 ProteinQ96IG2 (Uniprot-TrEMBL)
FBXL21 ProteinQ9UKT6 (Uniprot-TrEMBL)
FBXL22 ProteinQ6P050 (Uniprot-TrEMBL)
FBXL3 ProteinQ9UKT7 (Uniprot-TrEMBL)
FBXL4 ProteinQ9UKA2 (Uniprot-TrEMBL)
FBXL5 ProteinQ9UKA1 (Uniprot-TrEMBL)
FBXL7 ProteinQ9UJT9 (Uniprot-TrEMBL)
FBXL8 ProteinQ96CD0 (Uniprot-TrEMBL)
FBXO10 ProteinQ9UK96 (Uniprot-TrEMBL)
FBXO11 ProteinQ86XK2 (Uniprot-TrEMBL)
FBXO15 ProteinQ8NCQ5 (Uniprot-TrEMBL)
FBXO17 ProteinQ96EF6 (Uniprot-TrEMBL)
FBXO2 ProteinQ9UK22 (Uniprot-TrEMBL)
FBXO21 ProteinO94952 (Uniprot-TrEMBL)
FBXO22 ProteinQ8NEZ5 (Uniprot-TrEMBL)
FBXO27 ProteinQ8NI29 (Uniprot-TrEMBL)
FBXO30 ProteinQ8TB52 (Uniprot-TrEMBL)
FBXO31 ProteinQ5XUX0 (Uniprot-TrEMBL)
FBXO32 ProteinQ969P5 (Uniprot-TrEMBL)
FBXO4 ProteinQ9UKT5 (Uniprot-TrEMBL)
FBXO40 ProteinQ9UH90 (Uniprot-TrEMBL)
FBXO41 ProteinQ8TF61 (Uniprot-TrEMBL)
FBXO44 ProteinQ9H4M3 (Uniprot-TrEMBL)
FBXO6 ProteinQ9NRD1 (Uniprot-TrEMBL)
FBXO7 ProteinQ9Y3I1 (Uniprot-TrEMBL)
FBXO9 ProteinQ9UK97 (Uniprot-TrEMBL)
FBXW10 ProteinQ5XX13 (Uniprot-TrEMBL)
FBXW11 ProteinQ9UKB1 (Uniprot-TrEMBL)
FBXW12 ProteinQ6X9E4 (Uniprot-TrEMBL)
FBXW2 ProteinQ9UKT8 (Uniprot-TrEMBL)
FBXW4 ProteinP57775 (Uniprot-TrEMBL)
FBXW5 ProteinQ969U6 (Uniprot-TrEMBL)
FBXW7 ProteinQ969H0 (Uniprot-TrEMBL)
FBXW8 ProteinQ8N3Y1 (Uniprot-TrEMBL)
FBXW9 ProteinQ5XUX1 (Uniprot-TrEMBL)
FEM1A ProteinQ9BSK4 (Uniprot-TrEMBL)
FEM1B ProteinQ9UK73 (Uniprot-TrEMBL)
FEM1C ProteinQ96JP0 (Uniprot-TrEMBL)
G76-NEDD8-C111-AcM-UBE2M ProteinP61081 (Uniprot-TrEMBL)
G76-NEDD8-C116-AcM-UBE2F ProteinQ969M7 (Uniprot-TrEMBL)
G76-NEDD8-C237-UBA3 ProteinQ8TBC4 (Uniprot-TrEMBL)
G76-NEDD8-K1881-CUL9 ProteinQ8IWT3 (Uniprot-TrEMBL)
G76-NEDD8-K689-CUL2 ProteinQ13617 (Uniprot-TrEMBL)
G76-NEDD8-K705-CUL4A ProteinQ13619 (Uniprot-TrEMBL)
G76-NEDD8-K712-CUL3 ProteinQ13618 (Uniprot-TrEMBL)
G76-NEDD8-K720-CUL1 ProteinQ13616 (Uniprot-TrEMBL)
G76-NEDD8-K724-CUL5 ProteinQ93034 (Uniprot-TrEMBL)
G76-NEDD8-K859-CUL4B ProteinQ13620 (Uniprot-TrEMBL)
GAN ProteinQ9H2C0 (Uniprot-TrEMBL)
GPS1 ProteinQ13098 (Uniprot-TrEMBL)
H2OMetaboliteCHEBI:15377 (ChEBI)
HP-HIF3A ProteinQ9Y2N7 (Uniprot-TrEMBL)
K1881-CUL9-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
K689-CUL2-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
K705-CUL4A-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
K712-CUL3-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
K720-CUL1-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
K724-CUL5-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
K859-CUL4B-G76-NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
KBTBD13 ProteinC9JR72 (Uniprot-TrEMBL)
KBTBD6 ProteinQ86V97 (Uniprot-TrEMBL)
KBTBD7 ProteinQ8WVZ9 (Uniprot-TrEMBL)
KBTBD8 ProteinQ8NFY9 (Uniprot-TrEMBL)
KCTD6 ProteinQ8NC69 (Uniprot-TrEMBL)
KCTD7 ProteinQ96MP8 (Uniprot-TrEMBL)
KEAP1 ProteinQ14145 (Uniprot-TrEMBL)
KLHL11 ProteinQ9NVR0 (Uniprot-TrEMBL)
KLHL13 ProteinQ9P2N7 (Uniprot-TrEMBL)
KLHL2 ProteinO95198 (Uniprot-TrEMBL)
KLHL20 ProteinQ9Y2M5 (Uniprot-TrEMBL)
KLHL21 ProteinQ9UJP4 (Uniprot-TrEMBL)
KLHL22 ProteinQ53GT1 (Uniprot-TrEMBL)
KLHL25 ProteinQ9H0H3 (Uniprot-TrEMBL)
KLHL3 ProteinQ9UH77 (Uniprot-TrEMBL)
KLHL41 ProteinO60662 (Uniprot-TrEMBL)
KLHL42 ProteinQ9P2K6 (Uniprot-TrEMBL)
KLHL5 ProteinQ96PQ7 (Uniprot-TrEMBL)
KLHL9 ProteinQ9P2J3 (Uniprot-TrEMBL)
LMO7 ProteinQ8WWI1 (Uniprot-TrEMBL)
LRR1 ProteinQ96L50 (Uniprot-TrEMBL)
LRRC41 ProteinQ15345 (Uniprot-TrEMBL)
MyrG-DCUN1D3 ProteinQ8IWE4 (Uniprot-TrEMBL)
MyrG-DCUN1D3ProteinQ8IWE4 (Uniprot-TrEMBL)
NAE1 ProteinQ13564 (Uniprot-TrEMBL)
NEDD8

