NOTCH2 is activated by binding Delta-like and Jagged ligands (DLL/JAG) expressed in trans on neighboring cells (Shimizu et al. 1999, Shimizu et al. 2000, Hicks et al. 2000, Ji et al. 2004). In trans ligand-receptor binding is followed by ADAM10 mediated (Gibb et al. 2010, Shimizu et al. 2000) and gamma secretase complex mediated cleavage of NOTCH2 (Saxena et al. 2001, De Strooper et al. 1999), resulting in the release of the intracellular domain of NOTCH2, NICD2, into the cytosol. NICD2 traffics to the nucleus where it acts as a transcriptional regulator. For a recent review of the cannonical NOTCH signaling, please refer to Kopan and Ilagan 2009, D'Souza et al. 2010, Kovall and Blacklow 2010. CNTN1 (contactin 1), a protein involved in oligodendrocyte maturation (Hu et al. 2003) and MDK (midkine) (Huang et al. 2008, Gungor et al. 2011), which plays an important role in epithelial-to-mesenchymal transition, can also bind NOTCH2 and activate NOTCH2 signaling.
In the nucleus, NICD2 forms a complex with RBPJ (CBF1, CSL) and MAML (mastermind). The NICD2:RBPJ:MAML complex activates transcription from RBPJ binding promoter elements (RBEs) (Wu et al. 2000). NOTCH2 coactivator complexes directly stimulate transcription of HES1 and HES5 genes (Shimizu et al. 2002), both of which are known NOTCH1 targets. NOTCH2 but not NOTCH1 coactivator complexes, stimulate FCER2 transcription. Overexpression of FCER2 (CD23A) is a hallmark of B-cell chronic lymphocytic leukemia (B-CLL) and correlates with the malfunction of apoptosis, which is thought be an underlying mechanism of B-CLL development (Hubmann et al. 2002). NOTCH2 coactivator complexes together with CREBP1 and EP300 stimulate transcription of GZMB (granzyme B), which is important for the cytotoxic function of CD8+ T cells (Maekawa et al. 2008).
NOTCH2 gene expression is differentially regulated during human B-cell development, with NOTCH2 transcripts appearing at late developmental stages (Bertrand et al. 2000).
NOTCH2 mutations are a rare cause of Alagille syndrome (AGS). AGS is a dominant congenital multisystem disorder characterized mainly by hepatic bile duct abnormalities. Craniofacial, heart and kidney abnormalities are also frequently observed in the Alagille spectrum (Alagille et al. 1975). AGS is predominantly caused by mutations in JAG1, a NOTCH2 ligand (Oda et al. 1997, Li et al. 1997), but it can also be caused by mutations in NOTCH2 (McDaniell et al. 2006).
Hajdu-Cheney syndrome, an autosomal dominant disorder characterized by severe and progressive bone loss, is caused by NOTCH2 mutations that result in premature C-terminal NOTCH2 truncation, probably leading to increased NOTCH2 signaling (Simpson et al. 2011, Isidor et al. 2011, Majewski et al. 2011).
Shergill B, Meloty-Kapella L, Musse AA, Weinmaster G, Botvinick E.; ''Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis.''; PubMedEurope PMCScholia
Nam Y, Sliz P, Pear WS, Aster JC, Blacklow SC.; ''Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription.''; PubMedEurope PMCScholia
Paroush Z, Finley RL, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowicz D.; ''Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins.''; PubMedEurope PMCScholia
McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB.; ''NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway.''; PubMedEurope PMCScholia
Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T, Takeda Y, Chia W, Sankar N, Ng YK, Ling EA, Maciag T, Small D, Trifonova R, Kopan R, Okano H, Nakafuku M, Chiba S, Hirai H, Aster JC, Schachner M, Pallen CJ, Watanabe K, Xiao ZC.; ''F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation.''; PubMedEurope PMCScholia
Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lübke T, Lena Illert A, von Figura K, Saftig P.; ''The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts.''; PubMedEurope PMCScholia
Cohen B, Bashirullah A, Dagnino L, Campbell C, Fisher WW, Leow CC, Whiting E, Ryan D, Zinyk D, Boulianne G, Hui CC, Gallie B, Phillips RA, Lipshitz HD, Egan SE.; ''Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila.''; PubMedEurope PMCScholia
Gibb DR, El Shikh M, Kang DJ, Rowe WJ, El Sayed R, Cichy J, Yagita H, Tew JG, Dempsey PJ, Crawford HC, Conrad DH.; ''ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo.''; PubMedEurope PMCScholia
Zhou S, Fujimuro M, Hsieh JJ, Chen L, Miyamoto A, Weinmaster G, Hayward SD.; ''SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function.''; PubMedEurope PMCScholia
Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, Lopes B, Schiff D, Purow B, Abounader R.; ''MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes.''; PubMedEurope PMCScholia
McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R, Gridley T.; ''Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation.''; PubMedEurope PMCScholia
