Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 16:22, 25 January 2021 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
3, 6-8, 10...23, 341, 2, 13, 17, 19341, 4, 15, 17, 20...13341423, 27, 34125mitochondrial matrixMRPL42 MRPL14 MRPS2 Asp-tRNA(Asp) ERAL1 MRPS35 MRPS24 MRPS18C DAP3 MRPS18C Mitochondrial 12S rRNA MRPL47 28S ribosomalsubunit:MTIF3MRPL47 MRPS28 MRPL12 MRPL43 MRPL15 MRPL40 peptidyl-tRNA with elongated peptide MRPL4 MRPS27 MRPL54 MRPS6 tRNA(Ser) MRPS30 Phe-tRNA(Phe) MRPS30 MRPL37 Leu-tRNA(Leu) MRPS11 MRPL12 PTCD3 mRNA ERAL1 MRPL28 Tyr-tRNA(Tyr) MRPL14 MRPL41 MRPS28 10-formyl-THFMRPL53 tRNAMRPL42 MRPS2 MRPS33 MTIF2:GTPMRPS30 Mitochondrial 12S rRNA Mitochondrial 16S rRNA MRPL54 MRPS34 MRPS28 MRPL39 MRPL46 MRPL4 mRNA MRPS34 MRPS25 MRPS25 MRPL51 MRPL43 MRPL50 tRNA(His) MRPL50 GTP MRPL1 MRPL35 Gln-tRNA(Gln) MRPS16 MRPS15 MRPL9 CHCHD1 Cys-tRNA(Cys) MRPL40 MRPS25 MRPL1 MRPL16 MRPL10 MRPS18A MRPL32 MRPL27 MRPL3 MRPS35 DAP3 MRPL55 MRPL20 DAP3 tRNA(Cys) MRPL2 MRPL45 MRPS12 GADD45GIP1 MRPL15 Mitochondrial 12S rRNA MRPL24 MRPL42 MRPS9 GFM2 MRPS12 Mitochondrial 16S rRNA MRPS27 MRPL11 tRNA(His) MRPL51 MRPS31 MRPS14 tRNA(Phe) MRPL42 tRNA(Leu) MRPL45 MRPL19 Ile-tRNA(Ile) MRPS34 MRPS6 MRPL17 MRPS9 Mitochondrial 12S rRNA MRPL12 MRPL51 Thr-tRNA(Thr) MRPL36 tRNA(Ala) MRPS34 MRPS24 MRPL13 MRPS10 MRPS35 GADD45GIP1 MRPS23 MRPL30 Mitochondrial 12S rRNA MRPL36 MRPS11 mRNA MRPS14 MRPL52 MRPS31 MRPS5 MRPS24 AURKAIP1 MRPL48 MRPS14 MRPL14 ICT1 MTIF2 MRPS22 MRPS10 MRPL34 MRPL47 MRPS6 MRPS7 MRPS33 MRPS24 GTP MRPL54 ICT1 MRPS18A MTIF3MRPS6 tRNA(Phe) MRPS27 tRNA(Trp) MRPL28 MRPS10 MRPS18B MRPS12 MRPL22 MRPS15 MRPS16 MRPL20 GDPMRPL38 MRPL28 tRNA(Thr) MRPS33 Gly-tRNA(Gly) MRPS24 MRPL27 Asn-tRNA(Asn) MRPS10 MRPL45 GADD45GIP1 MRPL22 MRPL48 MRPS12 MRPL28 MRPS33 MRPS27 THFMRPL39 His-tRNA(His) Asp-tRNA(Asp) MRPS24 MRPS24 tRNA(Gly) MRPL2 tRNA(Cys) MRPS36 MRPS23 MRPS9 MRPL38 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPS34 MRPS35 MRPS16 MRPL52 MRPS26 MRPS25 MRPL30 MRPL37 MRPS30 MRPL44 GFM2 MRPS17 MRPL41 MTFMTMRPS14 MRPS30 MRPS30 tRNA(Met) MRPL15 MRPL23 MRPL46 Tyr-tRNA(Tyr) MRPL18 MRPS18C Arg-tRNA(Arg) MRPL10 Mitochondrial 12S rRNA MRPS21 MRPL45 MRPL35 MRPL46 MRPS34 MRPS18B MRPL51 