CRL E3 ubiquitin

ligases:COMMDs:CCDC22:DCUN1Ds
ComplexR-HSA-8956021 (Reactome)
NEDD8 ProteinQ15843 (Uniprot-TrEMBL)
NEDD8(1-88) ProteinQ15843 (Uniprot-TrEMBL)
NEDD8(77-88)ProteinQ15843 (Uniprot-TrEMBL)
NEDD8,UBD:NUB1:26S proteasomeComplexR-HSA-8956137 (Reactome)
NEDD8,UBDComplexR-HSA-8956136 (Reactome)
NEDD8-AcM-UBE2F:CRL5

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
ComplexR-HSA-8952026 (Reactome)
NEDD8-AcM-UBE2FComplexR-HSA-8951756 (Reactome)
NEDD8-AcM-UBE2M:CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
ComplexR-HSA-8952572 (Reactome)
NEDD8-AcM-UBE2M:CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUND1,2,4,5
ComplexR-HSA-8952580 (Reactome)
NEDD8-AcM-UBE2M:CUL9:RBX1ComplexR-HSA-8955949 (Reactome)
NEDD8-AcM-UBE2MComplexR-HSA-4419896 (Reactome)
NEDD8-AcM-UBE2MComplexR-HSA-8952569 (Reactome)
NEDD8-CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
ComplexR-HSA-8952593 (Reactome)
NEDD8-CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1D1,2,4,5
ComplexR-HSA-8952585 (Reactome)
NEDD8-CRL5

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
ComplexR-HSA-8952024 (Reactome)
NEDD8-CUL9:RBX1:CUL7:CCDC8:OBSL1ComplexR-HSA-8955943 (Reactome)
NEDD8-CUL9:RBX1ComplexR-HSA-8955941 (Reactome)
NEDD8-UBA3:NAE1:NEDD8ComplexR-HSA-8951658 (Reactome)
NEDD8-UBA3:NAE1ComplexR-HSA-8951646 (Reactome)
NEDD8ProteinQ15843 (Uniprot-TrEMBL)
NEURL2 ProteinQ9BR09 (Uniprot-TrEMBL)
NUB1-1 ProteinQ9Y5A7-1 (Uniprot-TrEMBL)
NUB1-2 ProteinQ9Y5A7-2 (Uniprot-TrEMBL)
NUB1ComplexR-HSA-8956132 (Reactome)
OBSL1 ProteinO75147 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
PSMA1 ProteinP25786 (Uniprot-TrEMBL)
PSMA2 ProteinP25787 (Uniprot-TrEMBL)
PSMA3 ProteinP25788 (Uniprot-TrEMBL)
PSMA4 ProteinP25789 (Uniprot-TrEMBL)
PSMA5 ProteinP28066 (Uniprot-TrEMBL)
PSMA6 ProteinP60900 (Uniprot-TrEMBL)
PSMA7 ProteinO14818 (Uniprot-TrEMBL)
PSMA8 ProteinQ8TAA3 (Uniprot-TrEMBL)
PSMB1 ProteinP20618 (Uniprot-TrEMBL)
PSMB10 ProteinP40306 (Uniprot-TrEMBL)
PSMB11 ProteinA5LHX3 (Uniprot-TrEMBL)
PSMB2 ProteinP49721 (Uniprot-TrEMBL)
PSMB3 ProteinP49720 (Uniprot-TrEMBL)
PSMB4 ProteinP28070 (Uniprot-TrEMBL)
PSMB5 ProteinP28074 (Uniprot-TrEMBL)
PSMB6 ProteinP28072 (Uniprot-TrEMBL)
PSMB7 ProteinQ99436 (Uniprot-TrEMBL)
PSMB8 ProteinP28062 (Uniprot-TrEMBL)
PSMB9 ProteinP28065 (Uniprot-TrEMBL)
PSMC1 ProteinP62191 (Uniprot-TrEMBL)
PSMC2 ProteinP35998 (Uniprot-TrEMBL)
PSMC3 ProteinP17980 (Uniprot-TrEMBL)
PSMC4 ProteinP43686 (Uniprot-TrEMBL)
PSMC5 ProteinP62195 (Uniprot-TrEMBL)
PSMC6 ProteinP62333 (Uniprot-TrEMBL)
PSMD1 ProteinQ99460 (Uniprot-TrEMBL)
PSMD10 ProteinO75832 (Uniprot-TrEMBL)
PSMD11 ProteinO00231 (Uniprot-TrEMBL)
PSMD12 ProteinO00232 (Uniprot-TrEMBL)
PSMD13 ProteinQ9UNM6 (Uniprot-TrEMBL)
PSMD14 ProteinO00487 (Uniprot-TrEMBL)
PSMD2 ProteinQ13200 (Uniprot-TrEMBL)
PSMD3 ProteinO43242 (Uniprot-TrEMBL)
PSMD4 ProteinP55036 (Uniprot-TrEMBL)
PSMD5 ProteinQ16401 (Uniprot-TrEMBL)
PSMD6 ProteinQ15008 (Uniprot-TrEMBL)
PSMD7 ProteinP51665 (Uniprot-TrEMBL)
PSMD8 ProteinP48556 (Uniprot-TrEMBL)
PSMD9 ProteinO00233 (Uniprot-TrEMBL)
PSME1 ProteinQ06323 (Uniprot-TrEMBL)
PSME2 ProteinQ9UL46 (Uniprot-TrEMBL)
PSME3 ProteinP61289 (Uniprot-TrEMBL)
PSME4 ProteinQ14997 (Uniprot-TrEMBL)
PSMF1 ProteinQ92530 (Uniprot-TrEMBL)
PUM2 ProteinQ8TB72 (Uniprot-TrEMBL)
PUM2:DCUN1D3 mRNAComplexR-HSA-8956232 (Reactome)
RBBP5 ProteinQ15291 (Uniprot-TrEMBL)
RBBP7 ProteinQ16576 (Uniprot-TrEMBL)
RBX1 ProteinP62877 (Uniprot-TrEMBL)
RBX1:CUL4:DDB1:DCAFsComplexR-HSA-976149 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:UBXN7ComplexR-HSA-8956077 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:hydroxyPro-HIF-alphaComplexR-HSA-8956082 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5ComplexR-HSA-8956074 (Reactome)
RFWD2 ProteinQ8NHY2 (Uniprot-TrEMBL)
RNF7 (RBX2) ProteinQ9UBF6 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SENP8 ProteinQ96LD8 (Uniprot-TrEMBL)
SHFM1 ProteinP60896 (Uniprot-TrEMBL)
SKP1 ProteinP63208 (Uniprot-TrEMBL)
SKP2 ProteinQ13309 (Uniprot-TrEMBL)
SOCS2 ProteinO14508 (Uniprot-TrEMBL)
SOCS3 ProteinO14543 (Uniprot-TrEMBL)
SOCS5 ProteinO75159 (Uniprot-TrEMBL)
SOCS6 ProteinO14544 (Uniprot-TrEMBL)
SPSB1 ProteinQ96BD6 (Uniprot-TrEMBL)
SPSB2 ProteinQ99619 (Uniprot-TrEMBL)
SPSB3 ProteinQ6PJ21 (Uniprot-TrEMBL)
SPSB4 ProteinQ96A44 (Uniprot-TrEMBL)
TULP4 ProteinQ9NRJ4 (Uniprot-TrEMBL)
UBA3 ProteinQ8TBC4 (Uniprot-TrEMBL)
UBA3:NAE1ComplexR-HSA-8951642 (Reactome)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UBD ProteinO15205 (Uniprot-TrEMBL)
UBE2D1 ProteinP51668 (Uniprot-TrEMBL)
UBE2D1,2,3:UbiquitinComplexR-HSA-1234116 (Reactome)
UBE2D1,2,3ComplexR-HSA-1234120 (Reactome)
UBE2D2 ProteinP62837 (Uniprot-TrEMBL)
UBE2D3 ProteinP61077 (Uniprot-TrEMBL)
UBXN7 ProteinO94888 (Uniprot-TrEMBL)
UBXN7ProteinO94888 (Uniprot-TrEMBL)
UCHL3 ProteinP15374 (Uniprot-TrEMBL)
UCHL3,SENP8:NEDD8(1-88)ComplexR-HSA-6782635 (Reactome)
UCHL3,SENP8:NEDD8ComplexR-HSA-6782643 (Reactome)
UCHL3,SENP8ComplexR-HSA-5690783 (Reactome)
UbComplexR-HSA-113595 (Reactome)
VHL ProteinP40337 (Uniprot-TrEMBL)
WDR5 ProteinP61964 (Uniprot-TrEMBL)
WDTC1 ProteinQ8N5D0 (Uniprot-TrEMBL)
WSB1 ProteinQ9Y6I7 (Uniprot-TrEMBL)
WSB2 ProteinQ9NYS7 (Uniprot-TrEMBL)
ZBTB16 ProteinQ05516 (Uniprot-TrEMBL)
hydroxyPro-HIF-alphaComplexR-HSA-1234106 (Reactome)
ub-BIRC5ProteinO15392 (Uniprot-TrEMBL)
ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:NEDD8-CUL2:RBX1:COMMDs:CCDC22:DCUN1D1,2,4,5ComplexR-HSA-8956079 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
26S proteasomeArrowR-HSA-8956184 (Reactome)
26S proteasomeR-HSA-8956140 (Reactome)
AMPArrowR-HSA-8951648 (Reactome)
AMPArrowR-HSA-8951656 (Reactome)
ATPR-HSA-8951648 (Reactome)
ATPR-HSA-8951656 (Reactome)
AcM-UBE2F:NEDD8-UBA3:NAE1:NEDD8ArrowR-HSA-8951766 (Reactome)
AcM-UBE2F:NEDD8-UBA3:NAE1:NEDD8R-HSA-8951764 (Reactome)
AcM-UBE2F:NEDD8-UBA3:NAE1:NEDD8mim-catalysisR-HSA-8951764 (Reactome)
AcM-UBE2FArrowR-HSA-8952044 (Reactome)
AcM-UBE2FR-HSA-8951766 (Reactome)
AcM-UBE2M:NEDD8-UBA3:NAE1:NEDD8ArrowR-HSA-8951751 (Reactome)
AcM-UBE2M:NEDD8-UBA3:NAE1:NEDD8R-HSA-8951661 (Reactome)
AcM-UBE2M:NEDD8-UBA3:NAE1:NEDD8mim-catalysisR-HSA-8951661 (Reactome)
AcM-UBE2MArrowR-HSA-8952618 (Reactome)
AcM-UBE2MArrowR-HSA-8952638 (Reactome)
AcM-UBE2MArrowR-HSA-8956025 (Reactome)
AcM-UBE2MR-HSA-8951751 (Reactome)
BIRC5R-HSA-8956026 (Reactome)
CAND1ArrowR-HSA-8955285 (Reactome)
CAND1ArrowR-HSA-8955289 (Reactome)
CAND1R-HSA-8955241 (Reactome)
CAND1R-HSA-8955245 (Reactome)
COMMDs:CCDC22R-HSA-8955285 (Reactome)
COMMDs:CCDC22R-HSA-8955289 (Reactome)
COP9 signalosomemim-catalysisR-HSA-8956045 (Reactome)
COP9mim-catalysisR-HSA-8956040 (Reactome)
CRL

