In addition to various processes for removing damaging lesions from the DNA, cells have developed specific mechanisms for tolerating unexcised damages during the replication of the genome. Such processes are collectively called DNA damage bypass pathways. Several proteins including novel Y-family polymerases that have been recently identified in multitude of organisms are involved in this process. Translesion synthesis (TLS) or replicative bypass of damaged bases that are known to arrest high fidelity, highly processive polymerases involved in DNA replication is carried out by error-prone polymerases Pol zeta, Pol eta and Rev3 protein among others. TLS is implicated in UV and chemical induced mutagenesis of normal human cells where lesions in the replicating genome are carried over to the newly formed daughter cells. All these 3 enzymes are found to lack 3’->5’ exonuclease activity, while exhibiting low fidelity, weak processivity and sufficient polymerase activities. An outline of the bypass synthesis by these 3 enzymes is annotated here. Complete details of damage recognition and discrimination, initiation of specific polymerase activity and the finer mechanisms are yet to be elucidated.
Friedberg EC, Lehmann AR, Fuchs RP.; ''Trading places: how do DNA polymerases switch during translesion DNA synthesis?''; PubMedEurope PMCScholia
Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, D'Andrea AD.; ''A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway.''; PubMedEurope PMCScholia
Notenboom V, Hibbert RG, van Rossum-Fikkert SE, Olsen JV, Mann M, Sixma TK.; ''Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification.''; PubMedEurope PMCScholia
Davis EJ, Lachaud C, Appleton P, Macartney TJ, Näthke I, Rouse J.; ''DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage.''; PubMedEurope PMCScholia
Kosarek JN, Woodruff RV, Rivera-Begeman A, Guo C, D'Souza S, Koonin EV, Walker GC, Friedberg EC.; ''Comparative analysis of in vivo interactions between Rev1 protein and other Y-family DNA polymerases in animals and yeasts.''; PubMedEurope PMCScholia
Saugar I, Ortiz-Bazán MÁ, Tercero JA.; ''Tolerating DNA damage during eukaryotic chromosome replication.''; PubMedEurope PMCScholia
Nelson JR, Lawrence CW, Hinkle DC.; ''Deoxycytidyl transferase activity of yeast REV1 protein.''; PubMedEurope PMCScholia
Carlson KD, Johnson RE, Prakash L, Prakash S, Washington MT.; ''Human DNA polymerase kappa forms nonproductive complexes with matched primer termini but not with mismatched primer termini.''; PubMedEurope PMCScholia
Ulrich HD.; ''Timing and spacing of ubiquitin-dependent DNA damage bypass.''; PubMedEurope PMCScholia
Chang CN, Feng MJ, Chen YL, Yuan RH, Jeng YM.; ''p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression.''; PubMedEurope PMCScholia
Vasquez-Del Carpio R, Silverstein TD, Lone S, Swan MK, Choudhury JR, Johnson RE, Prakash S, Prakash L, Aggarwal AK.; ''Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion.''; PubMedEurope PMCScholia
Centore RC, Yazinski SA, Tse A, Zou L.; ''Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response.''; PubMedEurope PMCScholia
Zhu F, Zhang M.; ''DNA polymerase zeta: new insight into eukaryotic mutagenesis and mammalian embryonic development.''; PubMedEurope PMCScholia
Matsuda T, Bebenek K, Masutani C, Hanaoka F, Kunkel TA.; ''Low fidelity DNA synthesis by human DNA polymerase-eta.''; PubMedEurope PMCScholia
Terai K, Abbas T, Jazaeri AA, Dutta A.; ''CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis.''; PubMedEurope PMCScholia
Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri C.; ''Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest.''; PubMedEurope PMCScholia
Emanuele MJ, Ciccia A, Elia AE, Elledge SJ.; ''Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate.''; PubMedEurope PMCScholia
Yoon JH, Bhatia G, Prakash S, Prakash L.; ''Error-free replicative bypass of thymine glycol by the combined action of DNA polymerases kappa and zeta in human cells.''; PubMedEurope PMCScholia
Zhang Y, Wu X, Rechkoblit O, Geacintov NE, Taylor JS, Wang Z.; ''Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion.''; PubMedEurope PMCScholia
Bienko M, Green CM, Sabbioneda S, Crosetto N, Matic I, Hibbert RG, Begovic T, Niimi A, Mann M, Lehmann AR, Dikic I.; ''Regulation of translesion synthesis DNA polymerase eta by monoubiquitination.''; PubMedEurope PMCScholia
Lehmann AR.; ''Replication of UV-damaged DNA: new insights into links between DNA polymerases, mutagenesis and human disease.''; PubMedEurope PMCScholia
Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T, Sato M.; ''Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1.''; PubMedEurope PMCScholia
Shiyanov P, Nag A, Raychaudhuri P.; ''Cullin 4A associates with the UV-damaged DNA-binding protein DDB.''; PubMedEurope PMCScholia
Nelson JR, Lawrence CW, Hinkle DC.; ''Thymine-thymine dimer bypass by yeast DNA polymerase zeta.''; PubMedEurope PMCScholia
Lee YS, Gregory MT, Yang W.; ''Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass.''; PubMedEurope PMCScholia
Fischhaber PL, Gerlach VL, Feaver WJ, Hatahet Z, Wallace SS, Friedberg EC.; ''Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides.''; PubMedEurope PMCScholia
Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, Lloyd RS, Prakash S, Prakash L.; ''Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa.''; PubMedEurope PMCScholia
Lior-Hoffmann L, Wang L, Wang S, Geacintov NE, Broyde S, Zhang Y.; ''Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in human DNA polymerase κ elucidates error-free bypass of a bulky DNA lesion.''; PubMedEurope PMCScholia
Kannouche PL, Wing J, Lehmann AR.; ''Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage.''; PubMedEurope PMCScholia
Ohashi E, Bebenek K, Matsuda T, Feaver WJ, Gerlach VL, Friedberg EC, Ohmori H, Kunkel TA.; ''Fidelity and processivity of DNA synthesis by DNA polymerase kappa, the product of the human DINB1 gene.''; PubMedEurope PMCScholia
Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.; ''Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.''; PubMedEurope PMCScholia
Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK.; ''Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing.''; PubMedEurope PMCScholia
Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L.; ''Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions.''; PubMedEurope PMCScholia
Lin W, Xin H, Zhang Y, Wu X, Yuan F, Wang Z.; ''The human REV1 gene codes for a DNA template-dependent dCMP transferase.''; PubMedEurope PMCScholia
Ohashi E, Murakumo Y, Kanjo N, Akagi J, Masutani C, Hanaoka F, Ohmori H.; ''Interaction of hREV1 with three human Y-family DNA polymerases.''; PubMedEurope PMCScholia
Christov PP, Yamanaka K, Choi JY, Takata K, Wood RD, Guengerich FP, Lloyd RS, Rizzo CJ.; ''Replication of the 2,6-diamino-4-hydroxy-N(5)-(methyl)-formamidopyrimidine (MeFapy-dGuo) adduct by eukaryotic DNA polymerases.''; PubMedEurope PMCScholia
Neal JA, Fletcher KL, McCormick JJ, Maher VM.; ''The role of hRev7, the accessory subunit of hPolζ, in translesion synthesis past DNA damage induced by benzo[a]pyrene diol epoxide (BPDE).''; PubMedEurope PMCScholia
Masutani C, Kusumoto R, Iwai S, Hanaoka F.; ''Mechanisms of accurate translesion synthesis by human DNA polymerase eta.''; PubMedEurope PMCScholia
Gibbs PE, Wang XD, Li Z, McManus TP, McGregor WG, Lawrence CW, Maher VM.; ''The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light.''; PubMedEurope PMCScholia
Jung YS, Liu G, Chen X.; ''Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation.''; PubMedEurope PMCScholia
Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z.; ''Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro.''; PubMedEurope PMCScholia
Ghosal G, Leung JW, Nair BC, Fong KW, Chen J.; ''Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis.''; PubMedEurope PMCScholia
Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R.; ''A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2.''; PubMedEurope PMCScholia
Xie W, Yang X, Xu M, Jiang T.; ''Structural insights into the assembly of human translesion polymerase complexes.''; PubMedEurope PMCScholia
Yang IY, Miller H, Wang Z, Frank EG, Ohmori H, Hanaoka F, Moriya M.; ''Mammalian translesion DNA synthesis across an acrolein-derived deoxyguanosine adduct. Participation of DNA polymerase eta in error-prone synthesis in human cells.''; PubMedEurope PMCScholia
Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM.; ''A quantitative model of human DNA base excision repair. I. Mechanistic insights.''; PubMedEurope PMCScholia
Bomar MG, D'Souza S, Bienko M, Dikic I, Walker GC, Zhou P.; ''Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1.''; PubMedEurope PMCScholia
Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K, Kisker C, Friedberg EC.; ''Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis.''; PubMedEurope PMCScholia
Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S.; ''Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA.''; PubMedEurope PMCScholia