MRPL48 MRPL38 MRPL38 MRPL50 tRNA(Ser) PTCD3 tRNA(Cys) DAP3 ICT1 AURKAIP1 MRPL57 tRNA(Val) Thr-tRNA(Thr) MRPL27 GTP MRPS30 tRNA(Ala) tRNA(Arg) MRPS31 MRPL42 OXA1L MRPS14 MRPL10 MRPS14 MRPL10 MRPL17 MRPL43 MRPS25 MRPL49 MRPL57 MRPL10 MRPL41 MRPS14 GTP MRPL49 MRPL42 MRPS31 MRPS24 MRPS21 MRPL19 MRPS30 mRNA MRPL32 Ser-tRNA(Ser) MRPS26 MRPS21 DAP3 Mitochondrial 12S rRNA Mitochondrial 16S rRNA MRPL24 MRPL51 tRNA(Glu) MRPL4 MRPS31 MRPL32 Lys-tRNA(Lys) Gly-tRNA(Gly) MRPL9 tRNA(Pro) MRPS33 Met-tRNA(Met)MRPS16 MRPL9 MRPS34 MRPS18C MRPS10 ERAL1 MRPL1 MRPL46 MRPL47 MRPL51 MRPS22 fMet-tRNA(fMet) MRPS6 MRPL57 MRPS30 ERAL1 TUFM MRPS9 MRPS6 MRPL34 MRPL24 MT-TV MRPL16 MRPL44 MRPS2 PTCD3 MRPS33 Ile-tRNA(Ile) MRPL23 MRPL45 MRPL3 CHCHD1 MRPL28 TUFM:GTP:aminoacyl-tRNAMRPS2 MRPL18 MRPL11 MRPS23 MRPL40 tRNA(Met) MRPS7 GFM1:GDPMitochondrial 16S rRNA MRPL22 MRPS26 MRPS2 MRPL50 MRPS18B MRPL44 MRPL22 MRRF MRPL37 tRNA(Thr) Cys-tRNA(Cys) tRNA(Val) MRPL3 MRPL37 MRPL10 MRPS7 MRPL17 MRPS25 Arg-tRNA(Arg) GTPMRPL50 Mitochondrial 12S rRNA MRPL2 MRPS22 MRPL43 DAP3 MRPS24 MTIF2 MRPL23 MRPS7 MRPL46 tRNA(Gly) Mitochondrial 16S rRNA MRPS6 MRPL40 MRPL19 AURKAIP1 MRPL11 TSFMMRPS22 MRPS15 MRPS31 tRNA(Ile) MRPL21 MRPL45 MRPS6 CHCHD1 Glu-tRNA(Glu) 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAICT1 MRPL9 MRPL30 MRPL53 MT-TV MRPL38 MRPL33 MRPL1 28S ribosomalsubunitMRPL39 MRPL37 MRPL27 55Sribosome:mRNA:tRNA:MRRFMRPL23 MRPS21 MRPS34 MRPL52 MRPL34 MRPL52 MRPS17 AURKAIP1 MRPL33 MRPL53 MRPS18A MRPS31 tRNA(Asp) Phe-tRNA(Phe) MRPL27 MRPS5 MRPS18A ICT1 AURKAIP1 MRPL21 MRPL49 CHCHD1 39S ribosomalsubunitMRPL44 MTIF3 MRPL28 MRPL52 MRPL28 Leu-tRNA(Leu) fMet-tRNA(fMet)MRPS6 MRPS18B MRPL18 CHCHD1 MRPS22 MRPL2 MRPL23 MRPS11 DAP3 MRPS2 MRPS36 MRPL2 MRPL19 MRPL30 Mitochondrial 16S rRNA Cys-tRNA(Cys) MRPL3 MRPS24 MRPL30 MRPS11 MRPS17 MRPL13 MRPL14 MRPS36 MRPL13 MRPS9 MRPL22 MRPS9 MRPL20 MRPL23 MRRFMRPL15 MRPS5 MRPS26 MRPS30 MRPS6 MRPS35 MRPS30 MRPL10 MRPL30 MRPL12 MRPL54 MRPS25 MRPL23 MRPS7 MRPS7 MRPS21 Leu-tRNA(Leu) MRPS22 OXA1L tRNA(Leu) MRPL1 MRPS22 MRPL27 MRPS16 tRNA(Asp) MRPS33 MRPL47 MRPL38 MRPL13 OXA1L MRPL28 MRPL38 MRPL43 MRPL34 MRPL32 MRPS23 MRPS22 MRPS15 MRPL48 MRPS2 Mitochondrial 16S rRNA MRPS22 MRPS34 