PI Metabolism (Homo sapiens)
From WikiPathways
Description
Phosphatidylinositol (PI), a membrane phospholipid, can be reversibly phosphorylated at the 3, 4, and 5 positions of the inositol ring to generate seven phosphoinositides: phosphatidylinositol 3-phosphate (PI3P), phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol 5-phosphate (PI5P), phosphatidylinositol 3,4-bisphosphate PI(3,4)P2, phosphatidylinositol 4,5-bisphosphate PI(4,5)P2, phosphatidylinositol 3,5-bisphosphate PI(3,5)P2, and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). These seven phosphoinositides, which are heterogeneously distributed within cells, can serve as signature components of different intracellular compartment membranes and so help to mediate specificity of membrane interactions. Phosphoinositide levels are tightly regulated spatially and temporally by the action of various kinases and phosphatases whilst PI(4,5)P2 is also a substrate for phospholipase C. The differential localisation of each of these enzymes on specific compartment membranes ensures maintenance of the heterogeneous distribution of phosphoinositides despite the continuous membrane flow from one compartment to another.
PI is primarily synthesised in the endoplasmic reticulum from where the phospholipid is exported to other compartments via membrane traffic or via cytosolic phospholipid transfer proteins. Phosphorylation of PI to PI4P primarily occurs in the Golgi, where PI4P plays an important role in the biogenesis of transport vesicles such as the secretory vesicle involved in its transport to the plasma membrane. At this place, PI4P has a major function acting as a precursor of PI(4,5)P2, which is located predominantly at this membrane. PI(4,5)P2 binds and regulates a wide range of proteins that function on the cell surface and serves as a precursor for second messengers. Additionally, it helps define this membrane as a target for secretory vesicles, functions as a coreceptor in endocytic processes, and functions as a cofactor for actin nucleation.
At the plasma membrane, PI(4,5)P2 is further phosphorylated to PI(3,4,5)P3, another phosphoinositide with important signalling functions including stimulating cell survival and proliferation. The inositol 3-phosphatase, phosphatase and tensin homolog (PTEN) regenerates PI (4,5)P2, while the 5-phosphatases convert PI(3,4,5)P3 into the phosphoinositide, PI(3,4)P2, propagating the signal initiated by PI(3,4,5)P3. PI(3,4)P2 is further dephosphorylated in the endocytic pathway by inositol 4-phosphatases to PI3P, the signature phosphoinositide of the early endosomal compartment and a ligand for numerous endosomal proteins. However, the bulk of PI3P is generated directly in the endosomes by phosphorylation of PI. The subsequent endosomal phosphorylation of PI3P to PI(3,5)P2 is believed to generate docking sites for recruitment of cytosolic factors responsible for the control of outgoing traffic from the endosomes. The main localisation and function of the low abundance phosphoinositide PI5P, that can be generated by several pathways, remains to be determined (Krauss & Haucke 2007, Leventis & Grinstein 2010, Roth 2004, Gees et al. 2010, De Matteis & Godi 2004, van Meer et al. 2008, Vicinanza et al. 2008, Lemmon 2008, Kutaleladze 2010, Robinson & Dixon 2006, Blero et al. 2007, Liu & Bankaitis 2010, McCrea & De Camilli 2009, Vicinanza et al. 2008, Di Paolo & De Camilli, 2006). View original pathway at:Reactome.
PI is primarily synthesised in the endoplasmic reticulum from where the phospholipid is exported to other compartments via membrane traffic or via cytosolic phospholipid transfer proteins. Phosphorylation of PI to PI4P primarily occurs in the Golgi, where PI4P plays an important role in the biogenesis of transport vesicles such as the secretory vesicle involved in its transport to the plasma membrane. At this place, PI4P has a major function acting as a precursor of PI(4,5)P2, which is located predominantly at this membrane. PI(4,5)P2 binds and regulates a wide range of proteins that function on the cell surface and serves as a precursor for second messengers. Additionally, it helps define this membrane as a target for secretory vesicles, functions as a coreceptor in endocytic processes, and functions as a cofactor for actin nucleation.
At the plasma membrane, PI(4,5)P2 is further phosphorylated to PI(3,4,5)P3, another phosphoinositide with important signalling functions including stimulating cell survival and proliferation. The inositol 3-phosphatase, phosphatase and tensin homolog (PTEN) regenerates PI (4,5)P2, while the 5-phosphatases convert PI(3,4,5)P3 into the phosphoinositide, PI(3,4)P2, propagating the signal initiated by PI(3,4,5)P3. PI(3,4)P2 is further dephosphorylated in the endocytic pathway by inositol 4-phosphatases to PI3P, the signature phosphoinositide of the early endosomal compartment and a ligand for numerous endosomal proteins. However, the bulk of PI3P is generated directly in the endosomes by phosphorylation of PI. The subsequent endosomal phosphorylation of PI3P to PI(3,5)P2 is believed to generate docking sites for recruitment of cytosolic factors responsible for the control of outgoing traffic from the endosomes. The main localisation and function of the low abundance phosphoinositide PI5P, that can be generated by several pathways, remains to be determined (Krauss & Haucke 2007, Leventis & Grinstein 2010, Roth 2004, Gees et al. 2010, De Matteis & Godi 2004, van Meer et al. 2008, Vicinanza et al. 2008, Lemmon 2008, Kutaleladze 2010, Robinson & Dixon 2006, Blero et al. 2007, Liu & Bankaitis 2010, McCrea & De Camilli 2009, Vicinanza et al. 2008, Di Paolo & De Camilli, 2006). View original pathway at:Reactome.
