Base-Excision Repair, AP Site Formation (Homo sapiens)

From WikiPathways

Revision as of 16:21, 25 January 2021 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
33, 406, 11, 1812, 3239525231, 562214, 197110, 19192, 45, 48, 68, 7052231, 5613, 29714, 20, 3659212114, 4927232737, 49, 57593, 32, 653037, 49, 5710, 1911, 18, 5010, 16, 399, 28, 46, 47, 55...232, 45, 68, 70596012, 325713, 24, 295, 5932, 659, 28, 46, 47, 55...71, 42673049, 57710, 16, 39, 491910, 3917, 5314, 4917, 5319nucleoplasmcytosolmitochondrial matrixHIST3H3 EtADMPG HIST1H2BD HIST1H2BL MPG:MADE-dsDNAHIST2H2AC TERF2 HIST1H2BA MBD4 CpG(T:G)-dsDNAEtCYTNEIL3Tg-dsDNA AP-dsDNA AP-ssDNA H2BFS TERF2 MADE-dsDNA MADEGh-dsDNA HIST1H2BA OGG1 HIST1H2BL (Ura:Gua)-dsDNA (8oxoG:Ade)-dsDNAHIST1H2BJ HIST2H2AC 8oxoGHyp-dsDNA TERF1 HIST1H2AB UNG-1:AP-dsDNAHIST1H2AJ HIST2H2AC SMUG1:AP-DNAMBD4 TDGHIST1H2AB 5-OHUHIST1H2BO HIST1H2BJ NEIL1:DHU-dsDNAHIST1H2BC HIST3H3 NEIL3:Tg-TelomericDNA:ShelterinNEIL3:AP-TelomericDNA:ShelterinTINF2 POT1 UNG-1:(Ura:Gua)-dsDNAH2BFS Sp-Telomeric G-strand SMUG1 HIST1H2BJ OGG1:(8oxoG:Cyt)-dsDNATERF2 HIST1H2BH HIST2H2BE (Ura:Gua)-dsDNA NEIL3:AP-DNATDG:AP-dsDNAHIST1H2BC Tg-ssDNA POT1 H2BFS H2AFB1 ligated C-strand Okazaki fragment HIST3H3 HIST1H2AD H2AFV HIST1H2BN HIST1H2BN Tg-DNAMUTYH:(8oxoG:Ade)-dsDNAUNG-1:5-OHU-dsDNAHIST1H2BL NEIL3:Sp-TelomericDNA:ShelterinHIST1H2BH HIST1H2BJ (Ura:Gua)-dsDNA DHU-dsDNA Cg-dsDNATERF1 MBD4:CpG(T:G)-dsDNADHU-dsDNA HIST1H2AB NEIL1:FapyA-dsDNAHIST1H2AJ NEIL3:Tg-DNANEIL1HIST1H2BL Gh-DNAHIST1H2AD (Ura:Gua)-dsDNAHIST1H2BC FapyAH2AFZ ACD HIST1H2BM NEIL3 HIST1H2AB Tg-dsDNA MUTYH-6 OGG1betaHIST1H2BC HIST1H2AC NEIL2:AP-dsDNAHIST1H2BK HIST1H2AJ H2AFJ OGG1 5-OHU-dsDNA OGG1Gh-dsDNA NEIL2 HIST3H2BB NTHL1:Tg-dsDNACgUNG-1 HIST1H2BH AP-dsDNA ACD TERF2IP HIST2H2BE Tg-dsDNATERF1 UraH2AFB1 HIST1H4 OGG1:FapyG-dsDNAHIST2H2BE NEIL3:Gh-TelomericDNA:ShelterinUraHIST1H2AD Ura-ssDNA TERF2IP HIST1H2AB Sp-dsDNA AP-dsDNA H2AFV HIST1H2BN HIST1H2BA TERF2IP HIST2H2BE HIST2H2BE NEIL1 H2AFV Sp-TelomericDNA:ShelterinHIST3H2BB HIST1H2AB HIST1H2AC (Ura:Gua)-dsDNA TERF1 H2AFX Resolution of AbasicSites (AP sites)HIST1H2BK ACD HIST3H2BB NEIL3:Gh-DNAPOT1 HIST1H2BB HIST1H2BO TERF1 H2AFJ EtAD-dsDNA HIST1H2BM AP-dsDNA MBD4MBD4 HIST1H2BH TERF2 OGG1 HIST3H2BB HIST1H2BK NTHL1:Cg-dsDNA(8oxoG:Cyt)-dsDNANEIL3 AP-dsDNA H2AFJ HIST1H2BM HIST1H2BO NEIL2 SMUG1HIST1H2BD TERF2 Ura-ssDNA Tg-Telomeric G-strand (Ura:Ade)-dsDNA HIST1H2BL H2AFX HIST1H2AC HIST1H2BB MPG SpHIST1H2BK MUTYH-3 ROSACD NEIL2MUTYH:AP-dsDNAGhSp-DNAOGG1:AP-dsDNAPOT1 HIST2H2AA3 HIST1H4 HIST1H2AB H2AFV HIST1H2BA Tg-TelomericDNA:Shelterinthymine-psoralen-thymine-dsDNAMPG MUTYH-3 FapyG-dsDNA TgAP-ssDNA NEIL3 AP-dsDNA Sp-ssDNA H2AFZ HIST1H2BO TERF2IP NEIL1:Tg-dsDNAAP-dsDNA EtCYT-dsDNANEIL3:Sp-DNAHyp-dsDNATINF2 NTHL1UNG-1HIST1H2BM HIST1H4 ligated C-strand Okazaki fragment FapyA-dsDNA HIST1H4 H2AFZ DHU(T:G)-dsDNANEIL1:FapyG-dsDNAH2AFX Sp-Telomeric G-strand HIST1H2BD HIST1H2BA HIST3H2BB AP-dsDNA ACD H2AFX H2AFX HIST3H2BB HIST1H2AC Gh-ssDNA ACD HIST1H2BJ NEIL1NTHL1 H2AFV Sp-ssDNA Cg-dsDNA TINF2 H2AFZ HIST1H2BM TDG Tg-dsDNA H2AFZ AP-dsDNA HIST3H3 TERF2IP HIST1H2BN HIST1H2BA H2AFB1 POT1 HIST1H2BN H2AFZ HIST1H2BK HIST1H2AJ ACD CpG(U:G)-dsDNANTHL1 NTHL1 HIST1H2BO TDG:(Ura:Gua)-dsDNAFapyG-dsDNA HIST1H2BO TDG HIST2H2AA3 HIST2H2BE H2BFS TERF1 NEIL1 TERF2 HIST1H2AD HIST2H2AC HIST1H2BH HIST2H2AA3 H2AFB1 HIST1H2BA (8oxoG:Ade)-dsDNA HIST1H2BB HIST2H2BE NTHL1:DHU-dsDNAHIST1H2BB MPG:Hyp-dsDNANEIL1 HIST1H2BH FapyG-dsDNAAdeHIST1H4 HIST1H4 TERF1 NEIL1:AP-dsDNAHIST2H2AA3 TERF2IP FapyA-dsDNAHIST1H2AD FapyG-dsDNA TDG:(T:G)-dsDNAHIST1H2BJ HIST1H2BB NTHL1:FapyA-dsDNAGh-ssDNA ligated C-strand Okazaki fragment AP-Telomeric G-strand TINF2 ligated C-strand Okazaki fragment 5-OHU-dsDNAAP-ICL-dsDNAHIST1H2BC HIST1H2AC TDG 5-OHU-dsDNA HIST1H2BH NEIL1 HIST1H2BO (Ura:Ade)-dsDNA NEIL3 AP-dsDNA MUTYH-6 H2BFS HIST1H2BK Tg-dsDNA HIST1H4 Gh-Telomeric G-strand H2BFS UraHIST1H2BD MPG:EtAD-dsDNAHIST1H2AD EtAD-dsDNAFapyGHIST2H2AA3 NEIL3 MUTYHHIST3H3 SOH-C326-OGG1 S326CMUTYH-3 HIST3H2BB MBD4:CpG(U:G)-dsDNANTHL1:AP-dsDNAHIST1H2BM NEIL2:5-OHU-dsDNAGh-TelomericDNA:ShelterinTg-Telomeric G-strand HIST1H2BB Ura-DNAH2AFX HIST1H2BM HIST1H2BD H2AFJ UNG-1 ligated C-strand Okazaki fragment SMUG1:Ura-DNAHIST1H2AD NEIL3 HIST2H2AC HIST1H2BK HIST1H2AJ CpG(T:G)-dsDNA HIST1H2BL MPG:AP-dsDNAH2AFZ HIST1H2BC HIST1H2BL H2AFJ ThyHIST1H2AC OGG1 S326Cligated C-strand Okazaki fragment NEIL3 TERF2 H2AFV H2AFB1 HIST1H2BD MBD4:CpG(AP)-dsDNAHIST1H2BJ SMUG1 HIST1H2AC HIST2H2AC TINF2 POT1 MUTYH-6 HIST3H3 H2AFB1 AP-dsDNAHIST1H2BN H2AFJ DHU-dsDNAMPG HIST2H2AA3 H2AFV HIST2H2AC TINF2 NTHL1 TDG:EtCYT-dsDNA(8oxoG:Cyt)-dsDNA ligated C-strand Okazaki fragment MADE-dsDNAHIST1H2BC H2BFS H2AFJ Gh-Telomeric G-strand AP-dsDNA (T:G)-dsDNA MPGHIST1H2AJ NTHL1 HIST2H2AA3 Tg-ssDNA NEIL3 H2AFX Sp-dsDNA TERF2IP OGG1betaHypPOT1 UNG-1 HIST3H3 TINF2 ThyHIST1H2BN HIST1H2AJ dsDNA-thymine-psoralen-thymine-dsDNAHIST1H2BD H2AFB1 HIST1H2BB TDG CpG(U:G)-dsDNA EtCYT-dsDNA NEIL1 438, 15, 34, 35, 38...3619194343194, 20, 25, 26, 36...303019


Description

Base excision repair is initiated by DNA glycosylases that hydrolytically cleave the base-deoxyribose glycosyl bond of a damaged nucleotide residue, releasing the damaged base (Lindahl and Wood 1999, Sokhansanj et al. 2002). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 73929
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Matthews, Lisa

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Semlow DR, Zhang J, Budzowska M, Drohat AC, Walter JC.; ''Replication-Dependent Unhooking of DNA Interstrand Cross-Links by the NEIL3 Glycosylase.''; PubMed Europe PMC Scholia
  2. Samson L, Derfler B, Boosalis M, Call K.; ''Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16.''; PubMed Europe PMC Scholia
  3. Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajan K, Wessels A, Soprano D, Abramowitz LK, Bartolomei MS, Rambow F, Bassi MR, Bruno T, Fanciulli M, Renner C, Klein-Szanto AJ, Matsumoto Y, Kobi D, Davidson I, Alberti C, Larue L, Bellacosa A.; ''Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair.''; PubMed Europe PMC Scholia
  4. Janik J, Swoboda M, Janowska B, Cieśla JM, Gackowski D, Kowalewski J, Olinski R, Tudek B, Speina E.; ''8-Oxoguanine incision activity is impaired in lung tissues of NSCLC patients with the polymorphism of OGG1 and XRCC1 genes.''; PubMed Europe PMC Scholia
  5. Liu M, Bandaru V, Holmes A, Averill AM, Cannan W, Wallace SS.; ''Expression and purification of active mouse and human NEIL3 proteins.''; PubMed Europe PMC Scholia
  6. Slupska MM, Baikalov C, Luther WM, Chiang JH, Wei YF, Miller JH.; ''Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage.''; PubMed Europe PMC Scholia
  7. Zhou J, Chan J, Lambelé M, Yusufzai T, Stumpff J, Opresko PL, Thali M, Wallace SS.; ''NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis.''; PubMed Europe PMC Scholia
  8. Smirnova E, Toueille M, Markkanen E, Hübscher U.; ''The human checkpoint sensor and alternative DNA clamp Rad9-Rad1-Hus1 modulates the activity of DNA ligase I, a component of the long-patch base excision repair machinery.''; PubMed Europe PMC Scholia
  9. Bjorâs M, Luna L, Johnsen B, Hoff E, Haug T, Rognes T, Seeberg E.; ''Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.''; PubMed Europe PMC Scholia
  10. Evans MD, Dizdaroglu M, Cooke MS.; ''Oxidative DNA damage and disease: induction, repair and significance.''; PubMed Europe PMC Scholia
  11. Ohtsubo T, Nishioka K, Imaiso Y, Iwai S, Shimokawa H, Oda H, Fujiwara T, Nakabeppu Y.; ''Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria.''; PubMed Europe PMC Scholia
  12. Hashimoto H, Hong S, Bhagwat AS, Zhang X, Cheng X.; ''Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation.''; PubMed Europe PMC Scholia