E3 ubiquitin ligase

complex:COMMDs:CCDC22:DCUN1Ds
ArrowR-HSA-8956040 (Reactome)
CRL

E3 ubiquitin

ligase:COMMDs:CCDC22
ArrowR-HSA-8955289 (Reactome)
CRL E3 ubiquitin ligase:CAND1ArrowR-HSA-8955241 (Reactome)
CRL E3 ubiquitin ligase:CAND1R-HSA-8955289 (Reactome)
CRL E3 ubiquitin ligasesR-HSA-8955241 (Reactome)
CRL1

E3 ubiquitin ligase

complex:MyrG-DCUN1D3
ArrowR-HSA-8956200 (Reactome)
CRL1

E3 ubiquitin ligase

complex:MyrG-DCUN1D3
TBarR-HSA-8952618 (Reactome)
CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22
R-HSA-8952620 (Reactome)
CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22
R-HSA-8956200 (Reactome)
CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1D1,2,4,5
ArrowR-HSA-8956045 (Reactome)
CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22
ArrowR-HSA-8955285 (Reactome)
CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22
R-HSA-8952639 (Reactome)
CRL4 E3 ubiquitin ligase:CAND1ArrowR-HSA-8955245 (Reactome)
CRL4 E3 ubiquitin ligase:CAND1R-HSA-8955285 (Reactome)
CRL5

E3 ubiquitin

ligase:COMMDs:CCDC22
R-HSA-8952039 (Reactome)
CUL7:CCDC8:OBSL1R-HSA-8956050 (Reactome)
CUL9:RBX1R-HSA-8956031 (Reactome)
DCUN1D1,2,4,5R-HSA-8952639 (Reactome)
DCUN1D3 mRNAR-HSA-8956234 (Reactome)
DCUN1DsR-HSA-8952039 (Reactome)
DCUN1DsR-HSA-8952620 (Reactome)
H2OR-HSA-5690808 (Reactome)
MyrG-DCUN1D3ArrowR-HSA-8956234 (Reactome)
MyrG-DCUN1D3R-HSA-8956200 (Reactome)
NEDD8

CRL E3 ubiquitin

ligases:COMMDs:CCDC22:DCUN1Ds
R-HSA-8956040 (Reactome)
NEDD8(77-88)ArrowR-HSA-5690808 (Reactome)
NEDD8,UBD:NUB1:26S proteasomeArrowR-HSA-8956140 (Reactome)
NEDD8,UBD:NUB1:26S proteasomeR-HSA-8956184 (Reactome)
NEDD8,UBDR-HSA-8956140 (Reactome)
NEDD8-AcM-UBE2F:CRL5