Gly-tRNA(Gly) MRPL57 MRPS10 MRPL23 MRPS17 MRPL22 Asp-tRNA(Asp) MRPS27 Pro-tRNA(Pro) OXA1L fMet-tRNA(fMet) MRPL44 MRPS23 MRPL12 MRPS34 MRPS36 MTRF1L MRPS36 MRPS10 MRPS25 MRPL19 MRPS18C tRNA(His) Val-tRNA(Val) MRPS18B MRPL44 MT-TV MRPS9 MRPS21 Ser-tRNA(Ser) MRPL50 MRPS23 MRPL52 MRPL3 MRPL48 Gln-tRNA(Gln) GFM1:GTPMRPL15 MRPS5 MRPL32 MRPS11 Ser-tRNA(Ser) MRPS36 DAP3 PTCD3 MRPL44 MRPL33 MRPL9 MRPL9 MRPL36 MRPL20 MRPS5 DAP3 MRPL21 His-tRNA(His) MRPS26 MRPS23 MRPS16 MRPL20 MRPS23 MRPL44 tRNA(Ile) CHCHD1 MRPL41 MRPS26 MRPS2 MRPL39 tRNA(Pro) PTCD3 GFM2:GDPMRPS15 MRPL41 MRPL54 MT-TV MRPS5 MRPL52 MRPL49 MRPS2 PTCD3 MRPL35 MRPL37 MRPL20 MRPL3 MRPL16 MRPS2 MRPL9 DAP3 Pro-tRNA(Pro) GFM2 MRPS36 MRPS14 PiMRPS33 MRPS24 MTIF2MRPL49 MRPS5 MRPS2 MRPL53 MRPS36 TUFM MRPS17 MRPL36 MRPS16 MRPL42 MRPL45 CHCHD1 MRPL47 MRPL38 MRPL47 MRPL47 MRPS7 Ala-tRNA(Ala) MRPS14 MRPL39 GTP Met-tRNA(Met) MRPL40 MRPS18B GDPMRPS5 MRPS27 MRPL12 Mitochondrial 12S rRNA MRPS33 MRPS12 MRPL49 Mitochondrial 16S rRNA MRPL22 MRPL49 OXA1L MRPL43 MRPL42 MRPL35 MRPL55 MRPS22 MRPS22 MTRF1L, ICT1MRPS9 tRNA(Val) MRPL55 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMT-TV MRPL36 MRPL48 MRPL45 mRNA GADD45GIP1 MRPL39 MRPL47 MRPL43 MRPS17 MRPL9 MRPL49 MRPL45 ICT1 Mitochondrial 12S rRNA His-tRNA(His) MRPL12 His-tRNA(His) ICT1 MRPL24 MRPL33 MRPS11 MRPL51 MRPL53 MRPL36 MRPL14 MRPL27 MRPL3 MRPS23 MRPS5 MRPL21 MRPS10 GFM1 MRPL21 MRPS28 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-sitetRNA(Lys) Glu-tRNA(Glu) MRPL27 MT-TV tRNA(Met)MRPL11 AURKAIP1 MRPL38 MRPS28 GTPMRPS15 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPL34 fMet-tRNA(fMet) MRPL57 MRPL13 MRPS34 MRPS36 MRPS18C MRPL41 Mitochondrial 12S rRNA CHCHD1 MRPS18C MRPS27 MRPS25 MRPS18A tRNA(Arg) 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPS7 AURKAIP1 MRPL50 MRPL52 MRPS15 MRPS15 MRPL11 MRPS31 MRPL17 GADD45GIP1 Pro-tRNA(Pro) MRPL4 MRPS18B TUFM:GTPMRPL42 MRPS12 MRPL11 mRNA MRPL33 Ala-tRNA(Ala) ICT1 MRPL35 MRPL9 PiMRPL2 Trp-tRNA(Trp) MRPL39 MRPL45 MRPL40 OXA1L GADD45GIP1 MT-TV MRPL11 MRPS18A MRPS21 DAP3 CHCHD1 55Sribosome:MRRF:GFM2:GTPTSFM MRPS27 MRPL34 MRPL55 MRPL16 tRNA(Pro) tRNA(Gln) MRPL14 MRPL4 MRPL12 TUFM:GDPAURKAIP1 MRPL57 MRPL52 MRPS10 MRPL19 MRPS14 PTCD3 MRPL14 