Quality Tags
Ontology Terms
Bibliography
View all... |
- Rudd CE, Schneider H.; ''Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling.''; PubMed Europe PMC Scholia
- Kabuyama Y, Nakatsu N, Homma Y, Fukui Y.; ''Purification and characterization of the phosphatidylinositol-3,4,5-trisphosphate phosphatase in bovine thymus.''; PubMed Europe PMC Scholia
- Suzuki K, Hirano H, Okutomi K, Suzuki M, Kuga Y, Fujiwara T, Kanemoto N, Isono K, Horie M.; ''Identification and characterization of a novel human phosphatidylinositol 4-kinase.''; PubMed Europe PMC Scholia
- Rameh LE, Tolias KF, Duckworth BC, Cantley LC.; ''A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate.''; PubMed Europe PMC Scholia
- Ono F, Nakagawa T, Saito S, Owada Y, Sakagami H, Goto K, Suzuki M, Matsuno S, Kondo H.; ''A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration.''; PubMed Europe PMC Scholia
- Norris FA, Auethavekiat V, Majerus PW.; ''The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase.''; PubMed Europe PMC Scholia
- Norris FA, Atkins RC, Majerus PW.; ''The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family.''; PubMed Europe PMC Scholia
- Clarke JH, Irvine RF.; ''Evolutionarily conserved structural changes in phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) isoforms are responsible for differences in enzyme activity and localization.''; PubMed Europe PMC Scholia
- Tapparel C, Reymond A, Girardet C, Guillou L, Lyle R, Lamon C, Hutter P, Antonarakis SE.; ''The TPTE gene family: cellular expression, subcellular localization and alternative splicing.''; PubMed Europe PMC Scholia
- Carvou N, Holic R, Li M, Futter C, Skippen A, Cockcroft S.; ''Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum.''; PubMed Europe PMC Scholia
- Dey BR, Furlanetto RW, Nissley SP.; ''Cloning of human p55 gamma, a regulatory subunit of phosphatidylinositol 3-kinase, by a yeast two-hybrid library screen with the insulin-like growth factor-I receptor.''; PubMed Europe PMC Scholia
- Clarke JH, Giudici ML, Burke JE, Williams RL, Maloney DJ, Marugan J, Irvine RF.; ''The function of phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ) explored using a specific inhibitor that targets the PI5P-binding site.''; PubMed Europe PMC Scholia
- Luo J, Su F, Chen D, Shiloh A, Gu W.; ''Deacetylation of p53 modulates its effect on cell growth and apoptosis.''; PubMed Europe PMC Scholia
- Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ.; ''Characterization of the human patatin-like phospholipase family.''; PubMed Europe PMC Scholia
- Tsujita K, Itoh T, Ijuin T, Yamamoto A, Shisheva A, Laporte J, Takenawa T.; ''Myotubularin regulates the function of the late endosome through the gram domain-phosphatidylinositol 3,5-bisphosphate interaction.''; PubMed Europe PMC Scholia
- Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J, Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT.; ''The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101.''; PubMed Europe PMC Scholia
- Cao C, Laporte J, Backer JM, Wandinger-Ness A, Stein MP.; ''Myotubularin lipid phosphatase binds the hVPS15/hVPS34 lipid kinase complex on endosomes.''; PubMed Europe PMC Scholia
- Ikonomov OC, Sbrissa D, Shisheva A.; ''Localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion.''; PubMed Europe PMC Scholia
- Gurung R, Tan A, Ooms LM, McGrath MJ, Huysmans RD, Munday AD, Prescott M, Whisstock JC, Mitchell CA.; ''Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation.''; PubMed Europe PMC Scholia
- Tolias KF, Rameh LE, Ishihara H, Shibasaki Y, Chen J, Prestwich GD, Cantley LC, Carpenter CL.; ''Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate.''; PubMed Europe PMC Scholia
- Wisniewski D, Strife A, Swendeman S, Erdjument-Bromage H, Geromanos S, Kavanaugh WM, Tempst P, Clarkson B.; ''A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells.''; PubMed Europe PMC Scholia
- Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M.; ''A human interactome in three quantitative dimensions organized by stoichiometries and abundances.''; PubMed Europe PMC Scholia
- Minogue S, Anderson JS, Waugh MG, dos Santos M, Corless S, Cramer R, Hsuan JJ.; ''Cloning of a human type II phosphatidylinositol 4-kinase reveals a novel lipid kinase family.''; PubMed Europe PMC Scholia
- Ijuin T, Mochizuki Y, Fukami K, Funaki M, Asano T, Takenawa T.; ''Identification and characterization of a novel inositol polyphosphate 5-phosphatase.''; PubMed Europe PMC Scholia
- Haffner C, Takei K, Chen H, Ringstad N, Hudson A, Butler MH, Salcini AE, Di Fiore PP, De Camilli P.; ''Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15.''; PubMed Europe PMC Scholia
- Nandurkar HH, Layton M, Laporte J, Selan C, Corcoran L, Caldwell KK, Mochizuki Y, Majerus PW, Mitchell CA.; ''Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP.''; PubMed Europe PMC Scholia
- Clarke JH, Wang M, Irvine RF.; ''Localization, regulation and function of type II phosphatidylinositol 5-phosphate 4-kinases.''; PubMed Europe PMC Scholia