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
ArrowR-HSA-8952039 (Reactome)
NEDD8-AcM-UBE2F:CRL5

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
R-HSA-8952044 (Reactome)
NEDD8-AcM-UBE2F:CRL5

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
mim-catalysisR-HSA-8952044 (Reactome)
NEDD8-AcM-UBE2FArrowR-HSA-8951764 (Reactome)
NEDD8-AcM-UBE2FR-HSA-8952039 (Reactome)
NEDD8-AcM-UBE2M:CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
ArrowR-HSA-8952620 (Reactome)
NEDD8-AcM-UBE2M:CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
R-HSA-8952618 (Reactome)
NEDD8-AcM-UBE2M:CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
mim-catalysisR-HSA-8952618 (Reactome)
NEDD8-AcM-UBE2M:CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUND1,2,4,5
ArrowR-HSA-8952639 (Reactome)
NEDD8-AcM-UBE2M:CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUND1,2,4,5
R-HSA-8952638 (Reactome)
NEDD8-AcM-UBE2M:CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUND1,2,4,5
mim-catalysisR-HSA-8952638 (Reactome)
NEDD8-AcM-UBE2M:CUL9:RBX1ArrowR-HSA-8956031 (Reactome)
NEDD8-AcM-UBE2M:CUL9:RBX1R-HSA-8956025 (Reactome)
NEDD8-AcM-UBE2M:CUL9:RBX1mim-catalysisR-HSA-8956025 (Reactome)
NEDD8-AcM-UBE2MArrowR-HSA-8951661 (Reactome)
NEDD8-AcM-UBE2MR-HSA-8952620 (Reactome)
NEDD8-AcM-UBE2MR-HSA-8952639 (Reactome)
NEDD8-AcM-UBE2MR-HSA-8956031 (Reactome)
NEDD8-CRL1

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
ArrowR-HSA-8952618 (Reactome)
NEDD8-CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1D1,2,4,5
ArrowR-HSA-8952638 (Reactome)
NEDD8-CRL4

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1D1,2,4,5
R-HSA-8956045 (Reactome)
NEDD8-CRL5