  13. Wu P, Qiu C, Sohail A, Zhang X, Bhagwat AS, Cheng X.; ''Mismatch repair in methylated DNA. Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4.''; PubMed Europe PMC Scholia
  14. Dizdaroglu M, Laval J, Boiteux S.; ''Substrate specificity of the Escherichia coli endonuclease III: excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals.''; PubMed Europe PMC Scholia
  15. Wang W, Brandt P, Rossi ML, Lindsey-Boltz L, Podust V, Fanning E, Sancar A, Bambara RA.; ''The human Rad9-Rad1-Hus1 checkpoint complex stimulates flap endonuclease 1.''; PubMed Europe PMC Scholia
  16. Luna L, Bjørås M, Hoff E, Rognes T, Seeberg E.; ''Cell-cycle regulation, intracellular sorting and induced overexpression of the human NTH1 DNA glycosylase involved in removal of formamidopyrimidine residues from DNA.''; PubMed Europe PMC Scholia
  17. Haushalter KA, Todd Stukenberg MW, Kirschner MW, Verdine GL.; ''Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors.''; PubMed Europe PMC Scholia
  18. Boldogh I, Milligan D, Lee MS, Bassett H, Lloyd RS, McCullough AK.; ''hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs.''; PubMed Europe PMC Scholia
  19. Hazra TK, Izumi T, Boldogh I, Imhoff B, Kow YW, Jaruga P, Dizdaroglu M, Mitra S.; ''Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA.''; PubMed Europe PMC Scholia
  20. Ali K, Mahjabeen I, Sabir M, Mehmood H, Kayani MA.; ''OGG1 Mutations and Risk of Female Breast Cancer: Meta-Analysis and Experimental Data.''; PubMed Europe PMC Scholia
  21. Dizdaroglu M, Karakaya A, Jaruga P, Slupphaug G, Krokan HE.; ''Novel activities of human uracil DNA N-glycosylase for cytosine-derived products of oxidative DNA damage.''; PubMed Europe PMC Scholia
  22. Zhu C, Lu L, Zhang J, Yue Z, Song J, Zong S, Liu M, Stovicek O, Gao YQ, Yi C.; ''Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.''; PubMed Europe PMC Scholia
  23. Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA.; ''Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA.''; PubMed Europe PMC Scholia
  24. Moréra S, Grin I, Vigouroux A, Couvé S, Henriot V, Saparbaev M, Ishchenko AA.; ''Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.''; PubMed Europe PMC Scholia
  25. Kershaw RM, Hodges NJ.; ''Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1.''; PubMed Europe PMC Scholia
  26. Yamane A, Kohno T, Ito K, Sunaga N, Aoki K, Yoshimura K, Murakami H, Nojima Y, Yokota J.; ''Differential ability of polymorphic OGG1 proteins to suppress mutagenesis induced by 8-hydroxyguanine in human cell in vivo.''; PubMed Europe PMC Scholia
  27. Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Genuardi M, Karbowski M, Yeung AT, Matsumoto Y, Bellacosa A.; ''Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain.''; PubMed Europe PMC Scholia
  28. Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S.; ''Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae.''; PubMed Europe PMC Scholia
  29. Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Stoerker J, Genuardi M, Yeung AT, Matsumoto Y, Bellacosa A.; ''Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase.''; PubMed Europe PMC Scholia
  30. Hazra TK, Kow YW, Hatahet Z, Imhoff B, Boldogh I, Mokkapati SK, Mitra S, Izumi T.; ''Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions.''; PubMed Europe PMC Scholia
  31. Dosanjh MK, Roy R, Mitra S, Singer B.; ''1,N6-ethenoadenine is preferred over 3-methyladenine as substrate by a cloned human N-methylpurine-DNA glycosylase (3-methyladenine-DNA glycosylase).''; PubMed Europe PMC Scholia
  32. Neddermann P, Jiricny J.; ''The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells.''; PubMed Europe PMC Scholia
  33. Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM.; ''A quantitative model of human DNA base excision repair. I. Mechanistic insights.''; PubMed Europe PMC Scholia
  34. Balakrishnan L, Brandt PD, Lindsey-Boltz LA, Sancar A, Bambara RA.; ''Long patch base excision repair proceeds via coordinated stimulation of the multienzyme DNA repair complex.''; PubMed Europe PMC Scholia
  35. Prasad R, Lavrik OI, Kim SJ, Kedar P, Yang XP, Vande Berg BJ, Wilson SH.; ''DNA polymerase beta -mediated long patch base excision repair. Poly(ADP-ribose)polymerase-1 stimulates strand displacement DNA synthesis.''; PubMed Europe PMC Scholia
  36. Moritz E, Pauly K, Bravard A, Hall J, Radicella JP, Epe B.; ''hOGG1-Cys326 variant cells are hypersensitive to DNA repair inhibition by nitric oxide.''; PubMed Europe PMC Scholia
  37. Miyabe I, Zhang QM, Kino K, Sugiyama H, Takao M, Yasui A, Yonei S.; ''Identification of 5-formyluracil DNA glycosylase activity of human hNTH1 protein.''; PubMed Europe PMC Scholia
  38. Klungland A, Lindahl T.; ''Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1).''; PubMed Europe PMC Scholia
  39. Hu J, de Souza-Pinto NC, Haraguchi K, Hogue BA, Jaruga P, Greenberg MM, Dizdaroglu M, Bohr VA.; ''Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes.''; PubMed Europe PMC Scholia
  40. Lindahl T, Wood RD.; ''Quality control by DNA repair.''; PubMed Europe PMC Scholia
  41. Dherin C, Radicella JP, Dizdaroglu M, Boiteux S.; ''Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations.''; PubMed Europe PMC Scholia
  42. Martin PR, Couvé S, Zutterling C, Albelazi MS, Groisman R, Groisman R, Matkarimov BT, Parsons JL, Elder RH, Saparbaev MK.; ''The Human DNA glycosylases NEIL1 and NEIL3 Excise Psoralen-Induced DNA-DNA Cross-Links in a Four-Stranded DNA Structure.''; PubMed Europe PMC Scholia
  43. Plotz G, Casper M, Raedle J, Hinrichsen I, Heckel V, Brieger A, Trojan J, Zeuzem S.; ''MUTYH gene expression and alternative splicing in controls and polyposis patients.''; PubMed Europe PMC Scholia
  44. Masuda Y, Bennett RA, Demple B.; ''Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product.''; PubMed Europe PMC Scholia
  45. O'Connor TR.; ''Purification and characterization of human 3-methyladenine-DNA glycosylase.''; PubMed Europe PMC Scholia
  46. Aburatani H, Hippo Y, Ishida T, Takashima R, Matsuba C, Kodama T, Takao M, Yasui A, Yamamoto K, Asano M.; ''Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue.''; PubMed Europe PMC Scholia
  47. Rosenquist TA, Zharkov DO, Grollman AP.; ''Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase.''; PubMed Europe PMC Scholia
  48. Berdal KG, Johansen RF, Seeberg E.; ''Release of normal bases from intact DNA by a native DNA repair enzyme.''; PubMed Europe PMC Scholia
  49. Ikeda S, Biswas T, Roy R, Izumi T, Boldogh I, Kurosky A, Sarker AH, Seki S, Mitra S.; ''Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue.''; PubMed Europe PMC Scholia
  50. Shinmura K, Yamaguchi S, Saitoh T, Takeuchi-Sasaki M, Kim SR, Nohmi T, Yokota J.; ''Adenine excisional repair function of MYH protein on the adenine:8-hydroxyguanine base pair in double-stranded DNA.''; PubMed Europe PMC Scholia
  51. Kubota Y, Nash RA, Klungland A, Schär P, Barnes DE, Lindahl T.; ''Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein.''; PubMed Europe PMC Scholia
  52. Saparbaev M, Laval J.; ''Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases.''; PubMed Europe PMC Scholia
  53. Masaoka A, Matsubara M, Hasegawa R, Tanaka T, Kurisu S, Terato H, Ohyama Y, Karino N, Matsuda A, Ide H.; ''Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.''; PubMed Europe PMC Scholia
  54. Dianova II, Bohr VA, Dianov GL.; ''Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair.''; PubMed Europe PMC Scholia
  55. Bruner SD, Norman DP, Verdine GL.; ''Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA.''; PubMed Europe PMC Scholia
  56. Saparbaev M, Kleibl K, Laval J.; ''Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA.''; PubMed Europe PMC Scholia
