Kynurenine pathway and links to cell senescence (Homo sapiens)

From WikiPathways

Revision as of 23:10, 13 November 2023 by Khanspers (Talk | contribs)
Jump to: navigation, search
7, 9111116111066101162, 313110612102, 3631113312111-3121061065Cell differentiationProtectionagainst ROSInflammationCell cycle arrestGlutathioninemetabolismchange in NAD+/NADHFatty AcidOxidationAutophagy99%Cell proliferationApoptosisReduction of ROSArachidonic acidmetabolismOxidative stressReduction of ROSDepletion of cytosolic tryptophanLipid peroxidationSenescenceInflammationCentral Kynurenine Pathway3116p53acetoacetyl-CoATDOCinnavalininateKynureninaseNAADmiR-493-5pQPRT3-HAO3-HKPGE2TryptophanTCA CycleNAD de novoSynthesismiR-210-3pother miRNAsACMSDglutaryl-coAFOXO1IDO1 promoterNOSAcetyl-CoA(S)-3-hydroxy-butanoyl-CoAN-FormylkynurenineAMSAGlycolysis3-HAAMelatoninKynurenic acidBH4eIF-2alphaQuinolinic acidAFMIDAnthranilic acidPicolinic acidKMOSerotonin/MelatoninPathwayXanthurenic acidACMSAKynurenineCoenzyme ACrotonyl-CoAIFNγKLF5LiposaccharidesNAD+NAMNGlutaconyl-CoAp21AhR SignalingPathwayJNK SignalingPathwayIDO113, 5, 6383Kynureninase3KATIDO2IFNβTNFTGFβAhR10TLR 43, 6IL-1R2-4, 6GCN2


Description

The kynurenine pathway is the major path for Tryptophan (Trp) breakdown (Castro-Portuguez & Sutphin, 2020; Dalton et al.,2020; Kondrikov et al., 2020; Li, Oxenkrug & Yang, 2017; Lindquist et al., 2020; Lugo-Huitron et al., 2013; Oxenkrug, 2011; Platten et al., 2019; Savitz, 2019; Soegdrageret al., 2019; Tan & Guillemin, 2019). The kynurenine (Kyn)/Trp ratio is proposed to be an accurate indicator of biological age as well as an indicator of risk for age-related diseases (Castro-Portuguez & Sutphin, 2020; Li et al., 2017; Lindquist et al., 2020; Oxenkrug, 2011; Platten et al., 2019; Savitz, 2019; Soegdrageret al., 2019).

The first and also rate-limiting enzymes that determine rate of Trp conversion into N-formylkynurenine and further on into Kyn are tryptophan-2,3-dioxygenase (TDO) and indoleamine-2,3-dioxygenase (IDO), out of which the IDO isoform IDO1 is the most important (Castro-Portuguez & Sutphin, 2020; Dalton et al.,2020; Li et al., 2017; Lindquist et al., 2020; Lugo-Huitron et al., 2013; Minhas et al., 2018; Oxenkrug, 2011; Platten et al., 2019; Savitz, 2019; Soegdrageret al., 2019; Tan & Guillemin, 2019). This catalytic enzyme is activated by pro-inflammatory cytokines such as interleukins, interferons gamma and beta or the aryl hydrocarbon receptor (AhR) (Castro-Portuguez & Sutphin, 2020; Dalton et al.,2020; Kondrikov et al., 2020; Li et al., 2017; Lindquist et al., 2020; Lugo-Huitron et al., 2013; Oxenkrug, 2011; Platten et al., 2019; Savitz, 2019; Soegdrageret al., 2019; Tan & Guillemin, 2019).

Next, N-formylkynurenine is converted either into kynurenic acid by a kynurenine aminotransferase (KAT), anthranilic acid by kynureninase or, into Kyn by formidase (AFMID) (Castro-Portuguez & Sutphin, 2020). Kyn can alter the regulation of cell cycle and proliferation and induce oxidative stress through by inducing the transcription of multiple miRNAs (Dalton et al., 2020), activating the p53/p21 pathway (Kondrikov et al., 2020) and binding to AhR, resulting in a positive feedback loop, while further promoting oxidative stress (Castro-Portuguez & Sutphin, Dalton et al., 2020; 2020, Kondrikov et al., 2020).