Jung YS, Hakem A, Hakem R, Chen X.; ''Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase eta to suppress translesion DNA synthesis.''; PubMedEurope PMCScholia
Mosbech A, Gibbs-Seymour I, Kagias K, Thorslund T, Beli P, Povlsen L, Nielsen SV, Smedegaard S, Sedgwick G, Lukas C, Hartmann-Petersen R, Lukas J, Choudhary C, Pocock R, Bekker-Jensen S, Mailand N.; ''DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks.''; PubMedEurope PMCScholia
Friedberg EC, Fischhaber PL, Kisker C.; ''Error-prone DNA polymerases: novel structures and the benefits of infidelity.''; PubMedEurope PMCScholia
Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE.; ''Proteomic identification of proteins conjugated to ISG15 in mouse and human cells.''; PubMedEurope PMCScholia
Everson RB, Randerath E, Santella RM, Cefalo RC, Avitts TA, Randerath K.; ''Detection of smoking-related covalent DNA adducts in human placenta.''; PubMedEurope PMCScholia
Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M.; ''Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7.''; PubMedEurope PMCScholia
Haracska L, Acharya N, Unk I, Johnson RE, Hurwitz J, Prakash L, Prakash S.; ''A single domain in human DNA polymerase iota mediates interaction with PCNA: implications for translesion DNA synthesis.''; PubMedEurope PMCScholia
Wojtaszek J, Lee CJ, D'Souza S, Minesinger B, Kim H, D'Andrea AD, Walker GC, Zhou P.; ''Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ.''; PubMedEurope PMCScholia
Yoon JH, Roy Choudhury J, Park J, Prakash S, Prakash L.; ''A role for DNA polymerase θ in promoting replication through oxidative DNA lesion, thymine glycol, in human cells.''; PubMedEurope PMCScholia
Avkin S, Goldsmith M, Velasco-Miguel S, Geacintov N, Friedberg EC, Livneh Z.; ''Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa.''; PubMedEurope PMCScholia
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S.; ''RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.''; PubMedEurope PMCScholia
Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H.; ''Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa.''; PubMedEurope PMCScholia
Pence MG, Blans P, Zink CN, Fishbein JC, Perrino FW.; ''Bypass of N²-ethylguanine by human DNA polymerase κ.''; PubMedEurope PMCScholia
Ohashi E, Hanafusa T, Kamei K, Song I, Tomida J, Hashimoto H, Vaziri C, Ohmori H.; ''Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function.''; PubMedEurope PMCScholia
Davies AA, Huttner D, Daigaku Y, Chen S, Ulrich HD.; ''Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a.''; PubMedEurope PMCScholia
Garg P, Burgers PM.; ''Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1.''; PubMedEurope PMCScholia
Wood A, Garg P, Burgers PM.; ''A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage.''; PubMedEurope PMCScholia
Shachar S, Ziv O, Avkin S, Adar S, Wittschieben J, Reissner T, Chaney S, Friedberg EC, Wang Z, Carell T, Geacintov N, Livneh Z.; ''Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals.''; PubMedEurope PMCScholia
Haracska L, Prakash L, Prakash S.; ''Role of human DNA polymerase kappa as an extender in translesion synthesis.''; PubMedEurope PMCScholia
Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I.; ''Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis.''; PubMedEurope PMCScholia
Park JM, Yang SW, Yu KR, Ka SH, Lee SW, Seol JH, Jeon YJ, Chung CH.; ''Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis.''; PubMedEurope PMCScholia
Wojtaszek J, Liu J, D'Souza S, Wang S, Xue Y, Walker GC, Zhou P.; ''Multifaceted recognition of vertebrate Rev1 by translesion polymerases ζ and κ.''; PubMedEurope PMCScholia
Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK.; ''Hoogsteen base pair formation promotes synthesis opposite the 1,N6-ethenodeoxyadenosine lesion by human DNA polymerase iota.''; PubMedEurope PMCScholia
Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H.; ''Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7 proteins.''; PubMedEurope PMCScholia
Wolfle WT, Washington MT, Prakash L, Prakash S.; ''Human DNA polymerase kappa uses template-primer misalignment as a novel means for extending mispaired termini and for generating single-base deletions.''; PubMedEurope PMCScholia
At the beginning of this reaction, 1 molecule of 'dNTP', and 1 molecule of 'Pol zeta:damaged DNA template complex' are present. At the end of this reaction, 1 molecule of 'Pol zeta complex', and 1 molecule of 'Elongated DNA template with bypassed lesion' are present.
