Affected pathways in Duchenne muscular dystrophy (Homo sapiens)
From WikiPathways
Description
DMD is characterized by abnormal calcium levels resulting from dysfunction in the muscle cell membrane. This leads to the uncontrolled opening of the mitochondrial permeability transition pore (mPTP) which inhibits ATP synthesis and thus, drives the cell into apoptosis. This influx activates a cascade of harmful events, including increased production of reactive oxygen species (ROS) and activation of proteases that can damage the cell structure of muscle fibers. The lack of the dystrophin protein affects essential components for muscle contraction namely the Disassembled Dystrophin-associated glycoprotein complex (DAPC) which disturbs the normal contraction-relaxation process of the muscle in DMD. Sustained contractions occur due to the high calcium influx causing muscle stiffness and fibrosis, which are known characteristics of DMD.
Indeed, fibrosis is commonly stimulated in dystrophic muscle cells as a result of the upregulation of several pro-fibrotic transcription factors such as SERPINE1, SCX and GL1. Hence, excessive amounts of collagen and fibronectin are produced, enhancing fibrosis.
All these events cause chronic inflammation in the muscle cell, attracting pro-inflammatory cytokines, chemokines and other inflammatory mediators. The chronic inflammation in DMD can further perpetuate muscle degeneration, fibrosis, and impaired muscle function.
Acknowledgments: Bria Jackson, Amaia Alvarez van Schie, Otto Rämö, Tuneille AdelaarQuality Tags
Ontology Terms
Bibliography
View all... |
- Chen X, Li Y; ''Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis.''; Cell Adh Migr, 2009 PubMed Europe PMC Scholia
- Tulangekar A, Sztal TE; ''Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration.''; Biomedicines, 2021 PubMed Europe PMC Scholia
- Zabłocka B, Górecki DC, Zabłocki K; ''Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences.''; Int J Mol Sci, 2021 PubMed Europe PMC Scholia
- Burr AR, Molkentin JD; ''Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy.''; Cell Death Differ, 2015 PubMed Europe PMC Scholia
- Tauffenberger A, Fiumelli H, Almustafa S, Magistretti PJ; ''Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling.''; Cell Death Dis, 2019 PubMed Europe PMC Scholia
- Burr AR, Molkentin JD; ''Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy.''; Cell Death Differ, 2015 PubMed Europe PMC Scholia
- Song Y, Yao S, Liu Y, Long L, Yang H, Li Q, Liang J, Li X, Lu Y, Zhu H, Zhang N; ''Expression levels of TGF-β1 and CTGF are associated with the severity of Duchenne muscular dystrophy.''; Exp Ther Med, 2017 PubMed Europe PMC Scholia
- Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R; ''The role of fibrosis in Duchenne muscular dystrophy.''; Acta Myol, 2012 PubMed Europe PMC Scholia
- Mareedu S, Million ED, Duan D, Babu GJ; ''Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies.''; Front Physiol, 2021 PubMed Europe PMC Scholia
- Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P; ''Understanding the process of fibrosis in Duchenne muscular dystrophy.''; Biomed Res Int, 2014 PubMed Europe PMC Scholia
- Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y; ''Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.''; Drug Des Devel Ther, 2016 PubMed Europe PMC Scholia
- Ismaeel A, Kim JS, Kirk JS, Smith RS, Bohannon WT, Koutakis P; ''Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review.''; Int J Mol Sci, 2019 PubMed Europe PMC Scholia
- Shkrob MA, Pyatnitskiy MA, Golovatenko-Abramov PK, Kotelnikova EA; ''Pathways Disturbed in Duchenne Muscular Dystrophy''; 10.2174/978160805437411201010104, 2012 PubMed Europe PMC Scholia
- Hammers DW; ''NOX4 inhibition promotes the remodeling of dystrophic muscle.''; JCI Insight, 2022 PubMed Europe PMC Scholia
- Blake DJ, Weir A, Newey SE, Davies KE; ''Function and genetics of dystrophin and dystrophin-related proteins in muscle.''; Physiol Rev, 2002 PubMed Europe PMC Scholia
- Dalkilic I, Kunkel LM; ''Muscular dystrophies: genes to pathogenesis.''; Curr Opin Genet Dev, 2003 PubMed Europe PMC Scholia
- Reid AL, Alexander MS; ''The Interplay of Mitophagy and Inflammation in Duchenne Muscular Dystrophy.''; Life (Basel), 2021 PubMed Europe PMC Scholia
- Knollmann BC; ''New roles of calsequestrin andtriadin in cardiac muscle.''; J Physiol, 2009 PubMed Europe PMC Scholia
- Hammers DW; ''NOX4 inhibition promotes the remodeling of dystrophic muscle.''; JCI Insight, 2022 PubMed Europe PMC Scholia
- Shkrob MA, Pyatnitskiy MA, Golovatenko-Abramov PK, Kotelnikova EA; ''Pathways Disturbed in Duchenne Muscular Dystrophy''; Doi: 10.2174/978160805437411201010104, 2012 PubMed Europe PMC Scholia
- Kasza KE, Zallen JA; ''Dynamics and regulation of contractile actin-myosin networks in morphogenesis.''; Curr Opin Cell Biol, 2011 PubMed Europe PMC Scholia
- Björn C Knollmann; ''New roles of calsequestrin and triadin in cardiac muscle''; , 2009 PubMed Europe PMC Scholia
- Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Mikheeva IB, Belosludtsev KN; ''Transport of Ca(2+) and Ca(2+)-dependent permeability transition in heart mitochondria in the early stages of Duchenne muscular dystrophy.''; Biochim Biophys Acta Bioenerg, 2020 PubMed Europe PMC Scholia
- Choi MH, Ow JR, Yang ND, Taneja R; ''Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies.''; Oxid Med Cell Longev, 2016 PubMed Europe PMC Scholia
- Lacourpaille L, Hug F, Guével A, Péréon Y, Magot A, Hogrel JY, Nordez A; ''New insights on contraction efficiency in patients with Duchenne muscular dystrophy.''; J Appl Physiol (1985), 2014 PubMed Europe PMC Scholia
- Budzinska M, Zimna A, Kurpisz M; ''The role of mitochondria in Duchenne muscular dystrophy.''; J Physiol Pharmacol, 2021 PubMed Europe PMC Scholia
- Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L; ''The role of oxidative stress during inflammatory processes.''; Biol Chem, 2014 PubMed Europe PMC Scholia
- Harr MW, Distelhorst CW; ''Apoptosis and autophagy: decoding calcium signals that mediate life or death.''; Cold Spring Harb Perspect Biol, 2010 PubMed Europe PMC Scholia
- Moratal C, Arrighi N, Dechesne CA, Dani C; ''Control of Muscle Fibro-Adipogenic Progenitors by Myogenic Lineage is Altered in Aging and Duchenne Muscular Dystrophy.''; Cell Physiol Biochem, 2019 PubMed Europe PMC Scholia
- Ismaeel A, Kim JS, Kirk JS, Smith RS, Bohannon WT, Koutakis P; ''Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review.''; Int J Mol Sci, 2019 PubMed Europe PMC Scholia
- Nogami K, Maruyama Y, Sakai-Takemura F, Motohashi N, Elhussieny A, Imamura M, Miyashita S, Ogawa M, Noguchi S, Tamura Y, Kira JI, Aoki Y, Takeda S, Miyagoe-Suzuki Y; ''Pharmacological activation of SERCA ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice.''; Hum Mol Genet, 2021 PubMed Europe PMC Scholia
- Rodriguez-Gonzalez M, Lubian-Gutierrez M, Cascales-Poyatos HM, Perez-Reviriego AA, Castellano-Martinez A; ''Role of the Renin-Angiotensin-Aldosterone System in Dystrophin-Deficient Cardiomyopathy.''; Int J Mol Sci, 2020 PubMed Europe PMC Scholia
- Lindahl M, Bäckman E, Henriksson KG, Gorospe JR, Hoffman EP; ''Phospholipase A2 activity in dystrophinopathies.''; Neuromuscul Disord, 1995 PubMed Europe PMC Scholia
- Mareedu S, Million ED, Duan D, Babu GJ; ''Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies.''; Front Physiol, 2021 PubMed Europe PMC Scholia
- Chambers PJ, Juracic ES, Fajardo VA, Tupling AR; ''Role of SERCA and sarcolipin in adaptive muscle remodeling.''; Am J Physiol Cell Physiol, 2022 PubMed Europe PMC Scholia
- Burr AR, Molkentin JD; ''Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy.''; Cell Death Differ, 2015 PubMed Europe PMC Scholia
- Driscoll KE; ''Macrophage inflammatory proteins: biology and role in pulmonary inflammation.''; Exp Lung Res, 1994 PubMed Europe PMC Scholia
- Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, Seremetiev A, Becker HD, Hunt TK; ''Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing.''; Wound Repair Regen, 2003 PubMed Europe PMC Scholia
- Angebault C, Panel M, Lacôte M, Rieusset J, Lacampagne A, Fauconnier J; ''Metformin Reverses the Enhanced Myocardial SR/ER-Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice.''; Front Cell Dev Biol, 2020 PubMed Europe PMC Scholia
- Harisseh R, Chatelier A, Magaud C, Déliot N, Constantin B; ''Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of α1-syntrophin and PLC/PKC in SOCE regulation.''; Am J Physiol Cell Physiol, 2013 PubMed Europe PMC Scholia
- Nagamine Y, Medcalf RL, Muñoz-Cánoves P; ''Transcriptional and posttranscriptional regulation of the plasminogen activator system.''; Thromb Haemost, 2005 PubMed Europe PMC Scholia
- Shkrob MA, Pyatnitskiy MA, Golovatenko-Abramov PK, Kotelnikova EA; ''Pathways Disturbed in Duchenne Muscular Dystrophy''; From Knowledge Networks to Biological Models, 2012 PubMed Europe PMC Scholia
- Meyer P, Notarnicola C, Meli AC, Matecki S, Hugon G, Salvador J, Khalil M, Féasson L, Cances C, Cottalorda J, Desguerre I, Cuisset JM, Sabouraud P, Lacampagne A, Chevassus H, Rivier F, Carnac G; ''Skeletal Ryanodine Receptors Are Involved in Impaired Myogenic Differentiation in Duchenne Muscular Dystrophy Patients.''; Int J Mol Sci, 2021 PubMed Europe PMC Scholia
- Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P; ''Understanding the process of fibrosis in Duchenne muscular dystrophy.''; Biomed Res Int, 2014 PubMed Europe PMC Scholia
- Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y; ''Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.''; Drug Des Devel Ther, 2016 PubMed Europe PMC Scholia
- Hammers DW; ''NOX4 inhibition promotes the remodeling of dystrophic muscle.''; JCI Insight, 2022 PubMed Europe PMC Scholia
- Tulangekar A, Sztal TE; ''Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration.''; Biomedicines, 2021 PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Name | Type | Database reference | Comment |
---|---|---|---|
ADT2 | GeneProduct | SLC25A5 (HGNC) | |
AGTR1 | GeneProduct | AGTR1 (HGNC) | |
AMPK1 | GeneProduct | ENSG00000132356 (Ensembl) | |
AMPK2 | Protein | ENSG00000162409 (Ensembl) | |
ATP | Metabolite | CHEBI:30616 (ChEBI) | |
Ang 2 | Metabolite | 172198 (PubChem-compound) | "angiotensin 2 (Ang 2)" Peptide hormone; "Asp-Arg-Val-Tyr-Ile-His-Pro-Phe Angiotensin I is converted to angiotensin II (AII) through removal of two C-terminal residues by the enzyme angiotensin-converting enzyme (ACE), primarily through ACE within the lung (but also present in endothelial cells, kidney epithelial cells, and the brain). Angiotensin II acts on the central nervous system to increase vasopressin production, and also acts on venous and arterial smooth muscle to cause vasoconstriction. Angiotensin II also increases aldosterone secretion; it therefore acts as an endocrine, autocrine/paracrine, and intracrine hormone." Source: "https://en.wikipedia.org/wiki/Angiotensin#Angiotensin_II" |
Apoptosis | Pathway | WP254 (WikiPathways) | |
Autophagy | Pathway | WP4923 (WikiPathways) | |
CA2D1 | GeneProduct | ENSG00000153956 (Ensembl) | Voltage-dependent calcium channel subunit alpha-2/delta-1. Only isoform 1 is found in the skeletal muscles |
CAC1F | GeneProduct | ENSG00000102001 (Ensembl) | Voltage-dependent L-type calcium channel subunit alpha-1F |
CAC1S | GeneProduct | ENSG00000081248 (Ensembl) | Voltage-dependent L-type calcium channel subunit alpha-1S |
CACB1 | GeneProduct | ENSG00000067191 (Ensembl) | Voltage-dependent L-type calcium channel subunit beta-1. Only isoform 2 is present in skeletal muscles |
CACB2 | GeneProduct | ENSG00000165995 (Ensembl) | Voltage-dependent L-type calcium channel subunit beta-2 |
CASQ 1 | GeneProduct | CASQ1 (HGNC) | |
CCG1 | GeneProduct | ENSG00000108878 (Ensembl) | Voltage-dependent calcium channel subunit gamma-1 |
CTGF | GeneProduct | CCN2 (HGNC) | |
Ca2+ | Metabolite | HMDB0000464 (HMDB) | |
Ca2+ | Metabolite | HMDB0000464 (HMDB) | |
CaMK2 | Protein | ENSG00000145349 (Ensembl) | |
Calpain-3 | Protein | CAPN3 (HGNC) | |
Calpain-3 | GeneProduct | ENSG00000092529 (Ensembl) | |
Calstabin-1 | GeneProduct | ENSG00000088832 (Ensembl) | Often, there is Ca2+ leakage from the RyRs in the SR, but this process is limited by calstabin-1. Calstabin-1 is a protein which has a high affinity for RyR, stimulated by the dystrophin. However, due to DMD mutations and thus reduction of dystrophin, the Calstabin-1 no longer binds with such a high affinity to the RyR, thus not blocking the calcium leakage |
Caspase 9 | Protein | CASP9 (HGNC) | |
Cl- | Metabolite | HMDB0000492 (HMDB) | |
Collagen | Metabolite | CHEBI:3815 (ChEBI) | |
CyP-D | Protein | PPIF (HGNC) | |
DMD (+mutations) | GeneProduct | ENSG00000198947 (Ensembl) | |
DMD(+mutation) | GeneProduct | DMD (HGNC) | |
DMD | GeneProduct | DMD (HGNC) | |
Digestion of cell membrane | Pathway | WP5122 (WikiPathways) | |
Dystrobrevin alpha | GeneProduct | DTNA (HGNC) | |
Dystroglycan 1 | GeneProduct | DAG1 (HGNC) | |
Dystrophin deficiency | GeneProduct | DMD (HGNC) | |
Dystrophin | GeneProduct | DMD (HGNC) | |
FGA | GeneProduct | FGA (HGNC) | |
FGB | GeneProduct | FGB (HGNC) | |
FGG | GeneProduct | FGG (HGNC) | |
Fibroblast Differentiation | Pathway | WP5312 (WikiPathways) | |
Fibronectin | Metabolite | CHEBI:5058 (ChEBI) | |
Fibrosis | Pathway | ||
GL1 | Protein | GLI1 (HGNC) | |
GRP75 | Protein | P38646 (Uniprot-TrEMBL) | |
Glycoproteins | Protein | GP2 (HGNC) | |
H2O2 | Metabolite | HMDB0003125 (HMDB) | |
HOCl | Metabolite | HMDB0001050 (HMDB) | |
IL-10 | GeneProduct | ENSG00000136634 (Ensembl) | |
IL-1B | GeneProduct | ENSG00000115008 (Ensembl) | |
IL-1α | GeneProduct | ENSG00000115008 (Ensembl) | |
IL-6 | GeneProduct | ENSG00000136244 (Ensembl) | In DMD, IL-6 is upregulated due to recurrent activation of the M1 macrophages by DAMPs. When upregulated for prolonged periods of time, the IL-6 will cause chronic inflammation and also reduce the population of the satellite cells that are needed for muscle regeneration. |
IP3R1 | Protein | Q14643 (Uniprot-TrEMBL) | |
IP3R2 | Protein | ITPR2 (HGNC) | |
IP3R3 | Protein | ITPR3 (HGNC) | |
Inflammatory pathway | Pathway | ||
Inflammatory pathways | Pathway | Although the immune response functions to heal cells and tissues after damage, often when there is chronic inflammation (as is the case in DMD), the immune cells and the cytokines they secrete end up having detrimental effects, such as promoting oxidative stress, autophagy and necrosis. | |
Inflammatory response | Pathway | ||
IκBα | GeneProduct | ENSG00000100906 (Ensembl) | |
L-Arginie | Metabolite | HMDB0000517 (HMDB) | |
Lactate | Metabolite | CHEBI:24996 (ChEBI) | |
Leukotrienes | Metabolite | When leukocytes degrade phospholipid cell membranes, they also break down a type of phospholipid present called arachidonic acid. Break down of this arachidonic acid leads to the release of leukotrines, of which there are a wide variety. It is not yet known which exact leukotrine(s) play a role in the DMD pathophysiology, hence the use of the term "leukotrine" as a whole. Reference: Cuzzo B, Lappin SL. Physiology, Leukotrienes. [Updated 2022 Aug 22]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526114/ | |
MCU | Protein | MCU (HGNC) | |
MCUb | Protein | MCUB (HGNC) | |
MMP2 | Protein | MMP2 (HGNC) | |
MMP9 | Protein | MMP9 (HGNC) | |
MPO | GeneProduct | ENSG00000005381 (Ensembl) | Myeloperoxidase (MPO) is a potent enzyme which catalyses the production of hypochlorous acid (HOCl) when hydrogen peroxide (H2O2) and chloride ions (Cl-) are present within the neutrophil. |
Mitophagy | Pathway | WP3549 (WikiPathways) | |
Muscle contraction | Pathway | WP383 (WikiPathways) | |
Muscular regeneration | Pathway | WP4172 (WikiPathways) | |
NE | GeneProduct | ENSG00000197561 (Ensembl) | Neutrophil elastase (NE) is a type of serine protease which promotes the formation of neutrophil extracellular traps (NETs), which themselves function to trap invading microbes but also cuase tissue damage as collateral. Although possibly playing a role in the pathophysiology of DMD, it is not yet confirmed if NETs contribute to the muscle damage |
NFkB | GeneProduct | ENSG00000109320 (Ensembl) | |
NO | Metabolite | HMDB0003378 (HMDB) | |
NOX2 | GeneProduct | P04839 (Uniprot-TrEMBL) | |
NOX4 | GeneProduct | NOX4 (HGNC) | |
Na+ | Metabolite | HMDB0000588 (HMDB) | |
Necrosis | Pathway | WP2513 (WikiPathways) | |
Necrosis | Pathway | WP3380 (WikiPathways) | |
OPN | GeneProduct | SPP1 (HGNC) | |
Orai1 | GeneProduct | ENSG00000276045 (Ensembl) | |
Oxidative stress | Pathway | ||
Oxidative stress | Pathway | WP408 (WikiPathways) | |
PLAU | GeneProduct | PLAU (HGNC) | Also known as Urokinase-type plasminogen inhibitor (uPA) |
Parkin Pathway | Pathway | WP2359 (WikiPathways) | |
Phospholipase A2 | GeneProduct | ENSG00000116711 (Ensembl) | |
Phospholipase A2 | Protein | PLA2G2A (HGNC) | |
Phospholipid Membrane Digestion | Pathway | WP5122 (WikiPathways) | |
Platelet-activating factor | Metabolite | HMDB0062195 (HMDB) | |
Prostaglandins | Metabolite | Prostaglandins are released when phospholipid membranes are broken down. Although hundreds of prostaglandins exist which can influence the inflammatory pathways, no specific ones were highlighted with regards to the DMD pathophysiology | |
Proteasome degradation | Pathway | WP183 (WikiPathways) | |
Proteoglycans | Protein | PRG3 (HGNC) | |
RAS-MAPK pathway | Pathway | WP400 (WikiPathways) | |
ROS | Metabolite | There are three primary reactive oxygen species (ROS) which are prevalent within the mitochondria, including the superoxide anions (O2-), the hydroxyl radicals (OH-) and the hydrogen peroxide (H2O2). These three, and possibly more, likely play a role in the DMD pathophysiology, however the exact type of ROS was not mentioned in the papers searched, thus the term ROS is used broadly here | |
ROS | Metabolite | Q424361 (Wikidata) | |
RYR1 | GeneProduct | RYR1 (HGNC) | |
SCX | Protein | SCX (HGNC) | |
SERCA1 | Protein | ATP2A1 (HGNC) | |
SERPINE1 | GeneProduct | SERPINE1 (HGNC) | Also known as plasminogen activator inhibitor-1 PAI-1 |
SMAD2 | GeneProduct | SMAD2 (HGNC) | |
SMAD3 | GeneProduct | SMAD3 (HGNC) | |
SMAD4 | Protein | SMAD4 (HGNC) | |
SOCE | Pathway | ||
SOCE | GeneProduct | SARAF (HGNC) | |
STIM1 | GeneProduct | ENSG00000167323 (Ensembl) | |
Sarcolipin | Protein | ENSG00000170290 (Ensembl) | |
Sarcospan | GeneProduct | SSPN (HGNC) | |
Sig-1R | Protein | SIGMAR1 (HGNC) | |
Sodium regulators | Protein |
| |
Syntrophin beta-1 | GeneProduct | SNTB1 (HGNC) | |
TGF-B1 | GeneProduct | ENSG00000105329 (Ensembl) | |
TGF-β | GeneProduct | ENSG00000105329 (Ensembl) | |
TGFBR1 | GeneProduct | TGFBR1 (HGNC) | |
TGFBR2 | GeneProduct | TGFBR2 (HGNC) | |
TNF-a | GeneProduct | ENSG00000232810 (Ensembl) | |
TNF-α | GeneProduct | ENSG00000232810 (Ensembl) | |
TOM | Protein | TOMM20 (HGNC) | |
TRPC1 | GeneProduct | ENSG00000144935 (Ensembl) | Short transient receptor potential channel 1 |
TRPC3 | GeneProduct | ENSG00000138741 (Ensembl) | Short transient receptor potential channel 3 |
TRPC6 | GeneProduct | ENSG00000137672 (Ensembl) | Short transient receptor potential channel 6 |
Triadin | GeneProduct | TRDN (HGNC) | |
Troponin | Protein | TNNI1 (HGNC) | |
Unfolded protein response | Pathway | WP1939 (WikiPathways) | |
VDAC1 | Protein | VDAC1 (HGNC) | |
VDAC1 | Protein | VDAC1 (HGNC) | |
[Ca2+]mito | Metabolite | HMDB0000464 (HMDB) | |
alpha sarcoglycan | GeneProduct | SGCA (HGNC) | |
iNOS | Protein | ENSG00000007171 (Ensembl) | |
mTOR | Pathway | WP4923 (WikiPathways) |
Annotated Interactions
No annotated interactions