  57. Dizdaroglu M, Karahalil B, Sentürker S, Buckley TJ, Roldán-Arjona T.; ''Excision of products of oxidative DNA base damage by human NTH1 protein.''; PubMed Europe PMC Scholia
  58. Roldán-Arjona T, Wei YF, Carter KC, Klungland A, Anselmino C, Wang RP, Augustus M, Lindahl T.; ''Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase.''; PubMed Europe PMC Scholia
  59. Krokeide SZ, Laerdahl JK, Salah M, Luna L, Cederkvist FH, Fleming AM, Burrows CJ, Dalhus B, Bjørås M.; ''Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin.''; PubMed Europe PMC Scholia
  60. Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y.; ''Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs.''; PubMed Europe PMC Scholia
  61. Wilson DM, Takeshita M, Grollman AP, Demple B.; ''Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA.''; PubMed Europe PMC Scholia
  62. Janssen K, Schlink K, Götte W, Hippler B, Kaina B, Oesch F.; ''DNA repair activity of 8-oxoguanine DNA glycosylase 1 (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326.''; PubMed Europe PMC Scholia
  63. Bennett RA, Wilson DM, Wong D, Demple B.; ''Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway.''; PubMed Europe PMC Scholia
  64. Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, Tomkinson AE, Izumi T, Prasad R, Wilson SH, Mitra S, Hazra TK.; ''AP endonuclease-independent DNA base excision repair in human cells.''; PubMed Europe PMC Scholia
  65. Neddermann P, Gallinari P, Lettieri T, Schmid D, Truong O, Hsuan JJ, Wiebauer K, Jiricny J.; ''Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase.''; PubMed Europe PMC Scholia
  66. Guan X, Bai H, Shi G, Theriot CA, Hazra TK, Mitra S, Lu AL.; ''The human checkpoint sensor Rad9-Rad1-Hus1 interacts with and stimulates NEIL1 glycosylase.''; PubMed Europe PMC Scholia
  67. Shinmura K, Kato H, Kawanishi Y, Goto M, Tao H, Inoue Y, Nakamura S, Sugimura H.; ''NEIL1 p.Gln282Stop variant is predominantly localized in the cytoplasm and exhibits reduced activity in suppressing mutations.''; PubMed Europe PMC Scholia
  68. Lau AY, Schärer OD, Samson L, Verdine GL, Ellenberger T.; ''Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision.''; PubMed Europe PMC Scholia
  69. Das A, Wiederhold L, Leppard JB, Kedar P, Prasad R, Wang H, Boldogh I, Karimi-Busheri F, Weinfeld M, Tomkinson AE, Wilson SH, Mitra S, Hazra TK.; ''NEIL2-initiated, APE-independent repair of oxidized bases in DNA: Evidence for a repair complex in human cells.''; PubMed Europe PMC Scholia
  70. Vickers MA, Vyas P, Harris PC, Simmons DL, Higgs DR.; ''Structure of the human 3-methyladenine DNA glycosylase gene and localization close to the 16p telomere.''; PubMed Europe PMC Scholia
  71. Hang B, Medina M, Fraenkel-Conrat H, Singer B.; ''A 55-kDa protein isolated from human cells shows DNA glycosylase activity toward 3,N4-ethenocytosine and the G/T mismatch.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114727view16:21, 25 January 2021ReactomeTeamReactome version 75
113171view11:23, 2 November 2020ReactomeTeamReactome version 74
112399view15:33, 9 October 2020ReactomeTeamReactome version 73
101303view11:19, 1 November 2018ReactomeTeamreactome version 66
100840view20:50, 31 October 2018ReactomeTeamreactome version 65
100381view19:24, 31 October 2018ReactomeTeamreactome version 64
99928view16:08, 31 October 2018ReactomeTeamreactome version 63
99483view14:41, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99136view12:40, 31 October 2018ReactomeTeamreactome version 62
94023view13:52, 16 August 2017ReactomeTeamreactome version 61
93643view11:29, 9 August 2017ReactomeTeamreactome version 61
87092view14:27, 18 July 2016MkutmonOntology Term : 'base excision repair pathway' added !
86759view09:25, 11 July 2016ReactomeTeamreactome version 56
83211view10:22, 18 November 2015ReactomeTeamVersion54
81601view13:08, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
(8oxoG:Ade)-dsDNA R-HSA-110198 (Reactome)
(8oxoG:Ade)-dsDNAR-HSA-110198 (Reactome)
(8oxoG:Cyt)-dsDNA R-HSA-110184 (Reactome)
(8oxoG:Cyt)-dsDNAR-HSA-110184 (Reactome)
(T:G)-dsDNA R-HSA-110149 (Reactome)
(T:G)-dsDNAR-HSA-110149 (Reactome)
(Ura:Ade)-dsDNA R-HSA-5649544 (Reactome)
(Ura:Gua)-dsDNA R-HSA-110151 (Reactome)
(Ura:Gua)-dsDNAR-HSA-110151 (Reactome)
5-OHU-dsDNA R-HSA-110153 (Reactome)
5-OHU-dsDNAR-HSA-110153 (Reactome)
5-OHUMetaboliteCHEBI:29115 (ChEBI)
8oxoGMetaboliteCHEBI:44605 (ChEBI)
ACD ProteinQ96AP0 (Uniprot-TrEMBL)
AP-ICL-dsDNAR-HSA-9636010 (Reactome)
AP-Telomeric G-strand R-HSA-9629217 (Reactome)
AP-dsDNA R-HSA-110187 (Reactome)
AP-dsDNAR-HSA-110187 (Reactome)
AP-ssDNA R-HSA-5649501 (Reactome)
AdeMetaboliteCHEBI:16708 (ChEBI)
Cg-dsDNA R-HSA-110178 (Reactome)
Cg-dsDNAR-HSA-110178 (Reactome)
CgMetaboliteCHEBI:29127 (ChEBI)
CpG(T:G)-dsDNA R-HSA-110169 (Reactome)
CpG(T:G)-dsDNAR-HSA-110169 (Reactome)
CpG(U:G)-dsDNA R-HSA-110167 (Reactome)
CpG(U:G)-dsDNAR-HSA-110167 (Reactome)
DHU-dsDNA R-HSA-110180 (Reactome)
DHU-dsDNAR-HSA-110180 (Reactome)
DHUMetaboliteCHEBI:15901 (ChEBI)
EtAD-dsDNA R-HSA-110203 (Reactome)
EtAD-dsDNAR-HSA-110203 (Reactome)
EtADMetaboliteCHEBI:29146 (ChEBI)
EtCYT-dsDNA R-HSA-110189 (Reactome)
EtCYT-dsDNAR-HSA-110189 (Reactome)
EtCYTMetaboliteCHEBI:29147 (ChEBI)
FapyA-dsDNA R-HSA-5643990 (Reactome)
FapyA-dsDNAR-HSA-5643990 (Reactome)
FapyAMetaboliteCHEBI:27983 (ChEBI)
FapyG-dsDNA R-HSA-110182 (Reactome)
FapyG-dsDNAR-HSA-110182 (Reactome)
FapyGMetaboliteCHEBI:29145 (ChEBI)
Gh-DNAComplexR-HSA-9629546 (Reactome)
Gh-Telomeric DNA:ShelterinComplexR-HSA-9629187 (Reactome)
Gh-Telomeric G-strand R-HSA-9629188 (Reactome)
Gh-dsDNA R-HSA-9629388 (Reactome)
Gh-ssDNA R-HSA-9629548 (Reactome)
GhMetaboliteCHEBI:142614 (ChEBI)
H2AFB1 ProteinP0C5Y9 (Uniprot-TrEMBL)
H2AFJ ProteinQ9BTM1 (Uniprot-TrEMBL)
H2AFV ProteinQ71UI9 (Uniprot-TrEMBL)
H2AFX ProteinP16104 (Uniprot-TrEMBL)
H2AFZ ProteinP0C0S5 (Uniprot-TrEMBL)
H2BFS ProteinP57053 (Uniprot-TrEMBL)
HIST1H2AB ProteinP04908 (Uniprot-TrEMBL)
HIST1H2AC ProteinQ93077 (Uniprot-TrEMBL)
HIST1H2AD ProteinP20671 (Uniprot-TrEMBL)
HIST1H2AJ ProteinQ99878 (Uniprot-TrEMBL)
HIST1H2BA ProteinQ96A08 (Uniprot-TrEMBL)
HIST1H2BB ProteinP33778 (Uniprot-TrEMBL)
HIST1H2BC ProteinP62807 (Uniprot-TrEMBL)
HIST1H2BD ProteinP58876 (Uniprot-TrEMBL)
HIST1H2BH ProteinQ93079 (Uniprot-TrEMBL)
HIST1H2BJ ProteinP06899 (Uniprot-TrEMBL)
HIST1H2BK ProteinO60814 (Uniprot-TrEMBL)
HIST1H2BL ProteinQ99880 (Uniprot-TrEMBL)
HIST1H2BM ProteinQ99879 (Uniprot-TrEMBL)
HIST1H2BN ProteinQ99877 (Uniprot-TrEMBL)
HIST1H2BO ProteinP23527 (Uniprot-TrEMBL)
HIST1H4 ProteinP62805 (Uniprot-TrEMBL)
HIST2H2AA3 ProteinQ6FI13 (Uniprot-TrEMBL)
HIST2H2AC ProteinQ16777 (Uniprot-TrEMBL)
HIST2H2BE ProteinQ16778 (Uniprot-TrEMBL)
HIST3H2BB ProteinQ8N257 (Uniprot-TrEMBL)
HIST3H3 ProteinQ16695 (Uniprot-TrEMBL)
Hyp-dsDNA R-HSA-110205 (Reactome)
Hyp-dsDNAR-HSA-110205 (Reactome)
HypMetaboliteCHEBI:17368 (ChEBI)
MADE-dsDNA R-HSA-110201 (Reactome)
MADE-dsDNAR-HSA-110201 (Reactome)
MADEMetaboliteCHEBI:38635 (ChEBI)
MBD4 ProteinO95243 (Uniprot-TrEMBL)
MBD4:CpG(AP)-dsDNAComplexR-HSA-110194 (Reactome)
MBD4:CpG(T:G)-dsDNAComplexR-HSA-110170 (Reactome)
MBD4:CpG(U:G)-dsDNAComplexR-HSA-110168 (Reactome)
MBD4ProteinO95243 (Uniprot-TrEMBL)
MPG ProteinP29372 (Uniprot-TrEMBL)
MPG:AP-dsDNAComplexR-HSA-110207 (Reactome)
MPG:EtAD-dsDNAComplexR-HSA-110204 (Reactome)
MPG:Hyp-dsDNAComplexR-HSA-110206 (Reactome)
MPG:MADE-dsDNAComplexR-HSA-110202 (Reactome)
MPGProteinP29372 (Uniprot-TrEMBL)
MUTYH-3 ProteinQ9UIF7-3 (Uniprot-TrEMBL) This isoform of MUTYH uses exon 1-alpha and the exon 3 splice donor site variant-3. This is one of the most abundant MUTYH transcripts, while the transcripts that corresponds to the canonical UniProt sequence and to the longest NCBI transcript of MUTYH are rare or not present (Plotz et al. 2012).