- Gallazzini M, Ferraris JD, Kunin M, Morris RG, Burg MB.; ''Neuropathy target esterase catalyzes osmoprotective renal synthesis of glycerophosphocholine in response to high NaCl.''; PubMed Europe PMC Scholia
- Kong AM, Speed CJ, O'Malley CJ, Layton MJ, Meehan T, Loveland KL, Cheema S, Ooms LM, Mitchell CA.; ''Cloning and characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to the Golgi network.''; PubMed Europe PMC Scholia
- Wei YJ, Sun HQ, Yamamoto M, Wlodarski P, Kunii K, Martinez M, Barylko B, Albanesi JP, Yin HL.; ''Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP.''; PubMed Europe PMC Scholia
- Zaccheo O, Dinsdale D, Meacock PA, Glynn P.; ''Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells.''; PubMed Europe PMC Scholia
- Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA.; ''Function and dysfunction of the PI system in membrane trafficking.''; PubMed Europe PMC Scholia
- Kim SA, Vacratsis PO, Firestein R, Cleary ML, Dixon JE.; ''Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase.''; PubMed Europe PMC Scholia
- McEwen RK, Dove SK, Cooke FT, Painter GF, Holmes AB, Shisheva A, Ohya Y, Parker PJ, Michell RH.; ''Complementation analysis in PtdInsP kinase-deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3-phosphate 5-kinases.''; PubMed Europe PMC Scholia
- Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ.; ''The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport.''; PubMed Europe PMC Scholia
- Oude Weernink PA, López de Jesús M, Schmidt M.; ''Phospholipase D signaling: orchestration by PIP2 and small GTPases.''; PubMed Europe PMC Scholia
- Krauss M, Haucke V.; ''Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling.''; PubMed Europe PMC Scholia
- Li Y, Dinsdale D, Glynn P.; ''Protein domains, catalytic activity, and subcellular distribution of neuropathy target esterase in Mammalian cells.''; PubMed Europe PMC Scholia
- Dunant NM, Wisniewski D, Strife A, Clarkson B, Resh MD.; ''The phosphatidylinositol polyphosphate 5-phosphatase SHIP1 associates with the dok1 phosphoprotein in bcr-Abl transformed cells.''; PubMed Europe PMC Scholia
- Tilley SJ, Skippen A, Murray-Rust J, Swigart PM, Stewart A, Morgan CP, Cockcroft S, McDonald NQ.; ''Structure-function analysis of human [corrected] phosphatidylinositol transfer protein alpha bound to phosphatidylinositol.''; PubMed Europe PMC Scholia
- Lorenzo O, Urbé S, Clague MJ.; ''Analysis of phosphoinositide binding domain properties within the myotubularin-related protein MTMR3.''; PubMed Europe PMC Scholia
- Cui J, Hao C, Zhang W, Shao J, Zhang N, Zhang G, Liu S.; ''Identical expression profiling of human and murine TIPE3 protein reveals links to its functions.''; PubMed Europe PMC Scholia
- Zou J, Chang SC, Marjanovic J, Majerus PW.; ''MTMR9 increases MTMR6 enzyme activity, stability, and role in apoptosis.''; PubMed Europe PMC Scholia
- Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP.; ''Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association.''; PubMed Europe PMC Scholia
- Domin J, Gaidarov I, Smith ME, Keen JH, Waterfield MD.; ''The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles.''; PubMed Europe PMC Scholia
- Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA.; ''FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P.''; PubMed Europe PMC Scholia
- Arcaro A, Zvelebil MJ, Wallasch C, Ullrich A, Waterfield MD, Domin J.; ''Class II phosphoinositide 3-kinases are downstream targets of activated polypeptide growth factor receptors.''; PubMed Europe PMC Scholia
- Di Paolo G, De Camilli P.; ''Phosphoinositides in cell regulation and membrane dynamics.''; PubMed Europe PMC Scholia
- Shadan S, Holic R, Carvou N, Ee P, Li M, Murray-Rust J, Cockcroft S.; ''Dynamics of lipid transfer by phosphatidylinositol transfer proteins in cells.''; PubMed Europe PMC Scholia
- Arvanitis D, Davy A.; ''Eph/ephrin signaling: networks.''; PubMed Europe PMC Scholia
- Sbrissa D, Ikonomov OC, Shisheva A.; ''PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin.''; PubMed Europe PMC Scholia
- Chen Y, Fu AK, Ip NY.; ''Eph receptors at synapses: implications in neurodegenerative diseases.''; PubMed Europe PMC Scholia
- Panaretou C, Domin J, Cockcroft S, Waterfield MD.; ''Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex.''; PubMed Europe PMC Scholia
- Zou J, Zhang C, Marjanovic J, Kisseleva MV, Majerus PW, Wilson MP.; ''Myotubularin-related protein (MTMR) 9 determines the enzymatic activity, substrate specificity, and role in autophagy of MTMR8.''; PubMed Europe PMC Scholia
- Zhang X, Jefferson AB, Auethavekiat V, Majerus PW.; ''The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase.''; PubMed Europe PMC Scholia
- Gallazzini M, Ferraris JD, Burg MB.; ''GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC.''; PubMed Europe PMC Scholia
- Larance M, Ramm G, Stöckli J, van Dam EM, Winata S, Wasinger V, Simpson F, Graham M, Junutula JR, Guilhaus M, James DE.; ''Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking.''; PubMed Europe PMC Scholia