E3 ubiquitin

ligase:COMMDs:CCDC22:DCUN1Ds
ArrowR-HSA-8952044 (Reactome)
NEDD8-CUL9:RBX1:CUL7:CCDC8:OBSL1ArrowR-HSA-8956050 (Reactome)
NEDD8-CUL9:RBX1:CUL7:CCDC8:OBSL1TBarR-HSA-8956026 (Reactome)
NEDD8-CUL9:RBX1ArrowR-HSA-8956025 (Reactome)
NEDD8-CUL9:RBX1R-HSA-8956050 (Reactome)
NEDD8-CUL9:RBX1mim-catalysisR-HSA-8956026 (Reactome)
NEDD8-UBA3:NAE1:NEDD8ArrowR-HSA-8951656 (Reactome)
NEDD8-UBA3:NAE1:NEDD8R-HSA-8951751 (Reactome)
NEDD8-UBA3:NAE1:NEDD8R-HSA-8951766 (Reactome)
NEDD8-UBA3:NAE1ArrowR-HSA-8951648 (Reactome)
NEDD8-UBA3:NAE1ArrowR-HSA-8951661 (Reactome)
NEDD8-UBA3:NAE1ArrowR-HSA-8951764 (Reactome)
NEDD8-UBA3:NAE1R-HSA-8951656 (Reactome)
NEDD8ArrowR-HSA-8951644 (Reactome)
NEDD8ArrowR-HSA-8956040 (Reactome)
NEDD8ArrowR-HSA-8956045 (Reactome)
NEDD8R-HSA-8951648 (Reactome)
NEDD8R-HSA-8951656 (Reactome)
NUB1ArrowR-HSA-8956184 (Reactome)
NUB1R-HSA-8956140 (Reactome)
PPiArrowR-HSA-8951648 (Reactome)
PPiArrowR-HSA-8951656 (Reactome)
PUM2:DCUN1D3 mRNATBarR-HSA-8956234 (Reactome)
R-HSA-5690808 (Reactome) UCHL3 and SENP8 (DEN1) remove the C-terminal extension of NEDD8 propeptides, exposing a C-terminal Gly residue. UCHL3 can also process ubiquitin (Wada et al. 1998). UCHL3 and SENP8 are probably functionally redundant in NEDD8 processing as deletion of either enzyme does not lead to neddylation defects (Chan et al. 2008, Kurihara et al. 2000).
R-HSA-8951644 (Reactome) After C-terminal processing by UCHL3 or SENP8, mature NEDD8 is released (Wada et al, 1998; Wu et al, 2003).
R-HSA-8951648 (Reactome) NEDD8 is attached via a thioester bond to the catalytic cysteine of its E1 as the first step in its transfer to substrates (Walden et al, 2003). The NEDD8 E1 is a heterodimer consisting of UBA3 and NAE1, and transfers NEDD8 to the E2 enzymes from a 'doubly loaded' state. In the first step, NEDD8 binds to the adenylation site on the NAE1 subunit in conjuction with ATP and Mg2+, generating a covalently modified NEDD8-adenylate conjugate. This conjugation activates the NEDD8 C-terminus for chemical attack by the thiol group of the catalytic cysteine of the UBA3 subunit. Catalysis is likely facilitated by a conformational change in the E1 enzyme. After catalysis, NEDD8 is covalently bound in the E1 catalytic site, leaving the adenylation site free to bind another NEDD8 molecule in the second step, prior to NEDD8 transfer to an E2 enzyme (Walden et al, 2003; Huang et al, 2004; Huang et al, 2005; Huang et al, 2007).
R-HSA-8951656 (Reactome) After covalent attachment of the first NEDD8 molecule to the catalytic cysteine, a second NEDD8 binds to the now-free adenylation site on the UBA3 subunit of UBA3:NAE1. This 'doubly-loaded' E1 enzyme is primed to transfer the covalently-bound NEDD8 to the downstream E2 enzyme (Huang et al, 2005; Huang et al, 2007; reviewed in Enchev et al, 2015). Note that although not depicted here, the second NEDD8 moiety is covalently adenylated at its C-terminal glycine residue at the end of this reaction.
R-HSA-8951661 (Reactome) UBA3:NAE1 transfers NEDD8 to the catalytic cysteine residue of UBE2M. Because two of the three E1-E2 interaction interfaces are created by conformational states present in the doubly-NEDDylated NAE1, transfer of NEDD8 to UBE2M is thought to weaken the interaction between UBA3:NAE1 and UBE2M, contributing to UBE2M release (Walden et al, 2003; Huang et al, 2004; Hunag et al, 2005; Huang et al, 2007).
R-HSA-8951751 (Reactome) When NAE1:UBA3 is doubly loaded with NEDD8 (one molecule covalently attached to the catalytic cysteine and the other bound in the adenylation site), the E1 enzyme is competent to interact with either of its E2 enzymes, UBE2F and UBE2M (also known as UBC12). Three binding interfaces contribute to the interaction of the E1 and E2 enzymes. When doubly neddylated, the "ubiquitin" folding domain of NAE1 reorients and, in conjunction with the adenylation domain, forms a cryptic E2-binding site. The adenylation domain also makes contact with the amino terminus of either E2 enzyme. UBE2M additionally interacts directly with the NEDD8 molecule covalently attached to the E1 catalytic cysteine (Huang et al, 2004; Huang et al, 2007; reviewed in Enchev et al, 2015). UBE2M is the E2 responsible for transfer of NEDD8 to RBX1-containing E3 ligase complexes, such as those formed with cullins 1, 2, 3 and 4. In contrast, UBE2F is the E2 for the CUL5:RBX2-containing E3 ligase (Huang et al, 2009).
R-HSA-8951764 (Reactome) UBA3:NAE1 transfers NEDD8 to the catalytic cysteine residue of UBE2F. Because two of the three E1-E2 interaction interfaces are created by conformational states present in the doubly-NEDDylated NAE1, transfer of NEDD8 to UBE2M is thought to weaken the interaction between UBA3:NAE1 and UBE2F, contributing to UBE2F release (Walden et al, 2003; Huang et al, 2004; Hunag et al, 2005; Huang et al, 2007).
R-HSA-8951766 (Reactome) When NAE1:UBA3 is doubly loaded with NEDD8 (one molecule covalently attached to the catalytic cysteine and the other bound in the adenylation site), the E1 enzyme is competent to interact with either of its E2 enzymes, UBE2F and UBE2M (also known as UBC12). Three binding interfaces contribute to the interaction of the E1 and E2 enzymes. When doubly neddylated, the ubiquitin fold domain of NAE1 reorients and, in conjunction with the adenylation domain, forms a cryptic E2-binding site. The adenylation domain also makes contact with the amino terminus of either E2 enzyme. UBE2M additionally interacts directly with the NEDD8 molecule covalently attached to the E1 catalytic cysteine (Huang et al, 2004; Huang et al, 2007; reviewed in Enchev et al, 2015).
UBE2F is the E2 responsible for the transfer of NEDD8 to the CUL5:RBX2 E3 ligase complex, while UBE2M is specific for RBX1-containing E3 ligase complexes formed with CUL1-4 (Huang et al, 2009; reviewed in Mahon et al, 2014).
R-HSA-8952039 (Reactome) UBE2F is specific for the CUL5:RBX2-containing E3 ligase complex (Huang et al, 2009; Monda et al, 2013). Interaction between UBE2F and the CUL5 E3 complex is facilitated by a DCUN1D (also known as DCNL) scaffold protein, of which there are 5 in human cells (Kim et al, 2008; Kurz et al, 2008; Meyer-Schaller et al, 2009; Monda et al, 2013; Keuss et al, 2016). DCUN1D proteins interact with higher affinity to the N-terminally acetylated forms of UBE2F and UBE2M (Scott et al, 2011; Monda et al, 2013). Although each of the 5 DCUN1D proteins appears to interact with most cullin subtypes, specificity may arise through differences in expression and localization, and DCUN1D3 may play a specialized role in sequestering CRL E3 ligase complexes at the cell membrane (Monda et al, 2013; Keuss et al, 2016; Meyer-Schaller et al, 2009; Huang et al, 2014; reviewed in Enchev et al, 2103). Although in this pathway, COMMD proteins and DCUN1D are shown acting sequentially in the activation of the CRL E3 ligase complex, the relationship between these protein families is not totally clear, as DCUN1D proteins have been identified in complexes that also contain the inhibitor CAND1 (Kim et al, 2008; Huang et al, 2014).
CUL5 RING complexes target a variety of cellular proteins for ubiquitination and degradation, including receptor and non-receptor tyrosine kinases, signaling molecules transcriptional regulators (reviewed in Okumura et al, 2016). CRL5 complexes are also hijacked by viruses such as HIV and HPV, among others. Interaction with viral proteins redirects the ubiquitin ligase complex, targeting host proteins such as immune factors and in this way promoting viral propagation (reveiwed in Mahon et al, 2014).