Kyn is further converted into 3-hydroxykynurenine (3HK) by kynurenine monooxygenase (KMO), then Kynureninase converts 3HK into 3-hydroxyanthranilic acid (3HAA) and then into 2-amino-3-carboxymuconate-6-semialdehyde (ACMSA) (Castro-Portuguez & Sutphin, 2020, Lindquist et al., 2020; Lugo-Huitron et al., 2013; Platten et al., 2019; Savitz, 2019; Tan & Guillemin, 2019). 3-HK can alternatively be converted into xanthurenic acid, a metabolite that modulates the tetrahydrobiopterin (BH4) pathway,(Tan & Guillemin, 2019). 3HAA can be converted either into quinolinic acid and from there enter the de novo NAD synthesis due to the enzymatic action of nicotinate-nucleotide pyrophosphorylase (QPRT), or it can be converted into 2-aminomuconate-6-semialdehyde (AMSA) which can be converted into glutaryl-CoA and enter the TCA cycle and glycolysis (Castro-Portuguez & Sutphin, 2020; Lindquist et al., 2020; Lugo-Huitron et al., 2013; Platten et al., 2019; Savitz, 2019; Tan & Guillemin, 2019).

[https://enamine.net/hit-finding/focused-libraries/view-all/immuno-oncology-library/kynurenine-pathway-library

Kynurenine Pathway Library] was also used as a reference for this pathway.

Comments

 
Most studies were done on C. elegans and mice or in vitro on human/ mouse cells
 
Type your comment here

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Dalton S, Smith K, Singh K, Kaiser H, Kolhe R, Mondal AK, Khayrullin A, Isales CM, Hamrick MW, Hill WD, Fulzele S; ''Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells.''; Exp Gerontol, 2020 PubMed Europe PMC Scholia
  2. Castro-Portuguez R, Sutphin GL; ''Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan''; Exp Gerontol, 2020 PubMed Europe PMC Scholia
  3. Lindquist C, Bjørndal B, Lund A, Slettom G, Skorve J, Nygård O, Svardal A, Berge RK; ''Increased fatty acid oxidation and mitochondrial proliferation in liver are associated with increased plasma kynurenine metabolites and nicotinamide levels in normolipidemic and carnitine-depleted rats.''; Biochim Biophys Acta Mol Cell Biol Lipids, 2020 PubMed Europe PMC Scholia
  4. Alicia Usategui, Abigail López, Cristina Municio, Manuel J Del Rey, Josà L Pablos and Gabriel Criado; ''Role of tryptophan metabolism on senescent synovial fibroblasts''; https://www.jimmunol.org/content/204/1_Supplement/79.14; Role of tryptophan metabolism on senescent synovial fibroblasts; 2020; The Journal of Immunology, 2020 DOI Scholia
  5. Kondrikov D, Elmansi A, Bragg RT, Mobley T, Barrett T, Eisa N, Kondrikova G, Schoeinlein P, Aguilar-Perez A, Shi XM, Fulzele S, Lawrence MM, Hamrick M, Isales C, Hill W; ''Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway.''; Exp Gerontol, 2020 PubMed Europe PMC Scholia
  6. ''''; , PubMed Europe PMC Scholia
  7. Tan VX, Guillemin GJ; ''Kynurenine Pathway Metabolites as Biomarkers for Amyotrophic Lateral Sclerosis.''; Front Neurosci, 2019 PubMed Europe PMC Scholia
  8. Savitz J; ''The kynurenine pathway: a finger inevery pie.''; Mol Psychiatry, 2020 PubMed Europe PMC Scholia
  9. Denise Slenter; ''Tryptophan catabolism leading to NAD+ production (Homo sapiens)''; https://www.wikipathways.org/index.php/Pathway:WP4210,
  10. Sorgdrager FJH, Naudé PJW, Kema IP, Nollen EA, Deyn PP; ''''; , PubMed Europe PMC Scholia
  11. ''Tryptophan metabolism, map00380''; https://www.genome.jp/dbget-bin/www_bget?pathway:map00380,
  12. Oxenkrug GF; ''Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders.''; J Neural Transm (Vienna), 2011 PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
131779view13:32, 3 June 2024Nikita KrstevskaAddition of the gene product CAT (catalase)
127649view23:15, 13 November 2023Khanspers
127648view23:14, 13 November 2023KhanspersURL format
127647view23:12, 13 November 2023Khanspersfixed url
127646view23:10, 13 November 2023Khanspersadded ref to description
127645view23:06, 13 November 2023Khanspersremoved literature reference for Kyanurine library (will be moved to description)
127610view14:39, 7 November 2023LarsgwCorrect "KEGG Pathways" to "KEGG Pathway" in bp:DB
125311view20:38, 31 January 2023LarsgwAdd DOI to reference
119244view19:21, 22 June 2021Finterlyremoved unnecessary note
119243view19:20, 22 June 2021FinterlyAdded Biopax PublicationXref information: URL information to Source, WikiPathways and KEGG Pathway info. Fixed some spelling/symbols.
118986view06:48, 7 June 2021Fehrhartconnected unconnected connection and gave pathway nodes shapes
117769view13:30, 22 May 2021EweitzModified title
115411view11:53, 18 February 2021EgonwMade three more pathways clickable
115384view05:24, 17 February 2021KhanspersOntology Term : 'cellular senescence pathway' added !
115383view05:23, 17 February 2021KhanspersOntology Term : 'kynurenine metabolic pathway' added !
115382view05:20, 17 February 2021Khanspersadded some xrefs
115248view06:34, 8 February 2021EgonwFixed an identifier
114613view15:01, 25 January 2021Soniaa.balanNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
(S)-3-hydroxy- butanoyl-CoAMetaboliteQ27089442 (Wikidata)
3-HAAMetaboliteCHEBI:15793 (ChEBI)
3-HAOProteinP46952 (Uniprot-TrEMBL)
3-HKMetaboliteCHEBI:1547 (ChEBI)
ACMSAMetabolite5280673 (PubChem-compound)
ACMSDProteinQ8TDX5 (Uniprot-TrEMBL)
AFMIDProteinQ63HM1 (Uniprot-TrEMBL)
AMSAMetaboliteCHEBI:15745 (ChEBI)
  • Mus Musculus
  • Type your comment here
Acetyl-CoAMetaboliteHMDB01206 (HMDB)
AhR Signaling PathwayPathwayWP2873 (WikiPathways)
AhRProteinP35869 (Uniprot-TrEMBL) mice stem cells used
Anthranilic acidMetaboliteCHEBI:30754 (ChEBI)
BH4MetaboliteCHEBI:15372 (ChEBI)
CinnavalininateMetaboliteCHEBI:3715 (ChEBI)
Coenzyme AMetaboliteCHEBI:15346 (ChEBI)
Crotonyl-CoAMetaboliteCHEBI:15473 (ChEBI)
FOXO1GeneProductENSG00000150907 (Ensembl)
GCN2ProteinQ9P2K8 (Uniprot-TrEMBL)
Glutaconyl-CoAMetaboliteHMDB01290 (HMDB)
Glycolysis PathwayWP534 (WikiPathways)
IDO1 promoter GeneProduct
IDO1ProteinP14902 (Uniprot-TrEMBL)
IDO2ProteinQ6ZQW0 (Uniprot-TrEMBL)
IFNβProteinP01574 (Uniprot-TrEMBL)
IFNγProteinP01579 (Uniprot-TrEMBL)
IL-1RProteinP27930 (Uniprot-TrEMBL)
JNK Signaling PathwayPathway
KATProteinQ8N5Z0 (Uniprot-TrEMBL)
KLF5GeneProductENSG00000102554 (Ensembl)
KMOProteinO15229 (Uniprot-TrEMBL)
  • Mitochondral-associated enzyme
  • Type your comment here
Kynurenic acidMetaboliteCHEBI:18344 (ChEBI)
KynureninaseProteinQ16719 (Uniprot-TrEMBL)
KynurenineMetaboliteCHEBI:28683 (ChEBI)
Liposaccharides
MelatoninMetaboliteCHEBI:16796 (ChEBI)
N-FormylkynurenineMetaboliteCHEBI:18377 (ChEBI)
NAADMetaboliteHMDB01179 (HMDB)
NAD de novo