- Liu Y, Bankaitis VA.; ''Phosphoinositide phosphatases in cell biology and disease.''; PubMed Europe PMC Scholia
- Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA.; ''Phosphoinositides as regulators of membrane trafficking in health and disease.''; PubMed Europe PMC Scholia
- Sbrissa D, Ikonomov OC, Fenner H, Shisheva A.; ''ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality.''; PubMed Europe PMC Scholia
- Szentpetery Z, Várnai P, Balla T.; ''Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling.''; PubMed Europe PMC Scholia
- Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V.; ''ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma.''; PubMed Europe PMC Scholia
- Laporte J, Blondeau F, Gansmuller A, Lutz Y, Vonesch JL, Mandel JL.; ''The PtdIns3P phosphatase myotubularin is a cytoplasmic protein that also localizes to Rac1-inducible plasma membrane ruffles.''; PubMed Europe PMC Scholia
- Zheng B, Chen D, Farquhar MG.; ''MIR16, a putative membrane glycerophosphodiester phosphodiesterase, interacts with RGS16.''; PubMed Europe PMC Scholia
- Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P.; ''Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin.''; PubMed Europe PMC Scholia
- Bultsma Y, Keune WJ, Divecha N.; ''PIP4Kbeta interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha.''; PubMed Europe PMC Scholia
- Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel-Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG.; ''Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies.''; PubMed Europe PMC Scholia
- Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L.; ''p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma.''; PubMed Europe PMC Scholia
- Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD.; ''P110delta, a novel phosphoinositide 3-kinase in leukocytes.''; PubMed Europe PMC Scholia
- Yoder MD, Thomas LM, Tremblay JM, Oliver RL, Yarbrough LR, Helmkamp GM.; ''Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine.''; PubMed Europe PMC Scholia
- Pesesse X, Dewaste V, De Smedt F, Laffargue M, Giuriato S, Moreau C, Payrastre B, Erneux C.; ''The Src homology 2 domain containing inositol 5-phosphatase SHIP2 is recruited to the epidermal growth factor (EGF) receptor and dephosphorylates phosphatidylinositol 3,4,5-trisphosphate in EGF-stimulated COS-7 cells.''; PubMed Europe PMC Scholia
- van Leeuwen JE, Samelson LE.; ''T cell antigen-receptor signal transduction.''; PubMed Europe PMC Scholia
- Volinia S, Dhand R, Vanhaesebroeck B, MacDougall LK, Stein R, Zvelebil MJ, Domin J, Panaretou C, Waterfield MD.; ''A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system.''; PubMed Europe PMC Scholia
- Halstead JR, van Rheenen J, Snel MH, Meeuws S, Mohammed S, D'Santos CS, Heck AJ, Jalink K, Divecha N.; ''A role for PtdIns(4,5)P2 and PIP5Kalpha in regulating stress-induced apoptosis.''; PubMed Europe PMC Scholia
- Kimber WA, Deak M, Prescott AR, Alessi DR.; ''Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1.''; PubMed Europe PMC Scholia
- Burrows AE, Smogorzewska A, Elledge SJ.; ''Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence.''; PubMed Europe PMC Scholia
- Walker SM, Downes CP, Leslie NR.; ''TPIP: a novel phosphoinositide 3-phosphatase.''; PubMed Europe PMC Scholia
- Maehama T, Dixon JE.; ''The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.''; PubMed Europe PMC Scholia
- Sbrissa D, Ikonomov OC, Shisheva A.; ''Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomenbrane localization.''; PubMed Europe PMC Scholia
- Roth MG.; ''Phosphoinositides in constitutive membrane traffic.''; PubMed Europe PMC Scholia
- Zou J, Marjanovic J, Kisseleva MV, Wilson M, Majerus PW.; ''Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis.''; PubMed Europe PMC Scholia
- Wullschleger S, Wasserman DH, Gray A, Sakamoto K, Alessi DR.; ''Role of TAPP1 and TAPP2 adaptor binding to PtdIns(3,4)P2 in regulating insulin sensitivity defined by knock-in analysis.''; PubMed Europe PMC Scholia
- Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KW, Gros P.; ''Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association.''; PubMed Europe PMC Scholia
- Ikonomov OC, Sbrissa D, Shisheva A.; ''Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve.''; PubMed Europe PMC Scholia
- Gees M, Colsoul B, Nilius B.; ''The role of transient receptor potential cation channels in Ca2+ signaling.''; PubMed Europe PMC Scholia
- Kutateladze TG.; ''Translation of the phosphoinositide code by PI effectors.''; PubMed Europe PMC Scholia
- Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nürnberg B.; ''Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase.''; PubMed Europe PMC Scholia
- Ohshima N, Kudo T, Yamashita Y, Mariggiò S, Araki M, Honda A, Nagano T, Isaji C, Kato N, Corda D, Izumi T, Yanaka N.; ''New members of the mammalian glycerophosphodiester phosphodiesterase family: GDE4 and GDE7 produce lysophosphatidic acid by lysophospholipase D activity.''; PubMed Europe PMC Scholia