R-HSA-8952044 (Reactome) UBE2F transfers NEDD8 to lysine 724 of CUL5 in the E3 ligase complex (Duda et al, 2008). Neddylation increases the ubiquitination activity of the E3 complex towards its target, and prevents binding of the CUL5 complex with the CAND1 inhibitor (Hori et al, 1999; Duda et al, 2008; Kelsall et al, 2013). Targets of CUL5 RING complexes include a variety of cellular proteins including receptor and non-receptor tyrosine kinases, signaling molecules transcriptional regulators (reviewed in Okamura et al, 2016). CRL5 complexes are also hijacked by viruses such as HIV, HPV and adenovirus among others. Interaction with viral proteins redirects the ubiquitin ligase complex to target host proteins to promote conditions that favor viral propagation (Harada et al, 2002; Mehle et al, 2004; reviewed in Mahon et al, 2014).
R-HSA-8952618 (Reactome) UBE2M transfers NEDD8 to lysine 720 of CUL1 in the CRL E3 ubiquitin ligase complex (Hori et al, 1999; Duda et al, 2008). Neddylation increases the ubiquitination activity of the E3 complex towards its targets, and prevents binding of the CUL1 complex with the CAND1 inhibitor (Hori et al, 1999; Goldenberg et al, 2004; Duda et al, 2008; Kelsall et al, 2013; Scott et al, 2016). Targets of CUL1 RING complexes include a variety of cellular proteins including regulators of transcription and cell cycle progression, among others (reviewed in Lipkowitz and Weissman, 2011). CRL1 complexes are also hijacked by viruses, redirecting the ubiquitin ligase complex to target host proteins (reviewed in Mahon et al, 2014).
R-HSA-8952620 (Reactome) UBE2M is the E2 for CRL complexes containing cullin 1, 2, 3 and 4 (Huang et al, 2009; Monda et al, 2013). Interaction between UBE2M and the CUL1 E3 complex is facilitated by a DCUN1D (also known as DCNL) scaffold protein, of which there are 5 in human cells (Kim et al, 2008; Kurz et al, 2008; Meyer-Schaller et al, 2009; Monda et al, 2013; Keuss et al, 2016). DCUN1D proteins interact with higher affinity to the N-terminally acetylated forms of UBE2F and UBE2M (Scott et al, 2011; Monda et al, 2013). Although each of the 5 DCUN1D proteins appears to interact with most cullin subtypes, specificity may arise through differences in expression and localization, and DCUN1D3 may play a specialized role in sequestering CRL E3 ligase complexes at the cell membrane (Monda et al, 2013; Keuss et al, 2016; Meyer-Schaller et al, 2009; Huang et al, 2014; reviewed in Enchev et al, 2103). Although in this pathway, COMMD proteins and DCUN1D are shown acting sequentially in the activation of the CRL E3 ligase complex, the relationship between these protein families is not totally clear, as DCUN1D proteins have been identified in complexes that also contain the inhibitor CAND1 (Kim et al, 2008; Huang et al, 2014). Target specificity of the CRL1 complex is directed by the nature of the F box substrate recognition protein, of which there are more than 60 in humans. Identified targets of CRL1-containing complexes include signaling molecules, transcriptional regulators and regulators of cell cycle progression, among others (reviewed in Gutierrez and Ronai, 2006; Lipkowitz and Weissman, 2011). CRL1 complexes are also hijacked by a number of viruses, redirecting the ubiquitin ligase complex to target host proteins and in this way promoting viral propagation (reveiwed in Mahon et al, 2014).
R-HSA-8952638 (Reactome) UBE2M transfers NEDD8 to lysine 705 of CUL4A and lysine 859 of CUL4B (Hori et al, 1999; Duda et al, 2008). Neddylation increases the ubiquitination activity of the E3 complex towards its targets, and prevents binding of the CUL4 complex with the CAND1 inhibitor (Hori et al, 1999; Duda et al, 2008). CRL4 complexes ubiquitinate target proteins involved in processes such as cell cycle progression, DNA repair and replication, cell growth and metabolism (reviewed in Hannah and Zhou, 2015; Sang et al, 2015). CRL4 complexes are also hijacked by a number of viruses, redirecting the ubiquitin ligase complex to target host proteins and in this way promoting viral propagation (reveiwed in Mahon et al, 2014). Note that because many of the key CRL4 ubiquitin targets are nuclear, these complexes are depicted in the nucleus. Cytoplasmic targets have also been identified, however (reviewed in Hannah and Zhou, 2015).
R-HSA-8952639 (Reactome) UBE2M is the E2 for CRL complexes containing cullin 1, 2, 3 and 4 (Huang et al, 2009; Monda et al, 2013). Interaction between UBE2M and the CUL4A and 4B E3 complex is facilitated by a DCUN1D (also known as DCNL) scaffold protein, of which there are 5 in human cells (Kim et al, 2008; Kurz et al, 2008; Meyer-Schaller et al, 2009; Monda et al, 2013; Keuss et al, 2016). DCUN1D proteins interact with higher affinity to the N-terminally acetylated forms of UBE2F and UBE2M (Scott et al, 2011; Monda et al, 2013). Although each of the 5 DCUN1D proteins appears to interact with most cullin subtypes, specificity may arise through differences in expression and localization, and DCUN1D3 may play a specialized role in sequestering CRL E3 ligase complexes at the cell membrane (Monda et al, 2013; Keuss et al, 2016; Meyer-Schaller et al, 2009; Huang et al, 2014; reviewed in Enchev et al, 2103). Although in this pathway, COMMD proteins and DCUN1D are shown acting sequentially in the activation of the CRL E3 ligase complex, the relationship between these protein families is not totally clear, as DCUN1D proteins have been identified in complexes that also contain the inhibitor CAND1 (Kim et al, 2008; Huang et al, 2014).
CRL4 complexes ubiquitinate target proteins involved in processes such as cell cycle progression, DNA repair and replication, cell growth and metabolism (reviewed in Hannah and Zhou, 2015; Sang et al, 2015). CRL4 complexes are also hijacked by a number of viruses, redirecting the ubiquitin ligase complex to target host proteins and in this way promoting viral propagation (reviewed in Mahon et al, 2014). Note that because many of the key CRL4 ubiquitin targets are nuclear, these complexes are depicted in the nucleus. Cytoplasmic targets have also been identified, however (reviewed in Hannah and Zhou, 2015).
R-HSA-8955241 (Reactome) CRL complexes consist of a cullin protein (CUL1, 2, 3, 4A, 4B, 5, 7 and 9 in humans) and a RING box protein (RBX1 or 2) in addition to one or more substrate binding proteins that confer substrate specificity to the complex (reviewed in Petroski and Deshaies, 2005; Lipkowitz and Weismann, 2011). CRL complexes can be classes according to their cullin proteins: CRL1 complexes (also called SCF complexes) contain CUL1, CRL2 complexes contain CUL2, CLR complexes contain CUL3, and CLR5 complexes contain CUL5. Cullin-associated NEDD8-dissociated protein 1 (CAND1, TIP120) is a key assembly factor of Cullin E3 RING ubiquitin ligase (CRL) complexes, acting as a substrate receptor exchange factor. CAND1 binds to the inactive, deneddylated CRL complex through the conserved amino-terminal 3 Cullin repeats of the cullin subunit, which are also required for binding of the substrate binding proteins (Zheng et al, 2002a, b; Liu et al 2002; Min et al, 2003; Goldenberg et al, 2004). By disrupting the substrate binding protein interaction interface on the cullin proteins, CAND1 binding destabilizes the CRL complex, allowing exchange of the substrate binding protein (Schmidt et al, 2009; Pierce et al, 2013; Zemla et al, 2013; Wu et al, 2013). Neddylation of the CRL complex results in a conformational change that eliminates the CAND1 binding site, thereby promoting the active CRL ubiquitin ligase complex (Duda et al, 2008; Saha and Deshaies, 2008; Boh et al, 2011; Yu et al, 2015).