This reaction takes place in the 'nucleus' and is mediated by the 'DNA-directed DNA polymerase activity' of 'Pol zeta:damaged DNA template complex'.
At the beginning of this reaction, 1 molecule of 'Pol eta:lesioned DNA template inserted with correct base complement' is present. At the end of this reaction, 1 molecule of 'Pol eta protein', and 1 molecule of 'Elongated DNA template with bypassed lesion' are present.
This reaction takes place in the 'nucleus' and is mediated by the 'eta DNA polymerase activity' of 'Pol eta:lesioned DNA template inserted with correct base complement'.
At the beginning of this reaction, 1 molecule of 'damaged DNA substrate ', and 1 molecule of 'HREV1 protein' are present. At the end of this reaction, 1 molecule of 'HREV1:damaged DNA template complex' is present.
At the beginning of this reaction, 1 molecule of 'HREV7', and 1 molecule of 'HREV3' are present. At the end of this reaction, 1 molecule of 'Pol zeta complex' is present.
At the beginning of this reaction, 1 molecule of 'damaged DNA substrate ', and 1 molecule of 'Pol zeta complex' are present. At the end of this reaction, 1 molecule of 'Pol zeta:damaged DNA template complex' is present.
At the beginning of this reaction, 1 molecule of 'Pol eta:damaged DNA template complex' is present. At the end of this reaction, 1 molecule of 'Pol eta:lesioned DNA template inserted with correct base complement' is present.
This reaction takes place in the 'nucleus' and is mediated by the 'eta DNA polymerase activity' of 'Pol eta:damaged DNA template complex'.
At the beginning of this reaction, 1 molecule of 'HREV1:damaged DNA template complex' is present. At the end of this reaction, 1 molecule of 'HREV1:lesioned DNA template with misinserted bases' is present.
This reaction takes place in the 'nucleus' and is mediated by the 'DNA-directed DNA polymerase activity' of 'HREV1:damaged DNA template complex'.
At the beginning of this reaction, 1 molecule of 'damaged DNA substrate ', and 1 molecule of 'Pol eta protein' are present. At the end of this reaction, 1 molecule of 'Pol eta:damaged DNA template complex' is present.
At the beginning of this reaction, 1 molecule of 'HREV1:lesioned DNA template with misinserted bases' is present. At the end of this reaction, 1 molecule of 'HREV1 protein', and 1 molecule of 'Elongated DNA template with bypassed lesion' are present.
This reaction takes place in the 'nucleus' and is mediated by the 'DNA-directed DNA polymerase activity' of 'HREV1:lesioned DNA template with misinserted bases'.
Translesion synthesis (TLS) or replicative bypass of damaged bases that are known to arrest high fidelity, highly processive polymerases involved in DNA replication is carried out by error-prone polymerases Pol zeta, Pol eta and Rev3 protein among others. TLS is implicated in UV and chemical induced mutagenesis of normal human cells where lesions in the replicating genome are carried over to the newly formed daughter cells.
All these 3 enzymes are found to lack 3’->5’ exonuclease activity, while exhibiting low fidelity, weak processivity and sufficient polymerase activities. An outline of the bypass synthesis by these 3 enzymes is annotated here. Complete details of damage recognition and discrimination, initiation of specific polymerase activity and the finer mechanisms are yet to be elucidated.
Original Pathway at Reactome: http://www.reactome.org/PathwayBrowser/#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=73893
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
Annotated Interactions
This reaction takes place in the 'nucleus' and is mediated by the 'DNA-directed DNA polymerase activity' of 'Pol zeta:damaged DNA template complex'.
This reaction takes place in the 'nucleus' and is mediated by the 'eta DNA polymerase activity' of 'Pol eta:lesioned DNA template inserted with correct base complement'.
This reaction takes place in the 'nucleus'.
This reaction takes place in the 'nucleus'.
This reaction takes place in the 'nucleus'.
This reaction takes place in the 'nucleus' and is mediated by the 'eta DNA polymerase activity' of 'Pol eta:damaged DNA template complex'.
This reaction takes place in the 'nucleus' and is mediated by the 'DNA-directed DNA polymerase activity' of 'HREV1:damaged DNA template complex'.
This reaction takes place in the 'nucleus'.
This reaction takes place in the 'nucleus' and is mediated by the 'DNA-directed DNA polymerase activity' of 'HREV1:lesioned DNA template with misinserted bases'.