- Balla A, Tuymetova G, Barshishat M, Geiszt M, Balla T.; ''Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments.''; PubMed Europe PMC Scholia
- Watt SA, Kimber WA, Fleming IN, Leslie NR, Downes CP, Lucocq JM.; ''Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy.''; PubMed Europe PMC Scholia
- Jones DR, Bultsma Y, Keune WJ, Halstead JR, Elouarrat D, Mohammed S, Heck AJ, D'Santos CS, Divecha N.; ''Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta.''; PubMed Europe PMC Scholia
- Rudd CE.; ''Adaptors and molecular scaffolds in immune cell signaling.''; PubMed Europe PMC Scholia
- Zhao R, Qi Y, Chen J, Zhao ZJ.; ''FYVE-DSP2, a FYVE domain-containing dual specificity protein phosphatase that dephosphorylates phosphotidylinositol 3-phosphate.''; PubMed Europe PMC Scholia
- Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP, Alessi DR.; ''Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities.''; PubMed Europe PMC Scholia
- Gupta VA, Hnia K, Smith LL, Gundry SR, McIntire JE, Shimazu J, Bass JR, Talbot EA, Amoasii L, Goldman NE, Laporte J, Beggs AH.; ''Loss of catalytically inactive lipid phosphatase myotubularin-related protein 12 impairs myotubularin stability and promotes centronuclear myopathy in zebrafish.''; PubMed Europe PMC Scholia
- Sakagami H, Aoki J, Natori Y, Nishikawa K, Kakehi Y, Natori Y, Arai H.; ''Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family.''; PubMed Europe PMC Scholia
- Mochizuki Y, Majerus PW.; ''Characterization of myotubularin-related protein 7 and its binding partner, myotubularin-related protein 9.''; PubMed Europe PMC Scholia
- Kienesberger PC, Lass A, Preiss-Landl K, Wolinski H, Kohlwein SD, Zimmermann R, Zechner R.; ''Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase.''; PubMed Europe PMC Scholia
- Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK.; ''The lipid phosphatase activity of PTEN is critical for its tumor supressor function.''; PubMed Europe PMC Scholia
- Misawa H, Ohtsubo M, Copeland NG, Gilbert DJ, Jenkins NA, Yoshimura A.; ''Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain.''; PubMed Europe PMC Scholia
- Zhang X, Loijens JC, Boronenkov IV, Parker GJ, Norris FA, Chen J, Thum O, Prestwich GD, Majerus PW, Anderson RA.; ''Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules.''; PubMed Europe PMC Scholia
- Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A.; ''Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex.''; PubMed Europe PMC Scholia
- Ivetac I, Munday AD, Kisseleva MV, Zhang XM, Luff S, Tiganis T, Whisstock JC, Rowe T, Majerus PW, Mitchell CA.; ''The type Ialpha inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane.''; PubMed Europe PMC Scholia
- Ciruela A, Hinchliffe KA, Divecha N, Irvine RF.; ''Nuclear targeting of the beta isoform of type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its alpha-helix 7.''; PubMed Europe PMC Scholia
- Clarke JH, Emson PC, Irvine RF.; ''Localization of phosphatidylinositol phosphate kinase IIgamma in kidney to a membrane trafficking compartment within specialized cells of the nephron.''; PubMed Europe PMC Scholia
- Rokudai S, Laptenko O, Arnal SM, Taya Y, Kitabayashi I, Prives C.; ''MOZ increases p53 acetylation and premature senescence through its complex formation with PML.''; PubMed Europe PMC Scholia
- Lorenzo O, Urbé S, Clague MJ.; ''Systematic analysis of myotubularins: heteromeric interactions, subcellular localisation and endosome related functions.''; PubMed Europe PMC Scholia
- Arcaro A, Volinia S, Zvelebil MJ, Stein R, Watton SJ, Layton MJ, Gout I, Ahmadi K, Downward J, Waterfield MD.; ''Human phosphoinositide 3-kinase C2beta, the role of calcium and the C2 domain in enzyme activity.''; PubMed Europe PMC Scholia
- Berger P, Schaffitzel C, Berger I, Ban N, Suter U.; ''Membrane association of myotubularin-related protein 2 is mediated by a pleckstrin homology-GRAM domain and a coiled-coil dimerization module.''; PubMed Europe PMC Scholia
- Fayngerts SA, Wu J, Oxley CL, Liu X, Vourekas A, Cathopoulis T, Wang Z, Cui J, Liu S, Sun H, Lemmon MA, Zhang L, Shi Y, Chen YH.; ''TIPE3 is the transfer protein of lipid second messengers that promote cancer.''; PubMed Europe PMC Scholia
- Das S, Dixon JE, Cho W.; ''Membrane-binding and activation mechanism of PTEN.''; PubMed Europe PMC Scholia
- Blero D, Payrastre B, Schurmans S, Erneux C.; ''Phosphoinositide phosphatases in a network of signalling reactions.''; PubMed Europe PMC Scholia
- Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W.; ''Ferroptosis as a p53-mediated activity during tumour suppression.''; PubMed Europe PMC Scholia
- Kim SA, Taylor GS, Torgersen KM, Dixon JE.; ''Myotubularin and MTMR2, phosphatidylinositol 3-phosphatases mutated in myotubular myopathy and type 4B Charcot-Marie-Tooth disease.''; PubMed Europe PMC Scholia
- Haynes LP, Sherwood MW, Dolman NJ, Burgoyne RD.; ''Specificity, promiscuity and localization of ARF protein interactions with NCS-1 and phosphatidylinositol-4 kinase-III beta.''; PubMed Europe PMC Scholia