MUTYH-6 ProteinQ9UIF7-6 (Uniprot-TrEMBL)
MUTYH:(8oxoG:Ade)-dsDNAComplexR-HSA-110199 (Reactome)
MUTYH:AP-dsDNAComplexR-HSA-110200 (Reactome)
MUTYHComplexR-HSA-9606670 (Reactome)
NEIL1 ProteinQ96FI4 (Uniprot-TrEMBL)
NEIL1:AP-dsDNAComplexR-HSA-5649669 (Reactome)
NEIL1:DHU-dsDNAComplexR-HSA-5649652 (Reactome)
NEIL1:FapyA-dsDNAComplexR-HSA-5649670 (Reactome)
NEIL1:FapyG-dsDNAComplexR-HSA-5649663 (Reactome)
NEIL1:Tg-dsDNAComplexR-HSA-9629155 (Reactome)
NEIL1ProteinQ96FI4 (Uniprot-TrEMBL)
NEIL2 ProteinQ969S2 (Uniprot-TrEMBL)
NEIL2:5-OHU-dsDNAComplexR-HSA-5649682 (Reactome)
NEIL2:AP-dsDNAComplexR-HSA-5649690 (Reactome)
NEIL2ProteinQ969S2 (Uniprot-TrEMBL)
NEIL3 ProteinQ8TAT5 (Uniprot-TrEMBL)
NEIL3:AP-DNAComplexR-HSA-9629472 (Reactome)
NEIL3:AP-Telomeric DNA:ShelterinComplexR-HSA-9629210 (Reactome)
NEIL3:Gh-DNAComplexR-HSA-9629386 (Reactome)
NEIL3:Gh-Telomeric DNA:ShelterinComplexR-HSA-9629206 (Reactome)
NEIL3:Sp-DNAComplexR-HSA-9629414 (Reactome)
NEIL3:Sp-Telomeric DNA:ShelterinComplexR-HSA-9629403 (Reactome)
NEIL3:Tg-DNAComplexR-HSA-9629460 (Reactome)
NEIL3:Tg-Telomeric DNA:ShelterinComplexR-HSA-9629451 (Reactome)
NEIL3ProteinQ8TAT5 (Uniprot-TrEMBL)
NTHL1 ProteinP78549 (Uniprot-TrEMBL)
NTHL1:AP-dsDNAComplexR-HSA-110193 (Reactome)
NTHL1:Cg-dsDNAComplexR-HSA-110179 (Reactome)
NTHL1:DHU-dsDNAComplexR-HSA-110181 (Reactome)
NTHL1:FapyA-dsDNAComplexR-HSA-110183 (Reactome)
NTHL1:Tg-dsDNAComplexR-HSA-110177 (Reactome)
NTHL1ProteinP78549 (Uniprot-TrEMBL)
OGG1 ProteinO15527 (Uniprot-TrEMBL)
OGG1 S326CProteinO15527 (Uniprot-TrEMBL)
OGG1:(8oxoG:Cyt)-dsDNAComplexR-HSA-110185 (Reactome)
OGG1:AP-dsDNAComplexR-HSA-110195 (Reactome)
OGG1:FapyG-dsDNAComplexR-HSA-110186 (Reactome)
OGG1ProteinO15527 (Uniprot-TrEMBL)
OGG1betaProteinO15527-4 (Uniprot-TrEMBL)
POT1 ProteinQ9NUX5 (Uniprot-TrEMBL)
ROSMetaboliteCHEBI:26523 (ChEBI)
Resolution of Abasic Sites (AP sites)PathwayR-HSA-73933 (Reactome) Resolution of AP sites can occur through the single nucleotide replacement pathway or through the multiple nucleotide patch replacement pathway, also known as the long-patch base excision repair (BER). Except for the APEX1-independent resolution of AP sites via single nucleotide base excision repair mediated by NEIL1 or NEIL2 (Wiederhold et al. 2004, Das et al. 2006), single nucleotide and multiple-nucleotide patch replacement pathways are both initiated by APEX1-mediated displacement of DNA glycosylases and cleavage of the damaged DNA strand by APEX1 immediately 5' to the AP site (Wilson et al. 1995, Bennett et al. 1997, Masuda et al. 1998). The BER proceeds via the single nucleotide replacement when the AP (apurinic/apyrimidinic) deoxyribose residue at the 5' end of the APEX1-created single strand break (SSB) (5'dRP) can be removed by the 5'-exonuclease activity of DNA polymerase beta (POLB) (Bennett et al. 1997). POLB fills the created single nucleotide gap by adding a nucleotide complementary to the undamaged DNA strand to the 3' end of the SSB. The SSB is subsequently ligated by DNA ligase III (LIG3) which, in complex with XRCC1, is recruited to the BER site by an XRCC1-mediated interaction with POLB (Kubota et al. 1996). BER proceeds via the multiple-nucleotide patch replacement pathway when the AP residue at the 5' end of the APEX1-created SSB undergoes oxidation-related damage (5'ddRP) and cannot be cleaved by POLB (Klungland and Lindahl 1997). Long-patch BER can be completed by POLB-mediated DNA strand displacement synthesis in the presence of PARP1 or PARP2, FEN1 and DNA ligase I (LIG1) (Prasad et al. 2001). When the PCNA-containing replication complex is available, as is the case with cells in S-phase of the cell cycle, DNA strand displacement synthesis is catalyzed by DNA polymerase delta (POLD) or DNA polymerase epsilon (POLE) complexes, in the presence of PCNA, RPA, RFC, APEX1, FEN1 and LIG1 (Klungland and Lindahl 1997, Dianova et al. 2001). It is likely that the 9-1-1 repair complex composed of HUS1, RAD1 and RAD9 interacts with and coordinates components of BER, but the exact mechanism and timing have not been elucidated (Wang et al. 2004, Smirnova et al. 2005, Guan et al. 2007, Balakrishnan et al. 2009).