Synthesis

Pathway
NAD+MetaboliteCHEBI:15846 (ChEBI)
NAMNMetaboliteCHEBI:15763 (ChEBI)
NOSProteinB3VK56 (Uniprot-TrEMBL)
PGE2MetaboliteCHEBI:606564 (ChEBI)
Picolinic acidMetaboliteHMDB02243 (HMDB)
QPRTGeneProductENSG00000103485 (Ensembl)
Quinolinic acidMetaboliteHMDB00232 (HMDB)
Serotonin/Melatonin PathwayPathway
TCA CyclePathwayWP78 (WikiPathways)
TDO ProteinP48775 (Uniprot-TrEMBL)
TGFβProteinP01137; P10600; P61812
TLR 4ProteinO00206 (Uniprot-TrEMBL)
TNFProteinP01375 (Uniprot-TrEMBL)
TryptophanMetaboliteCHEBI:27897 (ChEBI)
Xanthurenic acidMetaboliteHMDB00881 (HMDB)
acetoacetyl-CoAMetaboliteQ2639429 (Wikidata)
eIF-2alphaProteinQ9BQI3 (Uniprot-TrEMBL)
glutaryl-coAMetaboliteCHEBI:15524 (ChEBI)
miR-210-3pRnaMIMAT0000267 (miRBase Sequence)
miR-493-5pRnaMIMAT0002813 (miRBase Sequence)
other miRNAs
p21ProteinP38936 (Uniprot-TrEMBL)
p53ProteinP04637 (Uniprot-TrEMBL)

Annotated Interactions

No annotated interactions
Personal tools