- Walker DM, Urbé S, Dove SK, Tenza D, Raposo G, Clague MJ.; ''Characterization of MTMR3. an inositol lipid 3-phosphatase with novel substrate specificity.''; PubMed Europe PMC Scholia
- Choudhury P, Srivastava S, Li Z, Ko K, Albaqumi M, Narayan K, Coetzee WA, Lemmon MA, Skolnik EY.; ''Specificity of the myotubularin family of phosphatidylinositol-3-phosphatase is determined by the PH/GRAM domain.''; PubMed Europe PMC Scholia
- Guo S, Stolz LE, Lemrow SM, York JD.; ''SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases.''; PubMed Europe PMC Scholia
- Schaletzky J, Dove SK, Short B, Lorenzo O, Clague MJ, Barr FA.; ''Phosphatidylinositol-5-phosphate activation and conserved substrate specificity of the myotubularin phosphatidylinositol 3-phosphatases.''; PubMed Europe PMC Scholia
- Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH.; ''TIGAR, a p53-inducible regulator of glycolysis and apoptosis.''; PubMed Europe PMC Scholia
- Fouraux MA, Deneka M, Ivan V, van der Heijden A, Raymackers J, van Suylekom D, van Venrooij WJ, van der Sluijs P, Pruijn GJ.; ''Rabip4' is an effector of rab5 and rab4 and regulates transport through early endosomes.''; PubMed Europe PMC Scholia
- Voigt P, Dorner MB, Schaefer M.; ''Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase gamma that is highly expressed in heart and interacts with PDE3B.''; PubMed Europe PMC Scholia
- Marshall AJ, Krahn AK, Ma K, Duronio V, Hou S.; ''TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor.''; PubMed Europe PMC Scholia
- De Matteis MA, Godi A.; ''PI-loting membrane traffic.''; PubMed Europe PMC Scholia
- Tosch V, Rohde HM, Tronchère H, Zanoteli E, Monroy N, Kretz C, Dondaine N, Payrastre B, Mandel JL, Laporte J.; ''A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy.''; PubMed Europe PMC Scholia
- Gehrmann T, Gülkan H, Suer S, Herberg FW, Balla A, Vereb G, Mayr GW, Heilmeyer LM.; ''Functional expression and characterisation of a new human phosphatidylinositol 4-kinase PI4K230.''; PubMed Europe PMC Scholia
- Lou Y, Liu S.; ''The TIPE (TNFAIP8) family in inflammation, immunity, and cancer.''; PubMed Europe PMC Scholia
- Choudhury R, Noakes CJ, McKenzie E, Kox C, Lowe M.; ''Differential clathrin binding and subcellular localization of OCRL1 splice isoforms.''; PubMed Europe PMC Scholia
- Malecz N, McCabe PC, Spaargaren C, Qiu R, Chuang Y, Symons M.; ''Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
- Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A.; ''Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking.''; PubMed Europe PMC Scholia
- van Meer G, Voelker DR, Feigenson GW.; ''Membrane lipids: where they are and how they behave.''; PubMed Europe PMC Scholia
- Tang Y, Luo J, Zhang W, Gu W.; ''Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis.''; PubMed Europe PMC Scholia
- Caldwell KK, Lips DL, Bansal VS, Majerus PW.; ''Isolation and characterization of two 3-phosphatases that hydrolyze both phosphatidylinositol 3-phosphate and inositol 1,3-bisphosphate.''; PubMed Europe PMC Scholia
- Oude Weernink PA, Schmidt M, Jakobs KH.; ''Regulation and cellular roles of phosphoinositide 5-kinases.''; PubMed Europe PMC Scholia
- Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, De Matteis MA.; ''ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex.''; PubMed Europe PMC Scholia
- Wong K, Meyers ddR, Cantley LC.; ''Subcellular locations of phosphatidylinositol 4-kinase isoforms.''; PubMed Europe PMC Scholia
- Rohde HM, Cheong FY, Konrad G, Paiha K, Mayinger P, Boehmelt G.; ''The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex.''; PubMed Europe PMC Scholia
- Suchy SF, Olivos-Glander IM, Nussabaum RL.; ''Lowe syndrome, a deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus.''; PubMed Europe PMC Scholia
- Lemmon MA.; ''Membrane recognition by phospholipid-binding domains.''; PubMed Europe PMC Scholia
- Mani M, Lee SY, Lucast L, Cremona O, Di Paolo G, De Camilli P, Ryan TA.; ''The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals.''; PubMed Europe PMC Scholia
- Bachmann AS, Duennebier FF, Mocz G.; ''Genomic organization, characterization, and molecular 3D model of GDE1, a novel mammalian glycerophosphoinositol phosphodiesterase.''; PubMed Europe PMC Scholia
- Habib T, Hejna JA, Moses RE, Decker SJ.; ''Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein.''; PubMed Europe PMC Scholia
- Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, Wu X, Gu Y, Shu Y, Yu B, Wu X, Sun Y, Xu Q.; ''SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca(2+)-ATPase 2.''; PubMed Europe PMC Scholia
- Yang J, Kim O, Wu J, Qiu Y.; ''Interaction between tyrosine kinase Etk and a RUN domain- and FYVE domain-containing protein RUFY1. A possible role of ETK in regulation of vesicle trafficking.''; PubMed Europe PMC Scholia
- Leventis PA, Grinstein S.; ''The distribution and function of phosphatidylserine in cellular membranes.''; PubMed Europe PMC Scholia