De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R.; ''A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain.''; PubMedEurope PMCScholia
Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG.; ''A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors.''; PubMedEurope PMCScholia
Koo BK, Yoon MJ, Yoon KJ, Im SK, Kim YY, Kim CH, Suh PG, Jan YN, Kong YY.; ''An obligatory role of mind bomb-1 in notch signaling of mammalian development.''; PubMedEurope PMCScholia
Mukherjee A, Veraksa A, Bauer A, Rosse C, Camonis J, Artavanis-Tsakonas S.; ''Regulation of Notch signalling by non-visual beta-arrestin.''; PubMedEurope PMCScholia
Chastagner P, Israël A, Brou C.; ''Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains.''; PubMedEurope PMCScholia
Lai EC, Roegiers F, Qin X, Jan YN, Rubin GM.; ''The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta.''; PubMedEurope PMCScholia
Shimizu K, Chiba S, Hosoya N, Kumano K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hirai H.; ''Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2.''; PubMedEurope PMCScholia
Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA.; ''Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex.''; PubMedEurope PMCScholia
Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA, Pan H, Haltiwanger RS, Bellen HJ.; ''Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling.''; PubMedEurope PMCScholia
Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T.; ''A histone deacetylase corepressor complex regulates the Notch signal transduction pathway.''; PubMedEurope PMCScholia
Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M.; ''DNER acts as a neuron-specific Notch ligand during Bergmann glial development.''; PubMedEurope PMCScholia
Koo BK, Yoon KJ, Yoo KW, Lim HS, Song R, So JH, Kim CH, Kong YY.; ''Mind bomb-2 is an E3 ligase for Notch ligand.''; PubMedEurope PMCScholia
Gordon WR, Vardar-Ulu D, L'Heureux S, Ashworth T, Malecki MJ, Sanchez-Irizarry C, McArthur DG, Histen G, Mitchell JL, Aster JC, Blacklow SC.; ''Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2.''; PubMedEurope PMCScholia
Marcet B, Chevalier B, Luxardi G, Coraux C, Zaragosi LE, Cibois M, Robbe-Sermesant K, Jolly T, Cardinaud B, Moreilhon C, Giovannini-Chami L, Nawrocki-Raby B, Birembaut P, Waldmann R, Kodjabachian L, Barbry P.; ''Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway.''; PubMedEurope PMCScholia
Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, Vogt TF.; ''Fringe is a glycosyltransferase that modifies Notch.''; PubMedEurope PMCScholia
Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U.; ''The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog.''; PubMedEurope PMCScholia
Pan D, Rubin GM.; ''Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis.''; PubMedEurope PMCScholia
Luo B, Aster JC, Hasserjian RP, Kuo F, Sklar J.; ''Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notch1 receptor.''; PubMedEurope PMCScholia
Bray SJ, Takada S, Harrison E, Shen SC, Ferguson-Smith AC.; ''The atypical mammalian ligand Delta-like homologue 1 (Dlk1) can regulate Notch signalling in Drosophila.''; PubMedEurope PMCScholia
Huppert SS, Le A, Schroeter EH, Mumm JS, Saxena MT, Milner LA, Kopan R.; ''Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1.''; PubMedEurope PMCScholia
Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC.; ''Mutations in the human Jagged1 gene are responsible for Alagille syndrome.''; PubMedEurope PMCScholia
Shao L, Moloney DJ, Haltiwanger R.; ''Fringe modifies O-fucose on mouse Notch1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region.''; PubMedEurope PMCScholia
Isidor B, Lindenbaum P, Pichon O, Bézieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, Le Merrer M, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, Le Caignec C.; ''Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis.''; PubMedEurope PMCScholia
Kobayashi T, Terada Y, Kuwana H, Tanaka H, Okado T, Kuwahara M, Tohda S, Sakano S, Sasaki S.; ''Expression and function of the Delta-1/Notch-2/Hes-1 pathway during experimental acute kidney injury.''; PubMedEurope PMCScholia
McCright B, Lozier J, Gridley T.; ''A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency.''; PubMedEurope PMCScholia
Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G.; ''Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1.''; PubMedEurope PMCScholia
Koutelou E, Sato S, Tomomori-Sato C, Florens L, Swanson SK, Washburn MP, Kokkinaki M, Conaway RC, Conaway JW, Moschonas NK.; ''Neuralized-like 1 (Neurl1) targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1.''; PubMedEurope PMCScholia
Grbavec D, Stifani S.; ''Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif.''; PubMedEurope PMCScholia