R-HSA-8955245 (Reactome) CRL complexes consist of a cullin protein (CUL1, 2, 3, 4A, 4B, 5, 7 and 9 in humans) and a RING box protein (RBX1 or 2) in addition to one or more substrate binding proteins that confer substrate specificity to the complex (reviewed in Petroski and Deshaies, 2005; Lipkowitz and Weismann, 2011). CRL4 complexes contain CUL4A or CUL4B. Cullin-associated NEDD8-dissociated protein 1 (CAND1, TIP120) is a key assembly factor of Cullin E3 RING ubiquitin ligase (CRL) complexes, acting as a substrate receptor exchange factor. CAND1 binds to the inactive, deneddylated CRL complex through the conserved amino-terminal 3 Cullin repeats of the cullin subunit, which are also required for binding of the substrate binding proteins (Zheng et al, 2002a, b; Liu et al 2002; Min et al, 2003; Goldenberg et al, 2004). In this way, CAND1 binding destabilizes the CRL complex, allowing exchange of the substrate binding protein (Schmidt et al, 2009; Pierce et al, 2013). Neddylation of the CRL complex results in a conformational change that eliminates the CAND1 binding site (Duda et al, 2008; Saha and Deshaies, 2008; Boh et al, 2011).
R-HSA-8955285 (Reactome) COMMD1 is a member of a family of 10 copper metabolism MURR1 domain-containing proteins that have pleiotropic roles in copper metabolism, NF kappa beta-mediated transcription, the hypoxic response and electrolyte transport (Burstein et al, 2005; reviewed in Maine and Burstein, 2007). COMMD proteins have differential tissue and expression levels, but appear to have partially overlapping function and form homo- and heterodimers through the shared COMM domain (Burstein et al, 2005). COMMD1 and other family members interact with the cullin subunit of CRL E3 ubiquitin ligase complexes, as well as with CCDC22, a protein implicated in X-linked intellectual disability that may regulate COMMD localization. Together, COMMD proteins and CCDC22 activate the ubiquitin ligase activity of CRL complexes by displacing the CAND1 inhibitor (Burstein et al, 2005; Maine et al, 2007; Mao et al, 2011; Starokadomskyy et al, 2013;Phillips-Krawczak et al, 2015). The specificity of interaction between various COMMD and CUL family members may serve to fine tune the regulation of CRL activation, although these details remain to be determined.
R-HSA-8955289 (Reactome) COMMD1 is a member of a family of 10 copper metabolism MURR1 domain-containing proteins that have pleiotropic roles in copper metabolism, NF kappa beta-mediated transcription, the hypoxic response and electrolyte transport (Burstein et al, 2005; reviewed in Maine and Burstein, 2007). COMMD proteins have differential tissue and expression levels, but appear to have partially overlapping function and form homo- and heterodimers through the shared COMM domain (Burstein et al, 2005). COMMD1 and other family members interact with the cullin subunit of CRL E3 ubiquitin ligase complexes, as well as with CCDC22, a protein implicated in X-linked intellectual disability that may regulate COMMD localization. Together, COMMD proteins and CCDC22 activate the ubiquitin ligase activity of CRL complexes by displacing the CAND1 inhibitor (Burstein et al, 2005; Maine et al, 2007; Mao et al, 2011; Starokadomskyy et al, 2013;Phillips-Krawczak et al, 2015). The specificity of interaction between various COMMD and CUL family members may serve to fine tune the regulation of CRL activation, although these details remain to be determined.
R-HSA-8956025 (Reactome) UBE2M transfers NEDD8 to lysine 1881 of CUL9 (Skaar et al, 2007; Li et al, 2014). Neddylation increases the ubiquitination activity of the E3 complex towards its targets (Hori et al, 1999; Duda et al, 2008). One defined target of CUL9 is BIRC5 (also known as Survivin), which has roles in cellular proliferation, inhibition of apoptosis and maintenance of genome stability (Zhao et al, 2000; Watanabe, 2010). CUL9-mediated ubiquitination of BIRC5 is negatively regulated by the 3M complex, consisting of CUL7, CCDC8 and OBSL1 (Li et al, 2014).
R-HSA-8956026 (Reactome) One defined target of CUL9 ubiquitin ligase is BIRC5 (also known as Survivin), which has roles in cellular proliferation, inhibition of apoptosis and maintenance of genome stability (Zhao et al, 2000; Watanabe, 2010). Deletion of CUL9 leads to polyploidy, abnormal nuclear morphology and DNA damage and is accompanied by an increase in survivin protein levels (Li et al, 2014). CUL9-mediated ubiquitination of BIRC5 is negatively regulated by the 3M complex, consisting of CUL7, CCDC8 and OBSL1 (Li et al, 2014; Yan et al, 2014). This CUL7-dependent inhibition of CUL9 ubiquitin ligase activity is promoted by heterodimerization between CUL7 and CUL9 (Li et al, 2014).
R-HSA-8956031 (Reactome) CUL9 (also known as PARC for p53-associated PARkin-like cytoplasmic protein) is an atypical cullin that has been shown to form a ubiquitin ligase complex with RBX1, although other components of the putative CRL9 complex have not yet been identified (Skaar et al, 2007; Li et al, 2014). CUL9:RBX1 is neddylated in vivo, likely through the UBE2M E2 although this hasn't been directly demonstrated (Skaar et al, 2007).
CUL9 is 60% identical to CUL7, another atypical mammalian cullin family member, but more distantly related to CUL1, 2, 3, 4A,4B and 5. CUL9 and CUL7 have been shown to form a heterodimer in vivo, and both interact with p53 (Skaar et al, 2007; Andrews et al, 2006; Nikolaev et al, 2003). CUL9 ubiquitinates BIRC5 (also known as Survivin), a protein with roles in cellular proliferation and inhibition of apoptosis. CUL9-mediated ubiquitination of BIRC5 is inhibited by the 3M complex, which consists of CUL7, CCDC8 and OBSL1 (Li et al, 2014).
R-HSA-8956040 (Reactome) The COP9 signalosome (also known as CSN) is a highly conserved multi-subunit enzymatic complex that plays a role as the sole CRL ubiquitin ligase deneddylase. Deneddylation decreases ubiquitin ligase activity of CRL complexes, and is required for the sCAND1 binding to the cullin subunit. The CSN is required for stabilization of CRL substrate receptors: without the CSN, CRL complexes are "hyper-active" and promote their own degradation through autoubiquitination. Both the CSN and CAND1 allow remodeling of the ubiquitin ligase complex through exchange of the ubiquitin substrate specific receptors (Cope et al, 2006; Denti et al, 2006; Peth et al, 2007; Schmidt et al, 2009; Enchev et al, 2012; Pierce et al, 2013; Zemla et al, 2013; Wu et al, 2013, reviewed in Wei et al, 2008). Deregulation of the CRL-CSN pathway causes misregulation of numerous important cellular targets and has been implicated in the development of some cancers (reviewed in Gummlich et al, 2013).