MRPL49 MRPS18B Mitochondrial 12S rRNA PiMRPS31 MRPL18 MRPS33 TUFM MRPL33 MRPL55 MRPS33 Arg-tRNA(Arg) MRPL34 MRPS35 MRPL20 GDPMRPL43 MRPL14 MRPL50 MRPS18A MRPL18 MRPL49 MRPL12 AURKAIP1 MRPL10 PTCD3 MRPL55 MRPL50 MRPS28 MRPS9 MRPL32 MRPS33 MRPL51 MRPL15 MRPS23 MRPS18B MRPL41 MRPL46 MRPL30 MRPL18 Asn-tRNA(Asn) MRPL36 MRPL16 MRPS28 MRPL40 MRPL36 MRPL28 MRPS28 MRPL16 tRNA(Phe) peptidyl-tRNA with elongated peptide Gly-tRNA(Gly) tRNA(Asp) MRPS25 OXA1L MRPL17 MRPS18C MRPS15 MRPL23 MRPS15 MRPL20 MRPS31 MRPL37 MRPL35 MRPL3 MRPS7 MRPL10 MRPL4 MRPS27 MRPL32 Asp-tRNA(Asp) MRPL10 MRPL44 PTCD3 MRPL24 MRPL24 ICT1 Gln-tRNA(Gln) MRPS31 MRPL9 MRPS33 MRPS28 GDP MRPL11 Mitochondrial 16S rRNA ERAL1 MRPL37 MRPS18B MRPL36 MRPS30 CHCHD1 MRPS11 MT-TV MRPL40 MRPL13 MRPS21 MRPS17 Met-tRNA(Met) peptidyl-tRNA with elongated peptide MRPL1 ERAL1 MRPS18A MRPL20 MRPL48 MRPS21 ICT1 DAP3 Ala-tRNA(Ala) DAP3 MRPL19 MRPS18A MRPS21 CHCHD1 MRPL14 MRPL18 MRPS26 OXA1L MRPS35 MRPL18 Thr-tRNA(Thr) MRPL1 MRPL2 MRPL32 MRPL45 MRPS18C MRPL53 MRPL21 MRPL49 MRPL54 MRPL33 MRPL16 tRNA(Lys) MRPS18B MRPL39 GADD45GIP1 MRPL52 MRPL22 MRPL30 MRPS35 Ser-tRNA(Ser) MRPS17 MRPL18 MRPS11 MRPL13 MRPS31 MRPL41 MRPL1 MRPL48 MRPL33 aminoacyl-tRNAMRPL2 fMet-tRNA(fMet) OXA1L MRPL51 Glu-tRNA(Glu) MRPS17 MRPL3 Arg-tRNA(Arg) MRPL46 MRPL53 MRPL37 ERAL1 MRPS12 MRPL46 MRPL55 tRNA(Trp) MRPL1 mRNA GDP tRNA(Tyr) MRPL17 MRPS10 CHCHD1 Tyr-tRNA(Tyr) MRPS12 MRPS5 MRPS25 MRPL54 mRNAMRPL19 MRPS27 tRNA(Tyr) MRPL37 MRPL48 MRPL57 MTIF3 MRPS18C MRPL43 ERAL1 MRPL14 MRPS26 MRPS25 MRPS26 MRPS11 MRPL40 tRNA(Gln) Met-tRNA(Met) MRPS17 tRNA(Thr) Val-tRNA(Val) MRPL2 MRPS27 MRPL17 MRPS5 fMet-tRNA(fMet) MRPL13 MRPL21 MRPS12 OXA1L MRPL16 peptidyl-tRNA with elongated peptide Leu-tRNA(Leu) MRPL15 MRPS7 MRPL4 Trp-tRNA(Trp) MRPL35 MRPS12 MRPL3 MRPS35 PTCD3 MTRF1L MRPS9 MRPS27 ERAL1 MRPL22 GDP MRPL18 Phe-tRNA(Phe) MT-TV tRNA(Gln) MRPS14 MRPL28 Pro-tRNA(Pro) MRPS34 MRPL12 MRPL11 Glu-tRNA(Glu) MRPS18C GFM1 MRPL17 PiMRPL48 MRPS5 Mitochondrial 16S rRNA MRPL40 MRPL47 MRPL57 MRPS10 Lys-tRNA(Lys) tRNA(Asn) MRPS10 MRPL33 Ala-tRNA(Ala) TUFM MRPL32 fMet-tRNA(fMet) MRPS34 MRPS18C GFM2:GTPMRPS21 MRPL33 tRNA(Gly) MRPS18A MRPL53 MRPL42 MRPL4 MRPL20 GADD45GIP1 MRPS17 MRPL55 