SMUG1 ProteinQ53HV7 (Uniprot-TrEMBL)
SMUG1:AP-DNAComplexR-HSA-110192 (Reactome)
SMUG1:Ura-DNAComplexR-HSA-110163 (Reactome)
SMUG1ProteinQ53HV7 (Uniprot-TrEMBL)
SOH-C326-OGG1 S326CProteinO15527 (Uniprot-TrEMBL)
Sp-DNAComplexR-HSA-9629545 (Reactome)
Sp-Telomeric DNA:ShelterinComplexR-HSA-9629401 (Reactome)
Sp-Telomeric G-strand R-HSA-9629404 (Reactome)
Sp-dsDNA R-HSA-9629416 (Reactome)
Sp-ssDNA R-HSA-9629547 (Reactome)
SpMetaboliteCHEBI:142623 (ChEBI)
TDG ProteinQ13569 (Uniprot-TrEMBL)
TDG:(T:G)-dsDNAComplexR-HSA-110150 (Reactome)
TDG:(Ura:Gua)-dsDNAComplexR-HSA-110155 (Reactome)
TDG:AP-dsDNAComplexR-HSA-110191 (Reactome)
TDG:EtCYT-dsDNAComplexR-HSA-110190 (Reactome)
TDGProteinQ13569 (Uniprot-TrEMBL)
TERF1 ProteinP54274 (Uniprot-TrEMBL)
TERF2 ProteinQ15554 (Uniprot-TrEMBL)
TERF2IP ProteinQ9NYB0 (Uniprot-TrEMBL)
TINF2 ProteinQ9BSI4 (Uniprot-TrEMBL)
Tg-DNAComplexR-HSA-9629532 (Reactome)
Tg-Telomeric DNA:ShelterinComplexR-HSA-9629442 (Reactome)
Tg-Telomeric G-strand R-HSA-9629443 (Reactome)
Tg-dsDNA R-HSA-110176 (Reactome)
Tg-dsDNAR-HSA-110176 (Reactome)
Tg-ssDNA R-HSA-9629531 (Reactome)
TgMetaboliteCHEBI:29128 (ChEBI)
ThyMetaboliteCHEBI:17821 (ChEBI)
UNG-1 ProteinP13051-1 (Uniprot-TrEMBL)
UNG-1:(Ura:Gua)-dsDNAComplexR-HSA-110152 (Reactome)
UNG-1:5-OHU-dsDNAComplexR-HSA-110154 (Reactome)
UNG-1:AP-dsDNAComplexR-HSA-110188 (Reactome)
UNG-1ProteinP13051-1 (Uniprot-TrEMBL)
Ura-DNAComplexR-HSA-5649546 (Reactome)
Ura-ssDNA R-HSA-110162 (Reactome)
UraMetaboliteCHEBI:17568 (ChEBI)
dsDNA-thymine-psoralen-thymine-dsDNAR-HSA-9635995 (Reactome)
ligated C-strand Okazaki fragment R-ALL-176395 (Reactome)
thymine-psoralen-thymine-dsDNAR-HSA-9635994 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
(8oxoG:Ade)-dsDNAR-HSA-110237 (Reactome)
(8oxoG:Cyt)-dsDNAR-HSA-110235 (Reactome)
(T:G)-dsDNAR-HSA-110158 (Reactome)
(Ura:Gua)-dsDNAR-HSA-110156 (Reactome)
(Ura:Gua)-dsDNAR-HSA-110159 (Reactome)
5-OHU-dsDNAR-HSA-110157 (Reactome)
5-OHU-dsDNAR-HSA-5649686 (Reactome)
5-OHUArrowR-HSA-110217 (Reactome)
5-OHUArrowR-HSA-5649681 (Reactome)
8oxoGArrowR-HSA-110243 (Reactome)
AP-ICL-dsDNAR-HSA-9636008 (Reactome)
AP-dsDNAArrowR-HSA-9635996 (Reactome)
AP-dsDNAArrowR-HSA-9636008 (Reactome)
AdeArrowR-HSA-110246 (Reactome)
Cg-dsDNAR-HSA-110208 (Reactome)
CgArrowR-HSA-110226 (Reactome)
CpG(T:G)-dsDNAR-HSA-110172 (Reactome)
CpG(U:G)-dsDNAR-HSA-110171 (Reactome)
DHU-dsDNAR-HSA-110212 (Reactome)
DHU-dsDNAR-HSA-5649655 (Reactome)
DHUArrowR-HSA-110227 (Reactome)
DHUArrowR-HSA-5649658 (Reactome)
EtAD-dsDNAR-HSA-110239 (Reactome)
EtADArrowR-HSA-110250 (Reactome)
EtCYT-dsDNAR-HSA-110210 (Reactome)
EtCYTArrowR-HSA-110234 (Reactome)
FapyA-dsDNAR-HSA-110213 (Reactome)
FapyA-dsDNAR-HSA-5649671 (Reactome)
FapyAArrowR-HSA-110229 (Reactome)
FapyAArrowR-HSA-5649673 (Reactome)
FapyG-dsDNAR-HSA-110236 (Reactome)
FapyG-dsDNAR-HSA-5649657 (Reactome)
FapyGArrowR-HSA-110244 (Reactome)
FapyGArrowR-HSA-5649664 (Reactome)
Gh-DNAR-HSA-9629358 (Reactome)
Gh-Telomeric DNA:ShelterinR-HSA-9629195 (Reactome)
GhArrowR-HSA-9629216 (Reactome)
GhArrowR-HSA-9629470 (Reactome)
Hyp-dsDNAR-HSA-110240 (Reactome)
HypArrowR-HSA-110251 (Reactome)
MADE-dsDNAR-HSA-110238 (Reactome)
MADEArrowR-HSA-110248 (Reactome)
MBD4:CpG(AP)-dsDNAArrowR-HSA-110231 (Reactome)
MBD4:CpG(AP)-dsDNAArrowR-HSA-110232 (Reactome)
MBD4:CpG(T:G)-dsDNAArrowR-HSA-110172 (Reactome)
MBD4:CpG(T:G)-dsDNAR-HSA-110232 (Reactome)
MBD4:CpG(T:G)-dsDNAmim-catalysisR-HSA-110232 (Reactome)
MBD4:CpG(U:G)-dsDNAArrowR-HSA-110171 (Reactome)
MBD4:CpG(U:G)-dsDNAR-HSA-110231 (Reactome)
MBD4:CpG(U:G)-dsDNAmim-catalysisR-HSA-110231 (Reactome)
MBD4R-HSA-110171 (Reactome)
MBD4R-HSA-110172 (Reactome)
MPG:AP-dsDNAArrowR-HSA-110248 (Reactome)
MPG:AP-dsDNAArrowR-HSA-110250 (Reactome)
MPG:AP-dsDNAArrowR-HSA-110251 (Reactome)
MPG:EtAD-dsDNAArrowR-HSA-110239 (Reactome)
MPG:EtAD-dsDNAR-HSA-110250 (Reactome)
MPG:EtAD-dsDNAmim-catalysisR-HSA-110250 (Reactome)
MPG:Hyp-dsDNAArrowR-HSA-110240 (Reactome)
MPG:Hyp-dsDNAR-HSA-110251 (Reactome)
MPG:Hyp-dsDNAmim-catalysisR-HSA-110251 (Reactome)
MPG:MADE-dsDNAArrowR-HSA-110238 (Reactome)
MPG:MADE-dsDNAR-HSA-110248 (Reactome)
MPG:MADE-dsDNAmim-catalysisR-HSA-110248 (Reactome)
MPGR-HSA-110238 (Reactome)
MPGR-HSA-110239 (Reactome)
MPGR-HSA-110240 (Reactome)
MUTYH:(8oxoG:Ade)-dsDNAArrowR-HSA-110237 (Reactome)
MUTYH:(8oxoG:Ade)-dsDNAR-HSA-110246 (Reactome)
MUTYH:(8oxoG:Ade)-dsDNAmim-catalysisR-HSA-110246 (Reactome)
MUTYH:AP-dsDNAArrowR-HSA-110246 (Reactome)
MUTYHR-HSA-110237 (Reactome)
NEIL1:AP-dsDNAArrowR-HSA-5649658 (Reactome)
NEIL1:AP-dsDNAArrowR-HSA-5649664 (Reactome)
NEIL1:AP-dsDNAArrowR-HSA-5649673 (Reactome)
NEIL1:AP-dsDNAArrowR-HSA-9629149 (Reactome)
NEIL1:DHU-dsDNAArrowR-HSA-5649655 (Reactome)
NEIL1:DHU-dsDNAR-HSA-5649658 (Reactome)
NEIL1:DHU-dsDNAmim-catalysisR-HSA-5649658 (Reactome)
NEIL1:FapyA-dsDNAArrowR-HSA-5649671 (Reactome)
NEIL1:FapyA-dsDNAR-HSA-5649673 (Reactome)
NEIL1:FapyA-dsDNAmim-catalysisR-HSA-5649673 (Reactome)
NEIL1:FapyG-dsDNAArrowR-HSA-5649657 (Reactome)
NEIL1:FapyG-dsDNAR-HSA-5649664 (Reactome)
NEIL1:FapyG-dsDNAmim-catalysisR-HSA-5649664 (Reactome)
NEIL1:Tg-dsDNAArrowR-HSA-9629154 (Reactome)
NEIL1:Tg-dsDNAR-HSA-9629149 (Reactome)
NEIL1:Tg-dsDNAmim-catalysisR-HSA-9629149 (Reactome)
NEIL1ArrowR-HSA-9629918 (Reactome)
NEIL1R-HSA-5649655 (Reactome)
NEIL1R-HSA-5649657 (Reactome)
NEIL1R-HSA-5649671 (Reactome)
NEIL1R-HSA-9629154 (Reactome)
NEIL1R-HSA-9629918 (Reactome)
NEIL2:5-OHU-dsDNAArrowR-HSA-5649686 (Reactome)
NEIL2:5-OHU-dsDNAR-HSA-5649681 (Reactome)
NEIL2:5-OHU-dsDNAmim-catalysisR-HSA-5649681 (Reactome)
NEIL2:AP-dsDNAArrowR-HSA-5649681 (Reactome)
NEIL2R-HSA-5649686 (Reactome)
NEIL3:AP-DNAArrowR-HSA-9629470 (Reactome)
NEIL3:AP-DNAArrowR-HSA-9629492 (Reactome)
NEIL3:AP-DNAArrowR-HSA-9629499 (Reactome)
NEIL3:AP-Telomeric DNA:ShelterinArrowR-HSA-9629216 (Reactome)
NEIL3:AP-Telomeric DNA:ShelterinArrowR-HSA-9629483 (Reactome)
NEIL3:AP-Telomeric DNA:ShelterinArrowR-HSA-9629497 (Reactome)
NEIL3:Gh-DNAArrowR-HSA-9629358 (Reactome)
NEIL3:Gh-DNAR-HSA-9629470 (Reactome)
NEIL3:Gh-DNAmim-catalysisR-HSA-9629470 (Reactome)
NEIL3:Gh-Telomeric DNA:ShelterinArrowR-HSA-9629195 (Reactome)
NEIL3:Gh-Telomeric DNA:ShelterinR-HSA-9629216 (Reactome)
NEIL3:Gh-Telomeric DNA:Shelterinmim-catalysisR-HSA-9629216 (Reactome)
NEIL3:Sp-DNAArrowR-HSA-9629365 (Reactome)
NEIL3:Sp-DNAR-HSA-9629492 (Reactome)
NEIL3:Sp-DNAmim-catalysisR-HSA-9629492 (Reactome)
NEIL3:Sp-Telomeric DNA:ShelterinArrowR-HSA-9629373 (Reactome)
NEIL3:Sp-Telomeric DNA:ShelterinR-HSA-9629483 (Reactome)
NEIL3:Sp-Telomeric DNA:Shelterinmim-catalysisR-HSA-9629483 (Reactome)
NEIL3:Tg-DNAArrowR-HSA-9629369 (Reactome)
NEIL3:Tg-DNAR-HSA-9629499 (Reactome)
NEIL3:Tg-DNAmim-catalysisR-HSA-9629499 (Reactome)
NEIL3:Tg-Telomeric DNA:ShelterinArrowR-HSA-9629372 (Reactome)
NEIL3:Tg-Telomeric DNA:ShelterinR-HSA-9629497 (Reactome)
NEIL3:Tg-Telomeric DNA:Shelterinmim-catalysisR-HSA-9629497 (Reactome)
NEIL3R-HSA-9629195 (Reactome)
NEIL3R-HSA-9629358 (Reactome)
NEIL3R-HSA-9629365 (Reactome)
NEIL3R-HSA-9629369 (Reactome)
NEIL3R-HSA-9629372 (Reactome)
NEIL3R-HSA-9629373 (Reactome)
NEIL3mim-catalysisR-HSA-9635996 (Reactome)
NEIL3mim-catalysisR-HSA-9636008 (Reactome)
NTHL1:AP-dsDNAArrowR-HSA-110224 (Reactome)
NTHL1:AP-dsDNAArrowR-HSA-110226 (Reactome)
NTHL1:AP-dsDNAArrowR-HSA-110227 (Reactome)
NTHL1:AP-dsDNAArrowR-HSA-110229 (Reactome)
NTHL1:Cg-dsDNAArrowR-HSA-110208 (Reactome)
NTHL1:Cg-dsDNAR-HSA-110226 (Reactome)
NTHL1:Cg-dsDNAmim-catalysisR-HSA-110226 (Reactome)