Kishi N, Tang Z, Maeda Y, Hirai A, Mo R, Ito M, Suzuki S, Nakao K, Kinoshita T, Kadesch T, Hui C, Artavanis-Tsakonas S, Okano H, Matsuno K.; ''Murine homologs of deltex define a novel gene family involved in vertebrate Notch signaling and neurogenesis.''; PubMedEurope PMCScholia
Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC.; ''Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss.''; PubMedEurope PMCScholia
Song R, Koo BK, Yoon KJ, Yoon MJ, Yoo KW, Kim HT, Oh HJ, Kim YY, Han JK, Kim CH, Kong YY.; ''Neuralized-2 regulates a Notch ligand in cooperation with Mind bomb-1.''; PubMedEurope PMCScholia
Pang RT, Leung CO, Ye TM, Liu W, Chiu PC, Lam KK, Lee KF, Yeung WS.; ''MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells.''; PubMedEurope PMCScholia
Meloty-Kapella L, Shergill B, Kuon J, Botvinick E, Weinmaster G.; ''Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin.''; PubMedEurope PMCScholia
Chen J, Moloney DJ, Stanley P.; ''Fringe modulation of Jagged1-induced Notch signaling requires the action of beta 4galactosyltransferase-1.''; PubMedEurope PMCScholia
Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G.; ''Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2.''; PubMedEurope PMCScholia
Arnett KL, Hass M, McArthur DG, Ilagan MX, Aster JC, Kopan R, Blacklow SC.; ''Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes.''; PubMedEurope PMCScholia
Lai EC, Deblandre GA, Kintner C, Rubin GM.; ''Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta.''; PubMedEurope PMCScholia
Yao D, Huang Y, Huang X, Wang W, Yan Q, Wei L, Xin W, Gerson S, Stanley P, Lowe JB, Zhou L.; ''Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions.''; PubMedEurope PMCScholia
Song G, Zhang Y, Wang L.; ''MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation.''; PubMedEurope PMCScholia
Perissi V, Scafoglio C, Zhang J, Ohgi KA, Rose DW, Glass CK, Rosenfeld MG.; ''TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CtBP and NCoR/SMRT transcriptional repression checkpoints.''; PubMedEurope PMCScholia
Chastagner P, Israël A, Brou C.; ''AIP4/Itch regulates Notch receptor degradation in the absence of ligand.''; PubMedEurope PMCScholia
Huang Y, Hoque MO, Wu F, Trink B, Sidransky D, Ratovitski EA.; ''Midkine induces epithelial-mesenchymal transition through Notch2/Jak2-Stat3 signaling in human keratinocytes.''; PubMedEurope PMCScholia
Maekawa Y, Minato Y, Ishifune C, Kurihara T, Kitamura A, Kojima H, Yagita H, Sakata-Yanagimoto M, Saito T, Taniuchi I, Chiba S, Sone S, Yasutomo K.; ''Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity.''; PubMedEurope PMCScholia
Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB.; ''Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta.''; PubMedEurope PMCScholia
Stahl M, Uemura K, Ge C, Shi S, Tashima Y, Stanley P.; ''Roles of Pofut1 and O-fucose in mammalian Notch signaling.''; PubMedEurope PMCScholia
Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB.; ''Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1.''; PubMedEurope PMCScholia
Baladrón V, Ruiz-Hidalgo MJ, Nueda ML, Díaz-Guerra MJ, García-Ramírez JJ, Bonvini E, Gubina E, Laborda J.; ''dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats.''; PubMedEurope PMCScholia
Kovall RA, Blacklow SC.; ''Mechanistic insights into Notch receptor signaling from structural and biochemical studies.''; PubMedEurope PMCScholia
Lecourtois M, Schweisguth F.; ''Indirect evidence for Delta-dependent intracellular processing of notch in Drosophila embryos.''; PubMedEurope PMCScholia
Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A.; ''Signalling downstream of activated mammalian Notch.''; PubMedEurope PMCScholia
Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L, Marcovina S, Friedman C, Trask BJ, Hood L, Torok-Storb B.; ''The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1.''; PubMedEurope PMCScholia
Chan YM, Jan YN.; ''Roles for proteolysis and trafficking in notch maturation and signal transduction.''; PubMedEurope PMCScholia
Jarriault S, Le Bail O, Hirsinger E, Pourquié O, Logeat F, Strong CF, Brou C, Seidah NG, Isra l A.; ''Delta-1 activation of notch-1 signaling results in HES-1 transactivation.''; PubMedEurope PMCScholia
Welcker M, Clurman BE.; ''FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.''; PubMedEurope PMCScholia
Le Borgne R, Remaud S, Hamel S, Schweisguth F.; ''Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila.''; PubMedEurope PMCScholia
Bertrand FE, Eckfeldt CE, Lysholm AS, LeBien TW.; ''Notch-1 and Notch-2 exhibit unique patterns of expression in human B-lineage cells.''; PubMedEurope PMCScholia
Fisher AL, Ohsako S, Caudy M.; ''The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain.''; PubMedEurope PMCScholia
Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, Jafar-Nejad H.; ''Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi.''; PubMedEurope PMCScholia
Groot AJ, Habets R, Yahyanejad S, Hodin CM, Reiss K, Saftig P, Theys J, Vooijs M.; ''Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins.''; PubMedEurope PMCScholia
Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A, Chui I, Deshaies RJ, Kitajewski J.; ''SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation.''; PubMedEurope PMCScholia
Leimeister C, Schumacher N, Steidl C, Gessler M.; ''Analysis of HeyL expression in wild-type and Notch pathway mutant mouse embryos.''; PubMedEurope PMCScholia
Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, Barnes KC, O'Neil J, Neuberg D, Weng AP, Aster JC, Sigaux F, Soulier J, Look AT, Young RA, Califano A, Ferrando AA.; ''NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth.''; PubMedEurope PMCScholia
Hubmann R, Schwarzmeier JD, Shehata M, Hilgarth M, Duechler M, Dettke M, Berger R.; ''Notch2 is involved in the overexpression of CD23 in B-cell chronic lymphocytic leukemia.''; PubMedEurope PMCScholia
Iwasaki W, Nagata K, Hatanaka H, Inui T, Kimura T, Muramatsu T, Yoshida K, Tasumi M, Inagaki F.; ''Solution structure of midkine, a new heparin-binding growth factor.''; PubMedEurope PMCScholia
Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israël A.; ''A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE.''; PubMedEurope PMCScholia
Andersson ER, Lendahl U.; ''Therapeutic modulation of Notch signalling--are we there yet?''; PubMedEurope PMCScholia
Ji CY, Cui CS, Ma DX, Zhao JQ, Guo NJ, Zhang MH.; ''Function of Delta4 gene and its effects on 32D cell differentiation.''; PubMedEurope PMCScholia
Shimizu K, Chiba S, Saito T, Kumano K, Hamada Y, Hirai H.; ''Functional diversity among Notch1, Notch2, and Notch3 receptors.''; PubMedEurope PMCScholia
Güngör C, Zander H, Effenberger KE, Vashist YK, Kalinina T, Izbicki JR, Yekebas E, Bockhorn M.; ''Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer.''; PubMedEurope PMCScholia
Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, Sarkar FH.; ''Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells.''; PubMedEurope PMCScholia
Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M.; ''The Notch target genes Hey1 and Hey2 are required for embryonic vascular development.''; PubMedEurope PMCScholia
Costa FF, Seftor EA, Bischof JM, Kirschmann DA, Strizzi L, Arndt K, Bonaldo Mde F, Soares MB, Hendrix MJ.; ''Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment.''; PubMedEurope PMCScholia
Struhl G, Adachi A.; ''Nuclear access and action of notch in vivo.''; PubMedEurope PMCScholia
Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams RH.; ''The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis.''; PubMedEurope PMCScholia
van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M.; ''Metalloprotease ADAM10 is required for Notch1 site 2 cleavage.''; PubMedEurope PMCScholia
Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD.; ''MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors.''; PubMedEurope PMCScholia
Nam Y, Sliz P, Song L, Aster JC, Blacklow SC.; ''Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes.''; PubMedEurope PMCScholia
Maier MM, Gessler M.; ''Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes.''; PubMedEurope PMCScholia
Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG, Israël A.; ''The Notch1 receptor is cleaved constitutively by a furin-like convertase.''; PubMedEurope PMCScholia
Pitsouli C, Delidakis C.; ''The interplay between DSL proteins and ubiquitin ligases in Notch signaling.''; PubMedEurope PMCScholia
Habib R, Dommergues JP, Gubler MC, Hadchouel M, Gautier M, Odievre M, Alagille D.; ''Glomerular mesangiolipidosis in Alagille syndrome (arteriohepatic dysplasia).''; PubMedEurope PMCScholia
Johnston SH, Rauskolb C, Wilson R, Prabhakaran B, Irvine KD, Vogt TF.; ''A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway.''; PubMedEurope PMCScholia
McGill MA, Dho SE, Weinmaster G, McGlade CJ.; ''Numb regulates post-endocytic trafficking and degradation of Notch1.''; PubMedEurope PMCScholia
Rhyu MS, Jan LY, Jan YN.; ''Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells.''; PubMedEurope PMCScholia
Shimizu K, Chiba S, Saito T, Takahashi T, Kumano K, Hamada Y, Hirai H.; ''Integrity of intracellular domain of Notch ligand is indispensable for cleavage required for release of the Notch2 intracellular domain.''; PubMedEurope PMCScholia
Alagille D, Odièvre M, Gautier M, Dommergues JP.; ''Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur.''; PubMedEurope PMCScholia
Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S.; ''Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane.''; PubMedEurope PMCScholia
Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M.; ''Hypoxia requires notch signaling to maintain the undifferentiated cell state.''; PubMedEurope PMCScholia
Fryer CJ, White JB, Jones KA.; ''Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover.''; PubMedEurope PMCScholia
Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y, Hirai H.; ''Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods.''; PubMedEurope PMCScholia
Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J, Fryns JP, Boycott KM, Ste-Marie LG, McKiernan FE, Marik I, Van Esch H, FORGE Canada Consortium, Michaud JL, Samuels ME.; ''Mutations in NOTCH2 in families with Hajdu-Cheney syndrome.''; PubMedEurope PMCScholia
Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L.; ''MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells.''; PubMedEurope PMCScholia
Shimizu K, Chiba S, Saito T, Kumano K, Hirai H.; ''Physical interaction of Delta1, Jagged1, and Jagged2 with Notch1 and Notch3 receptors.''; PubMedEurope PMCScholia
Fortini ME.; ''Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling.''; PubMedEurope PMCScholia
Wallberg AE, Pedersen K, Lendahl U, Roeder RG.; ''p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro.''; PubMedEurope PMCScholia
Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, Mussolin L, Ruggero K, Bonanno L, Guffanti A, De Bellis G, Gerosa G, Stellin G, D'Agostino DM, Basso G, Bronte V, Indraccolo S, Amadori A, Zanovello P.; ''Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150.''; PubMedEurope PMCScholia
Wang Y, Shao L, Shi S, Harris RJ, Spellman MW, Stanley P, Haltiwanger RS.; ''Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase.''; PubMedEurope PMCScholia
Cordle J, Redfieldz C, Stacey M, van der Merwe PA, Willis AC, Champion BR, Hambleton S, Handford PA.; ''Localization of the delta-like-1-binding site in human Notch-1 and its modulation by calcium affinity.''; PubMedEurope PMCScholia
Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P, Kadesch T, Artavanis-Tsakonas S.; ''Human deltex is a conserved regulator of Notch signalling.''; PubMedEurope PMCScholia
Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y.; ''Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis.''; PubMedEurope PMCScholia
In humans and other mammals the NOTCH gene family has four members, NOTCH1, NOTCH2, NOTCH3 and NOTCH4, encoded on four different chromosomes. Their transcription is developmentally regulated and tissue specific, but very little information exists on molecular mechanisms of transcriptional regulation. Translation of NOTCH mRNAs is negatively regulated by a number of recently discovered microRNAs (Li et al. 2009, Pang et al.2010, Ji et al. 2009, Kong et al. 2010, Marcet et al. 2011, Ghisi et al. 2011, Song et al. 2009, Hashimoto et al. 2010, Costa et al. 2009).
The nascent forms of NOTCH precursors, Pre-NOTCH1, Pre-NOTCH2, Pre-NOTCH3 and Pre-NOTCH4, undergo extensive posttranslational modifications in the endoplasmic reticulum and Golgi apparatus to become functional. In the endoplasmic reticulum, conserved serine and threonine residues in the EGF repeats of NOTCH extracellular domain are fucosylated and glucosylated by POFUT1 and POGLUT1, respectively (Yao et al. 2011, Stahl et al. 2008, Wang et al. 2001, Shao et al. 2003, Acar et al. 2008, Fernandez Valdivia et al. 2011).
In the Golgi apparatus, fucose groups attached to NOTCH EGF repeats can be elongated by additional glycosylation steps initiated by fringe enzymes (Bruckner et al. 2000, Moloney et al. 2000, Cohen et al. 1997, Johnston et al. 1997, Chen et al. 2001). Fringe-mediated modification modulates NOTCH signaling but is not an obligatory step in Pre-NOTCH processing. Typically, processing of Pre-NOTCH in the Golgi involves cleavage by FURIN convertase (Blaumueller et al. 1997, Logeat et al. 1998, Gordon et al. 2009, Rand et al. 2000, Chan et al. 1998). The cleavage of NOTCH results in formation of mature NOTCH heterodimers that consist of NOTCH extracellular domain (NEC i.e. NECD) and NOTCH transmembrane and intracellular domain (NTM i.e. NTMICD). NOTCH heterodimers translocate to the cell surface where they function in cell to cell signaling.
NOTCH1 functions as both a transmembrane receptor presented on the cell surface and as a transcriptional regulator in the nucleus.
NOTCH1 receptor presented on the plasma membrane is activated by a membrane bound ligand expressed in trans on the surface of a neighboring cell. In trans, ligand binding triggers proteolytic cleavage of NOTCH1 and results in release of the NOTCH1 intracellular domain, NICD1, into the cytosol.
NICD1 translocates to the nucleus where it associates with RBPJ (also known as CSL or CBF) and mastermind-like (MAML) proteins (MAML1, MAML2, MAML3 or MAMLD1) to form NOTCH1 coactivator complex. NOTCH1 coactivator complex activates transcription of genes that possess RBPJ binding sites in their promoters.
NEXT2 fragment of NOTCH2 is further cleaved at the S3 site by the gamma-secretase complex, which releases the intracellular domain NICD2 into the cytosol (Saxena et al. 2001, De Strooper et al. 1999, Schroeter et al. 1998, Fortini 2002).