R-HSA-8956045 (Reactome) The COP9 signalosome (also known as CSN) is a highly conserved multi-subunit enzymatic complex that plays a role as the sole CRL ubiquitin ligase deneddylase. Deneddylation decreases ubiquitin ligase activity of CRL complexes, and is required for the subsequent binding of CAND1 to the cullin subunit. The CSN is required for stabilization of CRL substrate receptors: without the CSN, CRL complexes are "hyper-active" and promote their own degradation through autoubiquitination. Both the CSN and CAND1 allow remodeling of the ubiquitin ligase complex through exchange of the ubiquitin substrate specific receptors (Cope et al, 2006; Denti et al, 2006; Peth et al, 2007; Schmidt et al, 2009; Enchev et al, 2012; Pierce et al, 2013; Zemla et al, 2013; Wu et al, 2013, reviewed in Wei et al, 2008). Deregulation of the CRL-CSN pathway causes misregulation of numerous important cellular targets and has been implicated in the development of some cancers (reviewed in Gummlich et al, 2013).
R-HSA-8956050 (Reactome) CUL7, CCDC8 and OBSL1 are part of a 3M complex that has roles in maintenace of genome stability and microtubule dynamics (Li et al, 2014; Yan et al, 2014). The 3M complex inhibits CUL9-mediated ubiquitination of BIRC5 through the formation of a CUL9:CUL7 heterodimer (Skaar et al, 2007; Li et al, 2014)
R-HSA-8956099 (Reactome) The best characterized CRL2 substrate binding F-box protein is the von Hippel- Lindau (VHL) tumor suppressor, which targets the alpha subunit of hypoxia inducible factor (HIFalpha) for ubiquitination and degradation through VCP/p97 and the 26 S proteasome (Sufan and Ohh, 2006; Heir et al, 2013; reviewed in Cai and Yang, 2016). UBXN7 is an adapter that binds to neddylated CUL2 and interferes with the ability of the CUL2:EloB:EloC:VHL E3 ubiquitin ligase complex to ubiquitinate HIF alpha, in this way causing accumulation of HIF alpha (Bandau et al, 2012; Den Besten et al, 2012)
R-HSA-8956103 (Reactome) The best characterized CRL2 substrate binding F-box protein is the von Hippel- Lindau (VHL) tumor suppressor, which targets the alpha subunit of hypoxia inducible factor (HIFalpha) for ubiquitination and degradation through VCP/p97 and the 26 S proteasome (Sufan and Ohh, 2006; Heir et al, 2013; reviewed in Cai and Yang, 2016). UBXN7 is an adapter that binds to neddylated CUL2 and interferes with the ability of the CUL2:EloB:EloC:VHL E3 ubiquitin ligase complex to ubiquitinate HIF alpha, in this way causing accumulation of HIF alpha (Bandau et al, 2012; Den Besten et al, 2012)
R-HSA-8956106 (Reactome) VHL is the substrate binding protein of a CUL2-based E3 ubiquitin ligase complex that conjugates ubiquitin to hydroxylated HIF-alpha (Iwai et al. 1999, Kamura et al. 2000, Ohh et al. 2000, Groulx and Lee 2002, Maynard et al. 2003). VHL is predominantly cytosolic and shuttles between the cytosol and the nucleus (Lee et al. 1999, Groulx and Lee 2002). Ubiquitination and degradation of HIF-alpha can occur in both the cytosol and the nucleus (Berra et al. 2001). Upon return to normoxia from hypoxia most ubiquitinated HIF-alpha is nuclear (Groulx and Lee 2002).
R-HSA-8956140 (Reactome) NEDD8 ultimate buster 1 (NUB1) is a negative regulator of the NEDD8 conjugation system. NUB1 interacts with NEDD8 and another ubiquitin-like modifier, UBD (also known as FAT10) to promote their degradation and that of their conjugated proteins (Kito et al, 2001; Kamitani et al, 2001; Hipp et al, 2004; Schmidtke et al, 2006). NUB1 interacts directly with both NEDD8/UBD and with PMSD4, a subunit of the 19S cap of the 26S proteasome, through a ubiquitin-like domain (UBL), and in this way promotes the contact between the proteasome and its substrate (Kito et al, 2001; Kamitani et al, 2001; Hipp et al, 2004; Tanji et al, 2005; Schmidtke et al, 2006; reviewed in Tanaka et al, 2012; Schmidtke et al, 2014). There are two isoforms of NUB1 in human cells that differ by the presence of a 14 amino acid insertion in the NUB1L. NUB1L promotes the degradation of NEDD8 more efficiently than the short isoform (Tanaka et al, 2003).
R-HSA-8956184 (Reactome) NUB1 mediates the 26S proteasome-dependent degradation of NEDD8, UBN (also known as FAT10) and their protein conjugates (Kamitani et al, 2001; Tanji et al, 2005;Schmidtke et al, 2006; reviewed in Tanaka et al, 2012; Schmidtke et al, 2014). Unlike the case for ubiquitin, the NEDD8 moiety also seems to be subject to degradation along with its conjugated proteins.
R-HSA-8956200 (Reactome) DCUN1D3 binds to CRL1 ligase complexes to antagonize their neddylation and activation. DCUN1D3 is unique among the DCUN1D family members in that is N-terminally myristolyated, resulting in plasma membrane localization. Binding of DCUN1D3 to CUL1-containing E3 ligase complexes sequesters the cullin complexes at the plasma membrane, inhibiting their DCUN1D1-mediated neddylation (Huang et al, 2014). Although in this reaction DCUN1D3 is shown binding to cullin E3 ligases in complex with COMMD proteins and CCDC22, DCUN1D3 has also been shown to interact with CAND1 and the precise timing of this sequestration binding event remains to be clarified.
R-HSA-8956234 (Reactome) PUM2 is a sequence-specific RNA binding protein that binds DCUN1D3 mRNA and decreases levels of mature DCUN1D3 protein, likely by promoting mRNA degradation (Galgano et al, 2008; Huang et al, 2014).
RBX1:CUL4:DDB1:DCAFsR-HSA-8955245 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:UBXN7ArrowR-HSA-8956099 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:UBXN7TBarR-HSA-8956106 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:hydroxyPro-HIF-alphaArrowR-HSA-8956103 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:hydroxyPro-HIF-alphaR-HSA-8956106 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5:hydroxyPro-HIF-alphamim-catalysisR-HSA-8956106 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5R-HSA-8956099 (Reactome)
RBX1:NEDD8-CUL2:EloB,C:VHL:COMMDs:CCDC22:DCUN1D1,2,4,5R-HSA-8956103 (Reactome)
UBA3:NAE1R-HSA-8951648 (Reactome)
UBA3:NAE1mim-catalysisR-HSA-8951648 (Reactome)
UBE2D1,2,3:UbiquitinR-HSA-8956106 (Reactome)
UBE2D1,2,3ArrowR-HSA-8956106 (Reactome)
UBXN7R-HSA-8956099 (Reactome)
UCHL3,SENP8:NEDD8(1-88)R-HSA-5690808 (Reactome)
UCHL3,SENP8:NEDD8(1-88)mim-catalysisR-HSA-5690808 (Reactome)
UCHL3,SENP8:NEDD8ArrowR-HSA-5690808 (Reactome)
UCHL3,SENP8:NEDD8R-HSA-8951644 (Reactome)
UCHL3,SENP8ArrowR-HSA-8951644 (Reactome)
UbR-HSA-8956026 (Reactome)
hydroxyPro-HIF-alphaR-HSA-8956103 (Reactome)
ub-BIRC5ArrowR-HSA-8956026 (Reactome)
ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:NEDD8-CUL2:RBX1:COMMDs:CCDC22:DCUN1D1,2,4,5ArrowR-HSA-8956106 (Reactome)
Personal tools