NTHL1:DHU-dsDNAArrowR-HSA-110212 (Reactome)
NTHL1:DHU-dsDNAR-HSA-110227 (Reactome)
NTHL1:DHU-dsDNAmim-catalysisR-HSA-110227 (Reactome)
NTHL1:FapyA-dsDNAArrowR-HSA-110213 (Reactome)
NTHL1:FapyA-dsDNAR-HSA-110229 (Reactome)
NTHL1:FapyA-dsDNAmim-catalysisR-HSA-110229 (Reactome)
NTHL1:Tg-dsDNAArrowR-HSA-110211 (Reactome)
NTHL1:Tg-dsDNAR-HSA-110224 (Reactome)
NTHL1:Tg-dsDNAmim-catalysisR-HSA-110224 (Reactome)
NTHL1R-HSA-110208 (Reactome)
NTHL1R-HSA-110211 (Reactome)
NTHL1R-HSA-110212 (Reactome)
NTHL1R-HSA-110213 (Reactome)
OGG1 S326CR-HSA-9658813 (Reactome)
OGG1:(8oxoG:Cyt)-dsDNAArrowR-HSA-110235 (Reactome)
OGG1:(8oxoG:Cyt)-dsDNAR-HSA-110243 (Reactome)
OGG1:(8oxoG:Cyt)-dsDNAmim-catalysisR-HSA-110243 (Reactome)
OGG1:AP-dsDNAArrowR-HSA-110243 (Reactome)
OGG1:AP-dsDNAArrowR-HSA-110244 (Reactome)
OGG1:FapyG-dsDNAArrowR-HSA-110236 (Reactome)
OGG1:FapyG-dsDNAR-HSA-110244 (Reactome)
OGG1:FapyG-dsDNAmim-catalysisR-HSA-110244 (Reactome)
OGG1R-HSA-110235 (Reactome)
OGG1R-HSA-110236 (Reactome)
OGG1betaArrowR-HSA-9656947 (Reactome)
OGG1betaR-HSA-9656947 (Reactome)
R-HSA-110156 (Reactome) UNG, a uracil DNA glycosylase, recognizes DNA damage that converts cytosine to uracil through deamination, creating a U:G base pair. UNG also recognizes U:A base pairs created when dUMP is misincorporated during DNA synthesis. The UNG transcription isoform 2, labeled as UNG-1 and also known as UDG2, functions in the nucleus, while the UNG transcription isoform 1, which is not annotated here, functions in mitochondria (Parikh et al. 1998).
R-HSA-110157 (Reactome) UNG, a uracil DNA glycosylase, recognizes 5-hydroxyuracil created by DNA damaging oxidation of cytosine (Dizdaroglu et al. 1996).
R-HSA-110158 (Reactome) TDG is a G/T mismatch-specific thymine DNA glycosylase that recognizes and binds thymine mispaired with guanine. G:T mispairs occur when 5-methylcytosine deaminates into thymine. Besides being mutagenic, conversion of 5-methylcytosine into thymine may also affect gene expression by changing the DNA methylation pattern. TDG shows a preference for G:T mispairs in CpG islands (Neddermann and Jiricny 1993, Neddermann et al. 1996). TDG ortholog knockout is embryonic lethal in mice, where it is implicated in protection of CpG islands from hypermethylation and active demethylation of tissue-specific developmentally and homornally regulated promoters and enhancers (Cortellino et al. 2011).
R-HSA-110159 (Reactome) TDG, a G/T mismatch-specific thymine DNA glycosylase, recognizes and binds uracil mispaired with guanine. G:U mispairs occur after cytosine undergoes spontaneous deamination and converts to uracil (Neddermann and Jiricny 1993, Hashimoto et al. 2012).
R-HSA-110164 (Reactome) SMUG1, a single-strand selective monofunctional uracil DNA glycosylase, recognizes and binds uracil residues in the DNA. SMUG1 shows a preference for single-strand DNA, although it also recognizes A:U and G:U pairs in double-strand DNA (Haushalter et al. 1999, Masaoka et al. 2003).
R-HSA-110171 (Reactome) MBD4 (MED1; methyl-CpG-binding domain protein 4) recognizes and binds uracil mispaired with guanine at non-methylated CpG islands. G:U mispairs are generated by oxidative deamination of cytosine (Petronzelli et al. 2000).
R-HSA-110172 (Reactome) MBD4 (MED1; methyl-CpG-binding domain protein 4) recognizes and binds thymine mispaired with guanine in CpG islands. G:T mispair is generated by oxidative deamination of 5-methylcytosine (Petronzelli et al. 2000). MBD4 contains two DNA binding domains: an N-terminal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific glycosylase domain (Wu et al. 2003). MBD4 catalytic domain uses a flipping mechanism to extrude the thymine from the helix and thereby detect G:T mispairs (Morera et al. 2012).
R-HSA-110208 (Reactome) NTHL1 (hNTH1; endonuclease III-like protein 1) recognizes and binds cytosine glycol (5,6-dihydroxycytosine), a product of DNA damaging cytosine oxidation (Dizdaroglu et al. 1999).
R-HSA-110210 (Reactome) TDG, a G/T mismatch-specific DNA glycosylase, recognizes and binds ethenocytosine paired with guanine. Ethenocytosine is an etheno-adduct of cytosine, generated by peroxidation of the cytosine ring (Hang et al. 1998).
R-HSA-110211 (Reactome) NTHL1 (hNTH1; endonuclease III-like protein 1) is a human ortholog of E. coli DNA repair enzyme Nth1. NTHL1 recognizes and binds thymine glycol, generated by thymine oxidation (Ikeda et al. 1998, Dizdaroglu et al. 1999, Myabe et al. 2002).
R-HSA-110212 (Reactome) NTHL1 (hNTH1; endonuclease III-like protein 1) recognizes and binds dihydrouracil paired with guanine in the double strand DNA (Ikeda et al. 1998). 5,6-dihydrouracil is a form of DNA damage produced by ionizing radiation under anoxic conditions, so that cytosine is deaminated and C5-C6 double bond in the pyrimidine ring is saturated with hydrogen. 5,6-dihydrouracil mispairs with adenine, leading to G:C -> A:T transitions (Dizdaroglu et al. 1993).
R-HSA-110213 (Reactome) NTHL1 (hNTH1; endonuclease III-like protein 1) recognizes and binds 4,6-diamino-5-formamidopyrimidine (FapyA), an imidazole ring-opened adenine derivative (Luna et al. 2000, Hu et al. 2005). FapyA is formed during oxidative stress when hydroxyl radicals attack adenine, followed by one-electron reduction of the hydroxyl adduct radicals (Evans et al. 2004).
R-HSA-110215 (Reactome) UNG, a DNA uracil glycosylase, excises the uracil base generated when a DNA damaging agent deaminates cytosine (creating a U:G base pair) or when dUMP is misincorporated during DNA synthesis (creating a U:A base pair). UNG scans the DNA for damage by kinking and compressing the DNA phosphate backbone with a serine-proline pinch, which causes uracil to flip out at the phosphate-sugar junction into the recognition pocket of the UNG. The subsequent excision of uracil creates an apurinic/apyrimidinic (AP) site in the DNA (Parikh et al. 1998).
R-HSA-110217 (Reactome) UNG, a DNA uracil glycosylase, cleaves 5-hydroxyuracil, generated by cytosine oxidation, from the DNA phosphate backbone, creating an apurinic/apyrimidinic (AP) site in the DNA (Dizdaroglu et al. 1996).
R-HSA-110218 (Reactome) TDG is a G/T mismatch-specific thymine DNA glycosylase that cleaves uracil mispaired with guanine as a consequence of cytosine deamination, leaving an apurinic/apyrimidinic (AP) site in the DNA (Neddermann and Jiricny 1993, Hashimoto et al. 2012).
R-HSA-110219 (Reactome) TDG, a G/T mismatch-specific thymine DNA glycosylase, cleaves thymine, generated through 5-methylcytosine deamination and mispaired with guanine, from the DNA sugar-phosphate backbone, leaving an apurinic/apyrimidinic (AP) site (Neddermann and Jiricny 1993, Neddermann et al. 1996).
R-HSA-110221 (Reactome) SMUG1 is a single-strand selective monofunctional uracil DNA glycosylase that cleaves uracil from the sugar phosphate backbone of DNA. SMUG1 has the highest preference for uracil in single strand DNA, followed by A:U and then G:U pairs in double strand DNA (Haushalter et al. 1999, Masaoka et al. 2003).
R-HSA-110224 (Reactome) NTHL1 (hNTH1; endonuclease III-like protein 1) cleaves oxidized thymine in the form of thymine glycol from DNA sugar-phosphate backbone and acts as a beta lyase to cleave the DNA sugar-phosphate backbone 5' to the apurinic/apyrimidinic (AP) site generated in the glycolysis step (Ikeda et al. 1998, Dizdaroglu et al. 1999, Miyabe et al. 2002).