NOTCH ligands DLL1, DLL4, JAG1 and JAG2 undergo ubiquitination and endocytosis after binding NOTCH2 in trans. Integrity of the intracellular domain of DLL1 was shown to be essential for the successful release of NOTCH2 intracellular domain, NICD2, in response to DLL1 binding (Shimizu et al. 2002). In Drosophila, ubiquitination of Delta and Serrate ligands is performed by either Mindbomb or Neuralized ubiquitin ligase. In mammals, there are two Mindbomb homologues, MIB1 and MIB2 and two Neuralized homologues, NEURL (also known as NEUR1) and NEURL1B (also known as NEUR2). Although both Mib1 and Mib2 ubiquitinate Delta (Koo et al. 2005), only Mib1 was shown to be essential for normal development in mice, with Mib1 deficient mice exhibiting typical Notch deficiency phenotypes (Koo et al. 2007). This could be due to different expression patterns of Mib1 and Mib2. While Mib1 is abundantly expressed in embryos and adult tissues, Mib2 expression is limited to adult tissues only (Koo et al. 2005). Mouse Neurl was directly shown to ubiquitinate Jag1 but not other Notch ligands in vitro. N-terminal myristoylation targets Neurl to the plasma membrane and this is a prerequisite for Jag1 internalization (Koutelou et al. 2008). Mouse Neurl1b was shown to directly bind and ubiquitinate recombinant Xenopus Delta and to cooperate with Mib1 in Delta endocytosis (Song et al. 2006). Ubiquitination of NOTCH ligands by MIB and NEURL ubiquitin ligases triggers ligand endocytosis. Drosophila Neuralized needs to interact with membrane phosphoinositides through its phosphoinositide-binding motif to trigger endocytosis of ubiquitinated Delta (Skwarek et al. 2007). The pulling force model states that the endocytosis of ubiquitinated Notch ligands mechanically pulls the ligand-bound Notch receptor, exposing the S2 cleavage site and resulting in Notch receptor cleavage by ADAM10 and/or ADAM17 metalloproteases (Itoh et al. 2003). Using a cell-bead optical tweezers system to measure rupture force specific for cells expressing Dll1 bound to laser trapped Notch1 beads, it was shown that the mechanical force required for the activation of Notch signaling depends on ligand ubiquitination and subsequent clathrin-mediated endocytosis that involves dynamin, epsins and actin (Meloty-Kapella et al. 2012). Ligand endocytosis and recycling does not directly influence Dll1 and Notch1 interaction, except that it regulates the amount of ligand on the cell surface that is available to activate Notch (Shergill et al. 2012).
JAG1, expressed on a neighboring cell, binds NOTCH2 and activates intracellular NOTCH2 signaling (Shimizu et al. 1999, Shimizu et al. 2000). In contrast to NOTCH1, where fringe-mediated modification reduces the affinity of JAG1 for NOTCH1, it seems that fringe-mediated modification of NOTCH2 extracellular domain enhances activation of NOTCH2 signaling by JAG1 (Hicks et al. 2000).
JAG1-NOTCH2 signaling axis is affected in Alagille syndrome (AGS), a dominant congenital disorder characterized by hepatic bile duct abnormalities, as well as craniofacial, heart and kidney defects (Alagille et al. 1975, Habib et al. 1987). AGS is predominantly caused by mutations in JAG1 (Oda et al. 1997, Li et al. 1997) and less frequently by mutations in NOTCH2 (McDaniell et al. 2006).
JAG1 and NOTCH2 are expressed in kidney glomeruli and JAG1-NOTH2 signaling plays an important role in kidney development, as shown in mice mutant for JAG1 or NOTCH2 or both (McCright et al. 2001, McCright et al. 2002).
DLL1, expressed on the surface of a neighboring cell, binds NOTCH2 and activates NOTCH2-mediated intracellular signaling (Shimizu et al. 2000). Modification of NOTCH2 extracellular domain by fringe enzymes enhances NOTCH2 activation by DLL1 (Hicks et al. 2000). Activation of NOTCH2 signaling by DLL1 may regulate regeneration and proliferation of renal tubules during acute kidney injury (Kobayashi et al. 2008).
DLL4, expressed on a neighboring cell, binds NOTCH2 receptor and activates NOTCH2 intracellular signaling. The study used recombinant NOTCH2 and DLL4, exogenously expressed in Chinese hamster ovary cells. The species origin of NOTCH2 and DLL4 is not specified in the manuscript by Ji et al. 2004. The impact of fringe-mediated modification of NOTCH2 on activation by DLL4 has not been examined.
In the nucleus, NICD2 forms a complex with RBPJ (CBF1, CSL) and MAML (mastermind). NICD2:RBPJ:MAML complex activates transcription from RBPJ-binding promoter elements (Wu et al. 2000).
Besides NICD2, RBPJ and MAML, NOTCH2 coactivator complex likely includes other proteins, shown as components of the NOTCH1 coactivator complex. Since disruption of the RBPJ:NCOR corepressor and MAML-mediated recruitment of transcriptional activators has not been studied in the context of NICD2, it is not shown here. More details are available in the pathway Signaling by NOTCH1.
Many NOTCH-regulated genes have paired RBPJ-binding sites in their promoters, in head-to-head arrangement, and require cooperative formation of dimeric NOTCH transcription complexes for transcriptional activation (Nam et al. 2007).
GZMB (granzyme B) promoter contains several RBPJ binding elements (RBEs). NOTCH2 coactivator complex occupies the proximal RBE and at the same time interacts with phosphorylated CREB1, bound to an adjacent CRE site. EP300 transcriptional coactivator is also recruited to this complex through association with CREB1 (Maekawa et al. 2008).
NOTCH2 intracellular domain, NICD2, as a part of the NOTCH2 coactivator complex, binds RBPJ elements in the promoter of HES1 gene (Shimizu et al. 2002).
Transient transfection of a human pre-B-cell line REH with a vector encoding recombinant rat NICD2 induces endogenous FCER2 transcription. Overexpression of FCER2 (CD23A) is a hallmark of B-cell chronic lymphocytic leukemia (B-CLL) and correlates with the malfunction of apoptosis, which is thought be an underlying mechanism of B-CLL development. The Epstein-Barr virus protein EBNA2 can also activate FCER2 transcription through RBPJ promoter elements, possibly by mimicking NOTCH2 signaling (Hubmann et al. 2002).
NOTCH2 intracellular domain, NICD2, as a part of the NOTCH2 coactivator complex, binds RBPJ elements in the promoter of HES5 gene (Shimizu et al. 2002).
The promoter of FCER2 (CD23A) contains several RBPJ (CSL i.e. CBF) binding sites that are occupied by RBPJ transcription complexes that contain NICD2, but not NICD1. The association of NICD2 with RBPJ promoter elements of FCER2 gene was demonstrated by electromobility shift assays on nuclear extracts of human B-cell chronic lymphocytic leukemia (B-CLL) cells (Hubmann et al. 2002).
NOTCH2 coactivator complex together with CREB1 and EP300 stimulates transcription of GZMB (granzyme B), which is important for the cytotoxic function of CD8+ T-cells (Maekawa et al. 2008).
Binding of CNTN1 to NOTCH2 results in release of the intracellular domain of NOTCH2, NICD2 in a gamma-secretase-dependent way. The role of ADAM10 metalloprotease in this process has not been directly examined (Hu et al. 2003).
MDK (Midkine, MK) is a secreted, heparin-binding growth factor that acts as a homodimer (Iwasaki et al. 1997). Both the full-length and the C-terminal region of MDK can bind the N-terminus of NOTCH2. In the presence of MDK, NICD2 accumulates in the nucleus in a dose-dependent fashion and epithelial-to-mesenchymal-transition (EMT) morphological changes are induced through a mechanism that has not been fully elucidated (Huang et al. 2008, Gungor et al. 2011).
CNTN1 (F3, contactin-1) is a neuronal cell adhesion protein that can bind and activate NOTCH2, as well as NOTCH1, and these interactions are thought to play a role in oligodendrocyte maturation. While NOTCH1 activation by CNTN1 was shown to be deltex-dependent, the involvement of deltex in CNTN1-mediated activation of NOTCH2, although likely, has not been examined (Hu et al. 2003).
Ligand binding induces a conformational change in NOTCH2, through mechanical pulling of NOTCH triggered by endocytosis of the receptor-attached ligand (Meloty-Kapella et al. 2012). This conformational change exposes the S2 site in the extracellular region of NOTCH2 and results in cleavage of NOTCH2 by ADAM10 metalloprotease (Gibb et al. 2010), generating the membrane-anchored NOTCH2 fragment NEXT2 (Shimizu et al. 2000). The extracellular NOTCH2 portion remains attached to the ligand presented on the plasma membrane of a neighboring cell.
In the nucleus, NICD2 forms a complex with RBPJ (CBF1, CSL) and MAML (mastermind). The NICD2:RBPJ:MAML complex activates transcription from RBPJ binding promoter elements (RBEs) (Wu et al. 2000). NOTCH2 coactivator complexes directly stimulate transcription of HES1 and HES5 genes (Shimizu et al. 2002), both of which are known NOTCH1 targets. NOTCH2 but not NOTCH1 coactivator complexes, stimulate FCER2 transcription. Overexpression of FCER2 (CD23A) is a hallmark of B-cell chronic lymphocytic leukemia (B-CLL) and correlates with the malfunction of apoptosis, which is thought be an underlying mechanism of B-CLL development (Hubmann et al. 2002). NOTCH2 coactivator complexes together with CREBP1 and EP300 stimulate transcription of GZMB (granzyme B), which is important for the cytotoxic function of CD8+ T cells (Maekawa et al. 2008).
NOTCH2 gene expression is differentially regulated during human B-cell development, with NOTCH2 transcripts appearing at late developmental stages (Bertrand et al. 2000).
NOTCH2 mutations are a rare cause of Alagille syndrome (AGS). AGS is a dominant congenital multisystem disorder characterized mainly by hepatic bile duct abnormalities. Craniofacial, heart and kidney abnormalities are also frequently observed in the Alagille spectrum (Alagille et al. 1975). AGS is predominantly caused by mutations in JAG1, a NOTCH2 ligand (Oda et al. 1997, Li et al. 1997), but it can also be caused by mutations in NOTCH2 (McDaniell et al. 2006).
Hajdu-Cheney syndrome, an autosomal dominant disorder characterized by severe and progressive bone loss, is caused by NOTCH2 mutations that result in premature C-terminal NOTCH2 truncation, probably leading to increased NOTCH2 signaling (Simpson et al. 2011, Isidor et al. 2011, Majewski et al. 2011).
Original Pathway at Reactome: http://www.reactome.org/PathwayBrowser/#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=1980145
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
p-S133-CREB1 EP300
GZMB GeneThe nascent forms of NOTCH precursors, Pre-NOTCH1, Pre-NOTCH2, Pre-NOTCH3 and Pre-NOTCH4, undergo extensive posttranslational modifications in the endoplasmic reticulum and Golgi apparatus to become functional. In the endoplasmic reticulum, conserved serine and threonine residues in the EGF repeats of NOTCH extracellular domain are fucosylated and glucosylated by POFUT1 and POGLUT1, respectively (Yao et al. 2011, Stahl et al. 2008, Wang et al. 2001, Shao et al. 2003, Acar et al. 2008, Fernandez Valdivia et al. 2011).
In the Golgi apparatus, fucose groups attached to NOTCH EGF repeats can be elongated by additional glycosylation steps initiated by fringe enzymes (Bruckner et al. 2000, Moloney et al. 2000, Cohen et al. 1997, Johnston et al. 1997, Chen et al. 2001). Fringe-mediated modification modulates NOTCH signaling but is not an obligatory step in Pre-NOTCH processing. Typically, processing of Pre-NOTCH in the Golgi involves cleavage by FURIN convertase (Blaumueller et al. 1997, Logeat et al. 1998, Gordon et al. 2009, Rand et al. 2000, Chan et al. 1998). The cleavage of NOTCH results in formation of mature NOTCH heterodimers that consist of NOTCH extracellular domain (NEC i.e. NECD) and NOTCH transmembrane and intracellular domain (NTM i.e. NTMICD). NOTCH heterodimers translocate to the cell surface where they function in cell to cell signaling.
NOTCH1 receptor presented on the plasma membrane is activated by a membrane bound ligand expressed in trans on the surface of a neighboring cell. In trans, ligand binding triggers proteolytic cleavage of NOTCH1 and results in release of the NOTCH1 intracellular domain, NICD1, into the cytosol.
NICD1 translocates to the nucleus where it associates with RBPJ (also known as CSL or CBF) and mastermind-like (MAML) proteins (MAML1, MAML2, MAML3 or MAMLD1) to form NOTCH1 coactivator complex. NOTCH1 coactivator complex activates transcription of genes that possess RBPJ binding sites in their promoters.
Annotated Interactions
p-S133-CREB1 EP300
GZMB GeneJAG1-NOTCH2 signaling axis is affected in Alagille syndrome (AGS), a dominant congenital disorder characterized by hepatic bile duct abnormalities, as well as craniofacial, heart and kidney defects (Alagille et al. 1975, Habib et al. 1987). AGS is predominantly caused by mutations in JAG1 (Oda et al. 1997, Li et al. 1997) and less frequently by mutations in NOTCH2 (McDaniell et al. 2006).
JAG1 and NOTCH2 are expressed in kidney glomeruli and JAG1-NOTH2 signaling plays an important role in kidney development, as shown in mice mutant for JAG1 or NOTCH2 or both (McCright et al. 2001, McCright et al. 2002).
Besides NICD2, RBPJ and MAML, NOTCH2 coactivator complex likely includes other proteins, shown as components of the NOTCH1 coactivator complex. Since disruption of the RBPJ:NCOR corepressor and MAML-mediated recruitment of transcriptional activators has not been studied in the context of NICD2, it is not shown here. More details are available in the pathway Signaling by NOTCH1.
Many NOTCH-regulated genes have paired RBPJ-binding sites in their promoters, in head-to-head arrangement, and require cooperative formation of dimeric NOTCH transcription complexes for transcriptional activation (Nam et al. 2007).