Trp-tRNA(Trp) MRPL16 MRPL17 MRPL36 MRPS6 MRPL22 Val-tRNA(Val) MRPL35 MRPL16 mRNA MRPL36 MRPL14 MRPS35 MRPL57 MRPL52 MRPS9 ERAL1 MRPL40 tRNA(Leu) MRPL19 MRPL17 tRNA(Lys) MT-TV ICT1 GADD45GIP1 ICT1 AURKAIP1 MRPL15 tRNA(Glu) MRPS28 MRPS30 tRNA(Ser) Val-tRNA(Val) tRNA(Ala) MRPL42 MRPL44 MRPL15 MRPS35 MRPL39 MRPS35 MRPS16 MRPL46 MRPL2 tRNA(Met) MRPS15 MRPL54 Trp-tRNA(Trp) MRPL1 MRPL21 AURKAIP1 GTP MRPS18A MRPL39 MRPL33 MRPL4 MRPS26 Met-tRNA(Met) MRPL27 MRPL53 PTCD3 MRPS16 MRPL18 MRPL15 Lys-tRNA(Lys) MRPL23 MRRF MRPL3 MRPL13 MRPS2 ERAL1 MRPS28 MRPS11 GTP MRPL32 MRPL38 MRPL32 MT-TV 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPL24 tRNA(Ile) MRPS23 tRNA(Glu) GTP MRPL2 Phe-tRNA(Phe) AURKAIP1 MRPL21 MRPS7 MRPS12 MRPL21 MRPL30 GTP MRPS12 MRPL24 MRPS18A MRPS6 MRPS16 MRPS15 MRPL34 CHCHD1 Asn-tRNA(Asn) MRPS23 tRNA(Asn) MRPS28 MRPS12 MRPL51 MRPS14 MRPL27 MRPL51 mRNA MRPL27 Mitochondrial 12S rRNA MRPS15 MRPS11 MRPS18A MRPS6 ERAL1 MRPL54 MRPS11 MRPL47 MRPS27 MRPL55 MRPL30 tRNA(Asn) PTCD3 MRPL50 MRPL50 MRPL35 MRPL34 tRNA(Trp) MRPL43 MRPL41 MRPL54 MRPS22 ICT1 MRPL53 MRPS36 MRPS28 55Sribosome:mRNA:fMet-tRNAMRPL24 MRPS9 MRPL54 MRPL1 Ile-tRNA(Ile) MRPS5 MRPL4 MRPL17 MRPL55 MRPL39 MRPS25 MRPL4 MRPL34 MRPS17 MRPL22 MRPL48 OXA1L PiMRPS7 tRNA(Arg) MRPL21 MRPS36 MRPL12 ERAL1 MRPL13 MRPL37 MRPL19 MRPL57 MRPS2 MRPS17 GADD45GIP1 MRPL23 MRPL15 MRPS22 MRPL57 MRPL13 MRPL24 AURKAIP1 MRPL16 MRPL46 MRPS24 MRPL9 MRPS21 MRPL46 MRPS7 MRPS23 MRPS18B TUFM mRNA Thr-tRNA(Thr) MRPL10 MRPS26 MRPS26 GTP Gln-tRNA(Gln) MRPL34 Asn-tRNA(Asn) GFM1 MRPS36 PTCD3 MRPS36 MRPS18C MRPL38 MRPS14 MRPS16 MRPS26 MRPS10 MRPL28 MRPL20 Ile-tRNA(Ile) MRPS16 MRPS35 Mitochondrial 16S rRNA MRPL43 MRPL44 MRPL11 55Sribosome:mRNA:tRNAMRPL11 MRPL53 MRPL19 MRPL35 MRPL24 Cys-tRNA(Cys) MRPL35 MRPL41 MRPS24 MRPS31 polypeptideLys-tRNA(Lys) MRPS18B MRPL30 MRPL41 MRPS9 GADD45GIP1 MRPL55 tRNA(Tyr) TUFM:TSFMMRPS11 MRPS21 MRPS16 Tyr-tRNA(Tyr) 19, 21, 299, 229, 229, 229, 229, 229, 229, 229, 229, 11, 18, 229, 229, 229, 229, 2211, 24, 30, 339, 22


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
OXA1L ProteinQ15070 (Uniprot-TrEMBL)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:43474 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools