A hallmark of the human cell cycle in normal somatic cells is its precision. This remarkable fidelity is achieved by a number of signal transduction pathways, known as checkpoints, which monitor cell cycle progression ensuring an interdependency of S-phase and mitosis, the integrity of the genome and the fidelity of chromosome segregation.
Checkpoints are layers of control that act to delay CDK activation when defects in the division program occur. As the CDKs functioning at different points in the cell cycle are regulated by different means, the various checkpoints differ in the biochemical mechanisms by which they elicit their effect. However, all checkpoints share a common hierarchy of a sensor, signal transducers, and effectors that interact with the CDKs.<p>The stability of the genome in somatic cells contrasts to the almost universal genomic instability of tumor cells. There are a number of documented genetic lesions in checkpoint genes, or in cell cycle genes themselves, which result either directly in cancer or in a predisposition to certain cancer types. Indeed, restraint over cell cycle progression and failure to monitor genome integrity are likely prerequisites for the molecular evolution required for the development of a tumor. Perhaps most notable amongst these is the p53 tumor suppressor gene, which is mutated in >50% of human tumors. Thus, the importance of the checkpoint pathways to human biology is clear.
Ball HL, Cortez D.; ''ATRIP oligomerization is required for ATR-dependent checkpoint signaling.''; PubMedEurope PMCScholia
Espinosa JM, Verdun RE, Emerson BM.; ''p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage.''; PubMedEurope PMCScholia
Namiki Y, Zou L.; ''ATRIP associates with replication protein A-coated ssDNA through multiple interactions.''; PubMedEurope PMCScholia
Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J.; ''The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis.''; PubMedEurope PMCScholia
Linares LK, Hengstermann A, Ciechanover A, Müller S, Scheffner M.; ''HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53.''; PubMedEurope PMCScholia
Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ.; ''Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro.''; PubMedEurope PMCScholia
Sironi L, Mapelli M, Knapp S, De Antoni A, Jeang KT, Musacchio A.; ''Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint.''; PubMedEurope PMCScholia
Zou L, Liu D, Elledge SJ.; ''Replication protein A-mediated recruitment and activation of Rad17 complexes.''; PubMedEurope PMCScholia
Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ.; ''The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases.''; PubMedEurope PMCScholia
Danielsen JR, Povlsen LK, Villumsen BH, Streicher W, Nilsson J, Wikström M, Bekker-Jensen S, Mailand N.; ''DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger.''; PubMedEurope PMCScholia
Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT.; ''A role for ATR in the DNA damage-induced phosphorylation of p53.''; PubMedEurope PMCScholia
Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, Sancar A.; ''Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro.''; PubMedEurope PMCScholia
Ciccia A, Elledge SJ.; ''The DNA damage response: making it safe to play with knives.''; PubMedEurope PMCScholia
Unsal-Kaçmaz K, Sancar A.; ''Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities.''; PubMedEurope PMCScholia
Momand J, Zambetti GP, Olson DC, George D, Levine AJ.; ''The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.''; PubMedEurope PMCScholia
Chen L, Gilkes DM, Pan Y, Lane WS, Chen J.; ''ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage.''; PubMedEurope PMCScholia
Cotta-Ramusino C, McDonald ER, Hurov K, Sowa ME, Harper JW, Elledge SJ.; ''A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling.''; PubMedEurope PMCScholia
Clarke CA, Clarke PR.; ''DNA-dependent phosphorylation of Chk1 and Claspin in a human cell-free system.''; PubMedEurope PMCScholia
Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y.; ''Enhanced phosphorylation of p53 by ATM in response to DNA damage.''; PubMedEurope PMCScholia
Monte M, Benetti R, Collavin L, Marchionni L, Del Sal G, Schneider C.; ''hGTSE-1 expression stimulates cytoplasmic localization of p53.''; PubMedEurope PMCScholia
Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Perricaudet M, Ashworth A, Jeggo P.; ''A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein.''; PubMedEurope PMCScholia
Zhao H, Piwnica-Worms H.; ''ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1.''; PubMedEurope PMCScholia
Huang L, Yan Z, Liao X, Li Y, Yang J, Wang ZG, Zuo Y, Kawai H, Shadfan M, Ganapathy S, Yuan ZM.; ''The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo.''; PubMedEurope PMCScholia
Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM.; ''Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53.''; PubMedEurope PMCScholia
Hang H, Lieberman HB.; ''Physical interactions among human checkpoint control proteins HUS1p, RAD1p, and RAD9p, and implications for the regulation of cell cycle progression.''; PubMedEurope PMCScholia
Geyer RK, Yu ZK, Maki CG.; ''The MDM2 RING-finger domain is required to promote p53 nuclear export.''; PubMedEurope PMCScholia
Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ.; ''Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response.''; PubMedEurope PMCScholia
Sar F, Lindsey-Boltz LA, Subramanian D, Croteau DL, Hutsell SQ, Griffith JD, Sancar A.; ''Human claspin is a ring-shaped DNA-binding protein with high affinity to branched DNA structures.''; PubMedEurope PMCScholia
Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ.; ''Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint.''; PubMedEurope PMCScholia
Li J, Stern DF.; ''DNA damage regulates Chk2 association with chromatin.''; PubMedEurope PMCScholia
Campbell MS, Chan GK, Yen TJ.; ''Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase.''; PubMedEurope PMCScholia
Chehab NH, Malikzay A, Appel M, Halazonetis TD.; ''Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53.''; PubMedEurope PMCScholia
Plafker SM, Plafker KS, Weissman AM, Macara IG.; ''Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import.''; PubMedEurope PMCScholia
Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD.; ''Activation of the ATM kinase by ionizing radiation and phosphorylation of p53.''; PubMedEurope PMCScholia
Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, Zhao H, Moody SA, Appella E, Piwnica-Worms H, Fornace AJ.; ''Dual phosphorylation controls Cdc25 phosphatases and mitotic entry.''; PubMedEurope PMCScholia
Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H.; ''Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216.''; PubMedEurope PMCScholia
Pant V, Xiong S, Iwakuma T, Quintás-Cardama A, Lozano G.; ''Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability.''; PubMedEurope PMCScholia
Graves PR, Lovly CM, Uy GL, Piwnica-Worms H.; ''Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding.''; PubMedEurope PMCScholia
Chang LF, Zhang Z, Yang J, McLaughlin SH, Barford D.; ''Molecular architecture and mechanism of the anaphase-promoting complex.''; PubMedEurope PMCScholia
Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP.; ''ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks.''; PubMedEurope PMCScholia
Lakin ND, Hann BC, Jackson SP.; ''The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53.''; PubMedEurope PMCScholia
Griffith JD, Lindsey-Boltz LA, Sancar A.; ''Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy.''; PubMedEurope PMCScholia
Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA.; ''Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint.''; PubMedEurope PMCScholia
Li M, Luo J, Brooks CL, Gu W.; ''Acetylation of p53 inhibits its ubiquitination by Mdm2.''; PubMedEurope PMCScholia
Wilson KA, Stern DF.; ''NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway.''; PubMedEurope PMCScholia
Sudakin V, Chan GK, Yen TJ.; ''Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2.''; PubMedEurope PMCScholia
Monte M, Benetti R, Buscemi G, Sandy P, Del Sal G, Schneider C.; ''The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function.''; PubMedEurope PMCScholia
Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M.; ''Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation.''; PubMedEurope PMCScholia
Dalal SN, Schweitzer CM, Gan J, DeCaprio JA.; ''Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site.''; PubMedEurope PMCScholia
Melchionna R, Chen XB, Blasina A, McGowan CH.; ''Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1.''; PubMedEurope PMCScholia
Luo X, Tang Z, Rizo J, Yu H.; ''The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20.''; PubMedEurope PMCScholia
Shieh SY, Ahn J, Tamai K, Taya Y, Prives C.; ''The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites.''; PubMedEurope PMCScholia
Bochkareva E, Belegu V, Korolev S, Bochkarev A.; ''Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding.''; PubMedEurope PMCScholia
Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD.; ''Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage.''; PubMedEurope PMCScholia
Peters JM.; ''The anaphase-promoting complex: proteolysis in mitosis and beyond.''; PubMedEurope PMCScholia
Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabrielli B, Chan D, Lees-Miller SP, Lavin MF.; ''ATM associates with and phosphorylates p53: mapping the region of interaction.''; PubMedEurope PMCScholia
Blackwell LJ, Borowiec JA.; ''Human replication protein A binds single-stranded DNA in two distinct complexes.''; PubMedEurope PMCScholia
Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW.; ''DNA damage-induced activation of p53 by the checkpoint kinase Chk2.''; PubMedEurope PMCScholia
el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B.; ''WAF1, a potential mediator of p53 tumor suppression.''; PubMedEurope PMCScholia
Sharp DA, Kratowicz SA, Sank MJ, George DL.; ''Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein.''; PubMedEurope PMCScholia
Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B.; ''Amplification of a gene encoding a p53-associated protein in human sarcomas.''; PubMedEurope PMCScholia
Raderschall E, Golub EI, Haaf T.; ''Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage.''; PubMedEurope PMCScholia
Hopkins KM, Wang X, Berlin A, Hang H, Thaker HM, Lieberman HB.; ''Expression of mammalian paralogues of HRAD9 and Mrad9 checkpoint control genes in normal and cancerous testicular tissue.''; PubMedEurope PMCScholia
Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z.; ''Mdm2 association with p53 targets its ubiquitination.''; PubMedEurope PMCScholia
Blasina A, de Weyer IV, Laus MC, Luyten WH, Parker AE, McGowan CH.; ''A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase.''; PubMedEurope PMCScholia
Lieberman HB, Hopkins KM, Nass M, Demetrick D, Davey S.; ''A human homolog of the Schizosaccharomyces pombe rad9+ checkpoint control gene.''; PubMedEurope PMCScholia
Boyd SD, Tsai KY, Jacks T.; ''An intact HDM2 RING-finger domain is required for nuclear exclusion of p53.''; PubMedEurope PMCScholia
Parker LL, Piwnica-Worms H.; ''Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase.''; PubMedEurope PMCScholia
Fang G, Yu H, Kirschner MW.; ''The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation.''; PubMedEurope PMCScholia
Lee CH, Chung JH.; ''The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation.''; PubMedEurope PMCScholia
Chen J, Marechal V, Levine AJ.; ''Mapping of the p53 and mdm-2 interaction domains.''; PubMedEurope PMCScholia
Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMedEurope PMCScholia
Zou L, Elledge SJ.; ''Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.''; PubMedEurope PMCScholia
Cheng Q, Chen L, Li Z, Lane WS, Chen J.; ''ATM activates p53 by regulating MDM2 oligomerization and E3 processivity.''; PubMedEurope PMCScholia
McGowan CH, Russell P.; ''Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15.''; PubMedEurope PMCScholia
Scoumanne A, Cho SJ, Zhang J, Chen X.; ''The cyclin-dependent kinase inhibitor p21 is regulated by RNA-binding protein PCBP4 via mRNA stability.''; PubMedEurope PMCScholia
Galaktionov K, Beach D.; ''Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins.''; PubMedEurope PMCScholia
Cai Z, Chehab NH, Pavletich NP.; ''Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase.''; PubMedEurope PMCScholia
Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M, Biton S, Teunisse AF, Lehmann WD, Jochemsen AG, Shiloh Y.; ''Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage.''; PubMedEurope PMCScholia
Sørensen CS, Syljuåsen RG, Lukas J, Bartek J.; ''ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage.''; PubMedEurope PMCScholia
Maki CG.; ''Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2.''; PubMedEurope PMCScholia
Cheng Q, Cross B, Li B, Chen L, Li Z, Chen J.; ''Regulation of MDM2 E3 ligase activity by phosphorylation after DNA damage.''; PubMedEurope PMCScholia
Ball HL, Myers JS, Cortez D.; ''ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation.''; PubMedEurope PMCScholia
Ellison V, Stillman B.; ''Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA.''; PubMedEurope PMCScholia
Iftode C, Daniely Y, Borowiec JA.; ''Replication protein A (RPA): the eukaryotic SSB.''; PubMedEurope PMCScholia
Wang W, Nacusi L, Sheaff RJ, Liu X.; ''Ubiquitination of p21Cip1/WAF1 by SCFSkp2: substrate requirement and ubiquitination site selection.''; PubMedEurope PMCScholia
Cordeiro-Stone M, Makhov AM, Zaritskaya LS, Griffith JD.; ''Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand.''; PubMedEurope PMCScholia
Wang B, Matsuoka S, Carpenter PB, Elledge SJ.; ''53BP1, a mediator of the DNA damage checkpoint.''; PubMedEurope PMCScholia
Zhao H, Watkins JL, Piwnica-Worms H.; ''Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints.''; PubMedEurope PMCScholia
Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMedEurope PMCScholia
Bernardi R, Liebermann DA, Hoffman B.; ''Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation.''; PubMedEurope PMCScholia
Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA, Lee SW.; ''Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation.''; PubMedEurope PMCScholia
Dornan D, Shimizu H, Mah A, Dudhela T, Eby M, O'rourke K, Seshagiri S, Dixit VM.; ''ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage.''; PubMedEurope PMCScholia
Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR, Zhang X, Annan RS, Lu Q, Faucette LF, Scott GF, Li X, Carr SA, Johnson RK, Winkler JD, Zhou BB.; ''Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway.''; PubMedEurope PMCScholia
Hupp TR, Lane DP.; ''Allosteric activation of latent p53 tetramers.''; PubMedEurope PMCScholia
Lovly CM, Yan L, Ryan CE, Takada S, Piwnica-Worms H.; ''Regulation of Chk2 ubiquitination and signaling through autophosphorylation of serine 379.''; PubMedEurope PMCScholia
Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A.; ''Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA.''; PubMedEurope PMCScholia
The ATR (ATM- and rad3-related) kinase is an essential checkpoint factor in human cells. In response to replication stress (i.e., stresses that cause replication fork stalling) or ultraviolet radiation, ATR becomes active and phosphorylates numerous factors involved in the checkpoint response including the checkpoint kinase Chk1. ATR is invariably associated with ATRIP (ATR-interacting protein) in human cells. Depletion of ATRIP by siRNA causes a loss of ATR without affecting ATR mRNA levels indicating that complex formation stabilizes ATR. ATRIP is also a substrate for the ATR kinase, but this modification does not play a significant role in the recruitment of ATR-ATRIP to sites of damage, the activation of Chk1, or the modification of p53.
While the ATR-ATRIP complex binds only poorly to RPA complexed with ssDNA lengths of 30 or 50 nt, binding is significantly enhanced in the presence of a 75 nt ssDNA molecule. Complex formation is primarily mediated by physical interaction between ATRIP and RPA. Multiple elements within the ATRIP molecule can bind to the RPA-ssDNA complex, including residues 1-107 (highest affinity), 218-390, and 390-791 (lowest afiinity). Although the full-length ATRIP is unable to bind ssDNA, an internal region (108-390) can weakly bind ssDNA when present in rabbit reticulocyte lysates. ATR can bind to the ssDNA directly independent of RPA, but this binding is inhibited by ATRIP. Upon binding, the ATR kinase becomes activated and can directly phosphorylate substrates such as Rad17.
The molecules that directly interact with Mad1 is unknown. However molecular genetic data has defined an assembly pathway consisting of CENP-I, HEC1, Mps1 that specifies the assembly of Mad1.
RPA associates with ssDNA in distinct complexes that can be distinguished by the length of ssDNA occluded by each RPA molecule. These complexes reflect the progressive association of distinct DNA-binding domains present in the RPA heterotrimeric structure. Binding is coupled to significant conformational changes within RPA that are observable at the microscopic level. Presumably, the different conformations of free and ssDNA-bound RPA allow the protein to selectively interact with factors such as ATR-ATRIP when bound to DNA.
The Rad17-RFC complex is a heteropentamer structurally similar to RFC. The Rad17-RFC complex contains the four smaller RFC subunits (Rfc2 [p37], Rfc3 [p36], Rfc4 [p40], and Rfc5 [p38]) and the 75 kDa Rad17 subunit in place of the Rfc1 [p140] subunit. The Rad17 complex contains a weak ATPase that is poorly stimulated by primed DNA. Along with binding the 9-1-1 complex and RPA, the Rad17-RFC complex interacts with human MCM7 protein. Each of these interactions is critical for Chk1 activation.
The Rad17 subunit is conserved evolutionarily with the protein showing 49% identity at the amino acid level with the S. pombe rad17 protein. Targeted deletion of the N-terminal region of mouse Rad17 leads to embryonic lethality, strongly suggesting that human Rad17 is also essential for long-term viability.
Rad17-RFC complex associates with DNA substrates containing ssDNA regions including gapped or primed DNA in an ATP-independent reaction. Loading of the Rad9-Hus1-Rad1 (9-1-1) complex occurs preferentially on DNA substrates containing a 5' recessed end. This contrasts with the loading of PCNA by RFC which preferentially occurs on DNA with 3' recessed ends.
The Rad9-Hus1-Rad1 (9-1-1) complex is a ring-shaped heterotrimeric complex. Under genotoxic stress conditions, it can be loaded onto DNA at sites of damage or stalled forks by the Rad17 complex.
A major known function of the 9-1-1 complex is to recruit Chk1 to stalled replication forks for activation by ATR. However, the presence of the 9-1-1 complex also alters the ability of Rad17 to become phoshorylated, perhaps suggesting that 9-1-1 may also serve to recruit a subset of ATR substrates. The 9-1-1 complex has also been found to interact with base excision repair factors human DNA polymerase beta, flap endonuclease FEN1, and the S. pombe MutY homolog (SpMYH), indicating that 9-1-1 also plays a direct role in DNA repair.
Checkpoints are layers of control that act to delay CDK activation when defects in the division program occur. As the CDKs functioning at different points in the cell cycle are regulated by different means, the various checkpoints differ in the biochemical mechanisms by which they elicit their effect. However, all checkpoints share a common hierarchy of a sensor, signal transducers, and effectors that interact with the CDKs.<p>The stability of the genome in somatic cells contrasts to the almost universal genomic instability of tumor cells. There are a number of documented genetic lesions in checkpoint genes, or in cell cycle genes themselves, which result either directly in cancer or in a predisposition to certain cancer types. Indeed, restraint over cell cycle progression and failure to monitor genome integrity are likely prerequisites for the molecular evolution required for the development of a tumor. Perhaps most notable amongst these is the p53 tumor suppressor gene, which is mutated in >50% of human tumors. Thus, the importance of the checkpoint pathways to human biology is clear.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
ssDNA signaling complex
Mcm10:Activated claspin:pre-replicative complex
Mcm10:claspin:pre- replicative complex
Mcm10:pre-replicative complex
(Thr 161, Thr 14, Tyr 15)
(Thr 14, Thr 161)
complex
Cdc2(Thr 14)
complexes
complex
Complex
MAD2 Complex
MAD2* Complex
complex
complex
protein BUB3
stranded DNA
p53 complex
ssDNA
The Rad17 subunit is conserved evolutionarily with the protein showing 49% identity at the amino acid level with the S. pombe rad17 protein. Targeted deletion of the N-terminal region of mouse Rad17 leads to embryonic lethality, strongly suggesting that human Rad17 is also essential for long-term viability.
bound to DNA
complex
to DNA
Phospho-Cdc25A
MAD2*:CDC20 complex
phosphorylated
1981)
3 protein complex
promoting complex (APC/C)
COP1(ser-387)
Annotated Interactions
No annotated interactions