- Mari M, Monzo P, Kaddai V, Keslair F, Gonzalez T, Le Marchand-Brustel Y, Cormont M.; ''The Rab4 effector Rabip4 plays a role in the endocytotic trafficking of Glut 4 in 3T3-L1 adipocytes.''; PubMed Europe PMC Scholia
- Krag C, Malmberg EK, Salcini AE.; ''PI3KC2α, a class II PI3K, is required for dynamin-independent internalization pathways.''; PubMed Europe PMC Scholia
- Kavanaugh WM, Pot DA, Chin SM, Deuter-Reinhard M, Jefferson AB, Norris FA, Masiarz FR, Cousens LS, Majerus PW, Williams LT.; ''Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2.''; PubMed Europe PMC Scholia
- Kisseleva MV, Wilson MP, Majerus PW.; ''The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase.''; PubMed Europe PMC Scholia
- Tronchère H, Laporte J, Pendaries C, Chaussade C, Liaubet L, Pirola L, Mandel JL, Payrastre B.; ''Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells.''; PubMed Europe PMC Scholia
- Rozycka M, Lu YJ, Brown RA, Lau MR, Shipley JM, Fry MJ.; ''cDNA cloning of a third human C2-domain-containing class II phosphoinositide 3-kinase, PI3K-C2gamma, and chromosomal assignment of this gene (PIK3C2G) to 12p12.''; PubMed Europe PMC Scholia
- Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, Kerkhoven R, Jonkers J, Voorhoeve PM, Agami R, Del Sal G.; ''BRD7 is a candidate tumour suppressor gene required for p53 function.''; PubMed Europe PMC Scholia
- Guo X, Ghalayini AJ, Chen H, Anderson RE.; ''Phosphatidylinositol 3-kinase in bovine photoreceptor rod outer segments.''; PubMed Europe PMC Scholia
- Hammond GR, Schiavo G, Irvine RF.; ''Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2).''; PubMed Europe PMC Scholia
- Vordtriede PB, Doan CN, Tremblay JM, Helmkamp GM, Yoder MD.; ''Structure of PITPbeta in complex with phosphatidylcholine: comparison of structure and lipid transfer to other PITP isoforms.''; PubMed Europe PMC Scholia
- Mochizuki Y, Takenawa T.; ''Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles.''; PubMed Europe PMC Scholia
- Nakatsu F, Messa M, Nández R, Czapla H, Zou Y, Strittmatter SM, De Camilli P.; ''Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway.''; PubMed Europe PMC Scholia
- McCrea HJ, De Camilli P.; ''Mutations in phosphoinositide metabolizing enzymes and human disease.''; PubMed Europe PMC Scholia
- Moniz LS, Vanhaesebroeck B.; ''A new TIPE of phosphoinositide regulator in cancer.''; PubMed Europe PMC Scholia
- Berger P, Berger I, Schaffitzel C, Tersar K, Volkmer B, Suter U.; ''Multi-level regulation of myotubularin-related protein-2 phosphatase activity by myotubularin-related protein-13/set-binding factor-2.''; PubMed Europe PMC Scholia
- Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W.; ''Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence.''; PubMed Europe PMC Scholia
- Zheng B, Berrie CP, Corda D, Farquhar MG.; ''GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors.''; PubMed Europe PMC Scholia
- Meier TI, Cook JA, Thomas JE, Radding JA, Horn C, Lingaraj T, Smith MC.; ''Cloning, expression, purification, and characterization of the human Class Ia phosphoinositide 3-kinase isoforms.''; PubMed Europe PMC Scholia
- Cabezas A, Pattni K, Stenmark H.; ''Cloning and subcellular localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1.''; PubMed Europe PMC Scholia
- Sbrissa D, Ikonomov OC, Deeb R, Shisheva A.; ''Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells.''; PubMed Europe PMC Scholia
- Robinson FL, Dixon JE.; ''Myotubularin phosphatases: policing 3-phosphoinositides.''; PubMed Europe PMC Scholia
- Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB.; ''Acetylation of the p53 DNA-binding domain regulates apoptosis induction.''; PubMed Europe PMC Scholia
- Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF, De Camilli P.; ''PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse.''; PubMed Europe PMC Scholia
- Johenning FW, Wenk MR, Uhlén P, Degray B, Lee E, De Camilli P, Ehrlich BE.; ''InsP3-mediated intracellular calcium signalling is altered by expression of synaptojanin-1.''; PubMed Europe PMC Scholia
- Yamada K, Nomura N, Yamano A, Yamada Y, Wakamatsu N.; ''Identification and characterization of splicing variants of PLEKHA5 (Plekha5) during brain development.''; PubMed Europe PMC Scholia
- Kitagishi Y, Matsuda S.; ''RUFY, Rab and Rap Family Proteins Involved in a Regulation of Cell Polarity and Membrane Trafficking.''; PubMed Europe PMC Scholia
- Drayer AL, Pesesse X, De Smedt F, Woscholski R, Parker P, Erneux C.; ''Cloning and expression of a human placenta inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase.''; PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Annotated Interactions
View all... |
Source | Target | Type | Database reference | Comment |
---|---|---|---|---|
ADP | Arrow | R-HSA-1675773 (Reactome) | ||
ADP | Arrow | R-HSA-1675776 (Reactome) | ||
ADP | Arrow | R-HSA-1675780 (Reactome) | ||
ADP | Arrow | R-HSA-1675810 (Reactome) | ||
ADP | Arrow | R-HSA-1675813 (Reactome) | ||
ADP | Arrow | R-HSA-1675866 (Reactome) | ||
ADP | Arrow | R-HSA-1675883 (Reactome) | ||