R-HSA-110226 (Reactome) NTHL1 (hNTH1; endonuclease III-like protein 1) acts as a DNA glycosylase to cleave cytosine glycol (5,6-dihydroxycytosine), a product of cytosine oxidation, from the DNA sugar-phosphate backbone, creating an apurinic/apyrimidinic (AP) site (Dizdaroglu et al. 1999). After the AP site is created, NTHL1 can act as a beta lyase to cleave the DNA strand 5' to the AP site (Ikeda et al. 1998).
R-HSA-110227 (Reactome) NTHL1 (hNTH1; endonuclease III-like protein 1) acts as a DNA glycosylase to cleave 5,6-dihydrouracil, formed by deamination of cytosine with partial saturation of the pyrimidine ring (Dizdaroglu et al. 1993), from the DNA sugar-phosphate backbone, and leaves an apurinic/apyrimidinic (AP) site. After the AP site is created, NTHL1 acts as a beta lyase to cleave the DNA strand 5' to the AP site (Ikeda et al. 1998).
R-HSA-110229 (Reactome) NTHL1 (hNTH1; endonuclease III-like protein 1) acts as a FapyA DNA glycosylase to cleave FapyA (4,6-diamino-5-formamidopyrimidine), an imidazole ring-opened adenine derivative formed during oxidative stress (Evans et al. 2004), from the DNA sugar phosphate backbone, creating an apurinic/apyrimidinic (AP) site (Luna et al. 2000, Hu et al. 2005). After the AP site is created, NTHL1 can act as a beta lyase to cleave the DNA strand 5' to the AP site (Ikeda et al. 1998).
R-HSA-110231 (Reactome) MBD4 (MED1; methyl-CpG-binding domain protein 4) cleaves uracil mispaired with guanine at non-methylated CpG islands, leaving an apurinic/apyrimidinic (AP) DNA site (Petronzelli et al. 2000).
R-HSA-110232 (Reactome) MBD4 (MED1; methyl-CpG-binding domain protein 4) cleaves thymine mispaired with guanine at CpG islands, which is a consequence of the oxidative deamination of 5-methylcytosine (Petronzelli et al. 2000). The MBD4 catalytic site is located at the C-terminus (Wu et al. 2003). MBD4 may be involved in the maintenance of genomic stability and active DNA demethylation.
R-HSA-110234 (Reactome) TDG, a G/T mismatch-specific DNA glycosylase, cleaves ethenocytosine mispaired with guanine, leaving an apurinic/apyrimidinic (AP) site in the DNA (Hang et al. 1998).
R-HSA-110235 (Reactome) OGG1 is an N-glycosylase and DNA lyase that recognizes oxidative DNA damage in the form of 8-oxoguanine (8oxoG). 8oxoG forms at a high frequency in the DNA of aerobic organisms. As 8oxoG has a preference for mispairing with adenine, it is one of the underlying causes of G:C -> T:A transversions, the type of mutation frequently found in cancer (Aburatani et al. 1997, Rosenquist et al. 1997, Roldan-Arjona et al. 1997, Radicella et al. 1997, Bjoras et al. 1997, Bruner et al. 2000).
R-HSA-110236 (Reactome) Besides recognizing 8-oxoguanine in the oxidation-damaged DNA, OGG1 also recognizes guanine derivative FapyG (Hu et al. 2005). FapyG stands for 2,6-diamino-4-hydroxy-5-formamidopyrimidine, a ring-opened lesion that forms when hydroxyl radicals attack guanine, followed by one-electron reduction of the hydroxyl adduct radicals (Evans et al. 2004).
R-HSA-110237 (Reactome) MUTYH (MYH), an adenine DNA glycosylase, was cloned as the human homolog of E.coli DNA repair gene mutY (Slupska et al. 1996). MUTYH recognizes adenines and 2-hydroxyadenines on the newly synthesized DNA strand mispaired with guanines or 8-oxoguanines on the template strand (Ohtsubo et al. 2000, Boldogh et al. 2001).
R-HSA-110238 (Reactome) MPG, a 3-methyladenine DNA glycosylase, recognizes alkylation damage of DNA in the form of 3-methyladenine (Samson et al. 1991, Vickers et al. 1993, O'Connor 1993, Lau et al. 1998).
R-HSA-110239 (Reactome) MPG, a 3-methyladenine DNA glycosylase, recognizes alkylation damage of DNA in the form of 1,N6-ethenoadenine (Dosanjh et al. 1994, Saparbaev et al. 1995).
R-HSA-110240 (Reactome) MPG, a 3-methyladenine DNA glycosylase, recognizes alkylation damage of DNA in the form of hypoxanthine (Saparbaev and Laval 1994).
R-HSA-110243 (Reactome) OGG1 acts as an N-glycosylase and a DNA beta-lyase to excise 8-oxoguanine (8oxoG) from dsDNA, creating an apurinic/apyrimidinic (AP) site, and to nick the DNA sugar-phosphate backbone 5' to the AP site, creating a single strand break (SSB) (Aburatani et al. 1997, Rosenquist et al. 1997, Roldan-Arjona et al. 1997, Radicella et al. 1997, Bjoras et al. 1997, Bruner et al. 2000).
R-HSA-110244 (Reactome) OGG1 acts as an N-glycosylase and a DNA beta-lyase to excise 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), a one electron reduction product of guanine, from the DNA and to nickk the sugar-phosphate backbone 5' to the created apurinic/apyrimidinic (AP) site (Hu et al. 2005).
R-HSA-110246 (Reactome) MUTYH (MYH) functions as an adenine DNA glycosylase and removes adenines and 2-hydroxyadenines on the newly synthesized DNA strand mispaired with guanines or 8-oxoguanines on the template strand (Ohtsubo et al. 2000, Boldogh et al. 2001). Under physiological conditions, the preferred substrate for both MUTYH isoforms, MUTYH-3 (alpha-3) and MUTYH-6 (gamma-3) is adenine mispaired with 8-oxoguanine (OGUA:Ade) (Shinmura et al. 2000).
R-HSA-110248 (Reactome) MPG, a 3-methyladenine DNA glycosylase, removes the alkylated DNA base 3-methyladenine (Samson et al. 1991, Vickers et al. 1993, O'Connor 1993). MPG slides along DNA and scans for alkylated bases by inducing cooperative distortions of the double helix that expose nucleotides to the active site of the enzyme (Lau et al. 1998). MPG interacts with both alkylated and unmodified nucleotides and, at a low rate, cleaves unmodified bases (Berdal et al. 1998).
R-HSA-110250 (Reactome) MPG, a 3-methyladenine DNA glycosylase, cleaves the alkylated DNA base 1,N6-ethenoadenine (Dosanjh et al. 1994, Saparbaev et al. 1995).
R-HSA-110251 (Reactome) MPG, 3-methyladenine DNA glycosylase, cleaves the alkylated DNA base hypoxanthine (Saparbaev and Laval 1994).
R-HSA-5649655 (Reactome) NEIL1 (endonuclease 8-like protein 1), an enzyme with dual DNA glycosylase and beta/delta lyase activity, recognizes and binds DNA damage in the form of dihydrouracil (DHU) (Hazra et al. 2002). 5,6-dihydrouracil is a form of DNA damage produced by ionizing radiation under anoxic conditions, so that cytosine is deaminated and C5-C6 double bond in the pyrimidine ring is saturated with hydrogen. 5,6-dihydrouracil mispairs with adenine, leading to G:C -> A:T transitions (Dizdaroglu et al. 1993).
R-HSA-5649657 (Reactome) NEIL1 (endonuclease 8-like protein 1) recognizes guanine derivative FapyG (Hazra et al. 2002). FapyG stands for 2,6-diamino-4-hydroxy-5-formamidopyrimidine, a ring-opened lesion that forms when hydroxyl radicals attack guanine, followed by one-electron reduction of the hydroxyl adduct radicals (Evans et al. 2004).
R-HSA-5649658 (Reactome) NEIL1 acts as a DNA glycosylase to remove dihydrouracil (DHU) from damaged DNA (Hazra et al. 2002).
R-HSA-5649664 (Reactome) NEIL1 acts as a DNA glycosylase to remove FapyG from damaged DNA, producing an AP (apurinic/apyrimidinic) site (Hazra et al. 2002).
R-HSA-5649671 (Reactome) NEIL1 (endonuclease 8-like protein 1) recognizes and binds 4,6-diamino-5-formamidopyrimidine (FapyA), an imidazole ring-opened adenine derivative (Hazra et al. 2002). FapyA is formed during oxidative stress when hydroxyl radicals attack adenine, followed by one-electron reduction of the hydroxyl adduct radicals (Evans et al. 2004).
R-HSA-5649673 (Reactome) NEIL1 acts as a DNA glycosylase to remove FapyA from damaged DNA, producing an AP (apurinic/apyrimidinic) site (Hazra et al. 2002).
R-HSA-5649681 (Reactome) NEIL2 acts as a DNA glycosylase to cleave 5'-hydroxyuracil from damaged DNA, producing an AP (apurinic/apyrimidinic) site (Hazra et al. 2002).
R-HSA-5649686 (Reactome) NEIL2 (endonuclease 8-like protein 2), an enzyme with a dual DNA glysocylase and beta/delta lyase activity, recognizes 5-hydroxyuracil (5-OHU) created by DNA damaging oxidation of cytosine (Hazra et al. 2002).
R-HSA-9629149 (Reactome) NEIL1 cleaves thymine glycol from damaged DNA, creating an abasic (AP) site (Zhu et al. 2016).
R-HSA-9629154 (Reactome) A DNA glycosylase NEIL1 binds to thymin glycol (Tg) in damaged DNA (Zhu et al. 2016).
R-HSA-9629195 (Reactome) NEIL3, a DNA glycosylase of the NEIL family, recognizes and binds to damaged telomeric DNA containing 5-guanidinohydantoin (Gh). Binding of NEIL3 to telomeric DNA is facilitated by interaction of NEIL3 with TRF1, a component of the telomeric shelterin complex (Zhou et al. 2017).
R-HSA-9629216 (Reactome) NEIL3 cleaves oxidatively damaged guanine, in the form of 5-guanidinohydantoin (Gh), from telomeric DNA, creating and abasic (AP) site. NEIL3 expression is highest in late S phase, overlapping with telomeric DNA synthesis. NEIL3 localization at telomeres increases in response to oxidative stress. NEIL3 knockdown results in telomere dysfunction, which can lead to metaphase arrest or increased DNA bridging during anaphase. NEIL3 interacts with enzymes involved in PCNA-dependent long patch base excision repair (BER) of AP sites, but the exact mechanism of NEIL3-mediated long patch BER of damaged telomeric DNA has not been elucidated (Zhou et al. 2017).
Besides telomeres, NEIL3 is also enriched in replisomes in the S phase of the cell cycle, co-localizing with RPA in replication foci (Bjoras et al. 2017).
Expression of the NEIL3 gene in the S phase may be induced by E2F transcription factors, as the NEIL3 promoter contains E2F binding elements (Neurauter et al. 2012).
R-HSA-9629358 (Reactome) NEIL3 recognizes and binds to oxidatively damaged guanine base in the form of 5-guanidinohydantoin (Gh), with a preference for single-strand DNA (ssDNA) over double-strand DNA (dsDNA) (Krokeide et al. 2013). NEIL3 also cleaves Gh in G4 quadruplex DNA formed by telomere sequences (Zhou et al. 2013).
R-HSA-9629365 (Reactome) NEIL3 recognizes DNA damage in the form of guanine oxidized to spiroiminodihydantoin (Sp), with a preference for single-strand DNA (ssDNA) over double-strand DNA (dsDNA) (Liu et al. 2012, Krokeide et al. 2013).
R-HSA-9629369 (Reactome) NEIL3 recognizes oxidatively damaged thymine in the form of thymine glycol (Tg) in DNA, with a preference for single strand DNA (ssDNA) over double-strand DNA (dsDNA) (Liu et al. 2012, Zhou et al. 2013).
R-HSA-9629372 (Reactome) NEIL3 recognizes damaged thymine in the form of thymine glycol (Tg) in telomeric DNA (Zhou et al. 2013).
R-HSA-9629373 (Reactome) NEIL3 recognizes telomeric DNA damage in the form of spiroiminodihydantoin, which is generated by oxidation of guanine (Zhou et al. 2013).
R-HSA-9629470 (Reactome) NEIL3 cleaves oxidatively damaged guanin in the form of 5-guanidinohydantoin with a preference for single-strand DNA (ssDNA) over double-strand DNA (dsDNA), producing and abasic site (AP site) (Liu et al. 2010, Krokeide et al. 2013).
R-HSA-9629483 (Reactome) NEIL3 cleaves oxidatively damaged guanine in the form of spiroiminodihydantoin (Sp) form telomeric DNA, leaving an abasic (AP) site (Zhou et al. 2013).
R-HSA-9629492 (Reactome) NEIL3 cleaves oxidatively damaged guanine in the form of spiroiminodihydantoin (Sp) with a preference for single-strand DNA (ssDNA) over double-strand DNA (dsDNA), producing an abasic (AP) site (Krokeide et al. 2013). The preference of NEIL3 for ssDNA was structurally explained using mouse Neil3 (Liu et al. 2013).
R-HSA-9629497 (Reactome) NEIL3 cleaves oxidatively damaged thymine in the form of thymine glycol (Tg) from telomeric DNA, producing an abasic (AP) site (Zhou et al. 2013). NEIL3 prefers Tg damages in telomeric DNA over random sequences.
R-HSA-9629499 (Reactome) NEIL3 cleaves oxidatively damaged thymine in the form of thymine glycol (Tg) with a preference for single strand DNA (ssDNA) over double strand DNA (dsDNA), producing an abasic (AP) site (Liu et al. 2010, Zhou et al. 2013).
R-HSA-9629918 (Reactome) NEIL1 localizes to the nucleus. The nuclear localization signal (NLS) is predicted to be located at positions 359-378 of NEIL1, but the mechanism of NEIL1 translocation from the cytosol to the nucleus has not been elucidated (Shinmura et al. 2015).
R-HSA-9635996 (Reactome) NEIL3 can resolve interstrand crosslinks (ICLs) in replicating DNA, induced by intercalating DNA damaging agent psoralen, which cross links thymine bases from two replicated double strand DNAs (dsDNAs). NEIL3-mediated cleavage of psoralen-induced ICLs results in one dsDNA molecule with an abasic site (AP site) and one dsDNA molecule with a thymine-psoralen adduct. NEIL3-mediated resolution of ICLs is independent of the Fanconia anemia (FA) pathway and was demonstrated for both Xenopus (Semlow et al. 2016) and human (Martin et al. 2017) NEIL3.
R-HSA-9636008 (Reactome) Based on studies in Xenopus, NEIL3 is able to resolve abasic site-induced interstrand crosslinks (AP-ICLs), that form when an aldehyde group of the AP site reacts with the amine of a nucleic acid base, usually adenine, on the opposite strand. NEIL3-mediated unhooking of AP-ICLs is independent of the Fanconi anemia (FA) pathway (Semlow et al. 2016).
R-HSA-9656947 (Reactome) OGG1 splicing isoform beta contains a mitochondrial targeting sequence at the N-terminus and lacks the C-terminal nuclear localization signal. OGG1beta localizes to mitochondria (Nishioka et al. 1999).
R-HSA-9658813 (Reactome) OGG1 S326C is a frequent genetic polymorphism, present in more than 20% of people of European and Asian descent (Janssen et al. 2001, Moritz et al. 2014). On its own, substitution of serine with cysteine at position 326 does not affect the catalytic activity of OGG1 (Dherin et al. 1999, Janssen et al. 2001, Moritz et al. 2014). However, under oxidative stress, OGG1 S326C variant is more susceptible to oxidation or nitrosation than the wild type enzyme (Moritz et al. 2014), which diminishes catalytic activity and leads to accumulation of genomic 8-oxoguanine (8oxoG) (Yamane et al. 2004, Moritz et al. 2014) under conditions of oxidative stress (Kershaw and Hodges 2012). This may be due to decreased specificity of OGG1 S326C for 8oxoG and FapyG (Dherin et al. 1999).
The frequency of OGG1 S326C allele is increased in NSCLC patients and the level of 8-oxodG is higher in lung tissue and leukocytes of these patients (Janik et al. 2011). OGG1 S326C variant is associated with an increased breast cancer risk (Ali et al. 2015).
ROSR-HSA-9658813 (Reactome)
SMUG1:AP-DNAArrowR-HSA-110221 (Reactome)
SMUG1:Ura-DNAArrowR-HSA-110164 (Reactome)
SMUG1:Ura-DNAR-HSA-110221 (Reactome)
SMUG1:Ura-DNAmim-catalysisR-HSA-110221 (Reactome)
SMUG1R-HSA-110164 (Reactome)
SOH-C326-OGG1 S326CArrowR-HSA-9658813 (Reactome)
Sp-DNAR-HSA-9629365 (Reactome)
Sp-Telomeric DNA:ShelterinR-HSA-9629373 (Reactome)
SpArrowR-HSA-9629483 (Reactome)
SpArrowR-HSA-9629492 (Reactome)
TDG:(T:G)-dsDNAArrowR-HSA-110158 (Reactome)
TDG:(T:G)-dsDNAR-HSA-110219 (Reactome)
TDG:(T:G)-dsDNAmim-catalysisR-HSA-110219 (Reactome)
TDG:(Ura:Gua)-dsDNAArrowR-HSA-110159 (Reactome)
TDG:(Ura:Gua)-dsDNAR-HSA-110218 (Reactome)
TDG:(Ura:Gua)-dsDNAmim-catalysisR-HSA-110218 (Reactome)
TDG:AP-dsDNAArrowR-HSA-110218 (Reactome)
TDG:AP-dsDNAArrowR-HSA-110219 (Reactome)
TDG:AP-dsDNAArrowR-HSA-110234 (Reactome)
TDG:EtCYT-dsDNAArrowR-HSA-110210 (Reactome)
TDG:EtCYT-dsDNAR-HSA-110234 (Reactome)
TDG:EtCYT-dsDNAmim-catalysisR-HSA-110234 (Reactome)
TDGR-HSA-110158 (Reactome)
TDGR-HSA-110159 (Reactome)
TDGR-HSA-110210 (Reactome)
Tg-DNAR-HSA-9629369 (Reactome)
Tg-Telomeric DNA:ShelterinR-HSA-9629372 (Reactome)
Tg-dsDNAR-HSA-110211 (Reactome)
Tg-dsDNAR-HSA-9629154 (Reactome)
TgArrowR-HSA-110224 (Reactome)
TgArrowR-HSA-9629149 (Reactome)
TgArrowR-HSA-9629497 (Reactome)
TgArrowR-HSA-9629499 (Reactome)
ThyArrowR-HSA-110219 (Reactome)
ThyArrowR-HSA-110232 (Reactome)
UNG-1:(Ura:Gua)-dsDNAArrowR-HSA-110156 (Reactome)
UNG-1:(Ura:Gua)-dsDNAR-HSA-110215 (Reactome)
UNG-1:(Ura:Gua)-dsDNAmim-catalysisR-HSA-110215 (Reactome)
UNG-1:5-OHU-dsDNAArrowR-HSA-110157 (Reactome)
UNG-1:5-OHU-dsDNAR-HSA-110217 (Reactome)
UNG-1:5-OHU-dsDNAmim-catalysisR-HSA-110217 (Reactome)
UNG-1:AP-dsDNAArrowR-HSA-110215 (Reactome)
UNG-1:AP-dsDNAArrowR-HSA-110217 (Reactome)
UNG-1R-HSA-110156 (Reactome)
UNG-1R-HSA-110157 (Reactome)
Ura-DNAR-HSA-110164 (Reactome)
UraArrowR-HSA-110215 (Reactome)
UraArrowR-HSA-110218 (Reactome)
UraArrowR-HSA-110221 (Reactome)
UraArrowR-HSA-110231 (Reactome)
dsDNA-thymine-psoralen-thymine-dsDNAR-HSA-9635996 (Reactome)
thymine-psoralen-thymine-dsDNAArrowR-HSA-9635996 (Reactome)
Personal tools