ADP | Arrow | R-HSA-1675910 (Reactome) | ||
ADP | Arrow | R-HSA-1675921 (Reactome) | ||
ADP | Arrow | R-HSA-1675928 (Reactome) | ||
ADP | Arrow | R-HSA-1675939 (Reactome) | ||
ADP | Arrow | R-HSA-1675961 (Reactome) | ||
ADP | Arrow | R-HSA-1675974 (Reactome) | ||
ADP | Arrow | R-HSA-1676024 (Reactome) | ||
ADP | Arrow | R-HSA-1676048 (Reactome) | ||
ADP | Arrow | R-HSA-1676082 (Reactome) | ||
ADP | Arrow | R-HSA-1676109 (Reactome) | ||
ADP | Arrow | R-HSA-1676134 (Reactome) | ||
ADP | Arrow | R-HSA-1676145 (Reactome) | ||
ADP | Arrow | R-HSA-1676168 (Reactome) | ||
ADP | Arrow | R-HSA-1676185 (Reactome) | ||
ADP | Arrow | R-HSA-1676206 (Reactome) | ||
ARF1/3:GTP:PI4KB | Arrow | R-HSA-1676152 (Reactome) | ||
ARF1/3:GTP:PI4KB | mim-catalysis | R-HSA-1675883 (Reactome) | ||
ARF1/3:GTP | R-HSA-1676152 (Reactome) | |||
ATP | R-HSA-1675773 (Reactome) | |||
ATP | R-HSA-1675776 (Reactome) | |||
ATP | R-HSA-1675780 (Reactome) | |||
ATP | R-HSA-1675810 (Reactome) | |||
ATP | R-HSA-1675813 (Reactome) | |||
ATP | R-HSA-1675866 (Reactome) | |||
ATP | R-HSA-1675883 (Reactome) | |||
ATP | R-HSA-1675910 (Reactome) | |||
ATP | R-HSA-1675921 (Reactome) | |||
ATP | R-HSA-1675928 (Reactome) | |||
ATP | R-HSA-1675939 (Reactome) | |||
ATP | R-HSA-1675961 (Reactome) | |||
ATP | R-HSA-1675974 (Reactome) | |||
ATP | R-HSA-1676024 (Reactome) | |||
ATP | R-HSA-1676048 (Reactome) | |||
ATP | R-HSA-1676082 (Reactome) | |||
ATP | R-HSA-1676109 (Reactome) | |||
ATP | R-HSA-1676134 (Reactome) | |||
ATP | R-HSA-1676145 (Reactome) | |||
ATP | R-HSA-1676168 (Reactome) | |||
ATP | R-HSA-1676185 (Reactome) | |||
ATP | R-HSA-1676206 (Reactome) | |||
H2O | R-HSA-1675795 (Reactome) | |||
H2O | R-HSA-1675824 (Reactome) | |||
H2O | R-HSA-1675836 (Reactome) | |||
H2O | R-HSA-1675949 (Reactome) | |||
H2O | R-HSA-1675988 (Reactome) | |||
H2O | R-HSA-1675994 (Reactome) | |||
H2O | R-HSA-1676005 (Reactome) | |||
H2O | R-HSA-1676020 (Reactome) | |||
H2O | R-HSA-1676065 (Reactome) | |||
H2O | R-HSA-1676105 (Reactome) | |||
H2O | R-HSA-1676114 (Reactome) | |||
H2O | R-HSA-1676124 (Reactome) | |||
H2O | R-HSA-1676141 (Reactome) | |||
H2O | R-HSA-1676149 (Reactome) | |||
H2O | R-HSA-1676162 (Reactome) | |||
H2O | R-HSA-1676164 (Reactome) | |||
H2O | R-HSA-1676174 (Reactome) | |||
H2O | R-HSA-1676177 (Reactome) | |||
H2O | R-HSA-1676191 (Reactome) | |||
H2O | R-HSA-1676203 (Reactome) | |||
H2O | R-HSA-1676204 (Reactome) | |||
INPP4A/B | mim-catalysis | R-HSA-1676162 (Reactome) | ||
INPP4A/B | mim-catalysis | R-HSA-1676164 (Reactome) | ||
INPP5(2) | mim-catalysis | R-HSA-1675949 (Reactome) | ||
MTM(2) | mim-catalysis | R-HSA-1676105 (Reactome) | ||
MTM(2) | mim-catalysis | R-HSA-1676141 (Reactome) | ||
MTM(3) | mim-catalysis | R-HSA-1675795 (Reactome) | ||
MTM(3) | mim-catalysis | R-HSA-1676065 (Reactome) | ||
OCRL/INPP5E | mim-catalysis | R-HSA-1675824 (Reactome) | ||
PC:PITPNB | Arrow | R-HSA-1483087 (Reactome) | ||
PC:PITPNB | Arrow | R-HSA-1483211 (Reactome) | ||
PC:PITPNB | R-HSA-1483211 (Reactome) | |||
PC:PITPNB | R-HSA-1483219 (Reactome) | |||
PC | Arrow | R-HSA-1483219 (Reactome) | ||
PC | R-HSA-1483087 (Reactome) | |||
PI(3,4)P2 | Arrow | R-HSA-1675834 (Reactome) | ||
PI(3,4)P2 | Arrow | R-HSA-1675928 (Reactome) | ||
PI(3,4)P2 | Arrow | R-HSA-1675949 (Reactome) | ||
PI(3,4)P2 | Arrow | R-HSA-1676109 (Reactome) | ||
PI(3,4)P2 | Arrow | R-HSA-1676145 (Reactome) | ||
PI(3,4)P2 | Arrow | R-HSA-1676206 (Reactome) | ||
PI(3,4)P2 | R-HSA-1675773 (Reactome) | |||
PI(3,4)P2 | R-HSA-1675834 (Reactome) | |||
PI(3,4)P2 | R-HSA-1676149 (Reactome) | |||
PI(3,4)P2 | R-HSA-1676162 (Reactome) | |||
PI(3,4)P2 | R-HSA-1676164 (Reactome) | |||
PI(3,4)P2 | R-HSA-1676204 (Reactome) | |||
PI(3,4,5)P3 | Arrow | R-HSA-1675773 (Reactome) | ||
PI(3,4,5)P3 | Arrow | R-HSA-1676048 (Reactome) | ||
PI(3,4,5)P3 | R-HSA-1675949 (Reactome) | |||
PI(3,4,5)P3 | R-HSA-1676191 (Reactome) | |||
PI(3,5)P2 | Arrow | R-HSA-1675896 (Reactome) | ||
PI(3,5)P2 | Arrow | R-HSA-1675910 (Reactome) | ||
PI(3,5)P2 | Arrow | R-HSA-1675921 (Reactome) | ||
PI(3,5)P2 | Arrow | R-HSA-1676041 (Reactome) | ||
PI(3,5)P2 | Arrow | R-HSA-1676134 (Reactome) | ||
PI(3,5)P2 | Arrow | R-HSA-1676161 (Reactome) | ||
PI(3,5)P2 | Arrow | R-HSA-1676168 (Reactome) | ||
PI(3,5)P2 | R-HSA-1675836 (Reactome) | |||
PI(3,5)P2 | R-HSA-1675896 (Reactome) | |||
PI(3,5)P2 | R-HSA-1676005 (Reactome) | |||
PI(3,5)P2 | R-HSA-1676020 (Reactome) | |||
PI(3,5)P2 | R-HSA-1676041 (Reactome) | |||
PI(3,5)P2 | R-HSA-1676065 (Reactome) | |||
PI(3,5)P2 | R-HSA-1676105 (Reactome) | |||
PI(3,5)P2 | R-HSA-1676161 (Reactome) | |||
PI(3,5)P2 | R-HSA-1676174 (Reactome) | |||
PI(3,5)P2 | R-HSA-1676203 (Reactome) | |||
PI(4,5)P2 | Arrow | R-HSA-1675776 (Reactome) | ||
PI(4,5)P2 | Arrow | R-HSA-1676082 (Reactome) | ||
PI(4,5)P2 | Arrow | R-HSA-1676191 (Reactome) | ||
PI(4,5)P2 | R-HSA-1675824 (Reactome) | |||
PI(4,5)P2 | R-HSA-1676048 (Reactome) | |||
PI(4,5)P2 | R-HSA-1676177 (Reactome) | |||
PI3P | Arrow | R-HSA-1675836 (Reactome) | ||
PI3P | Arrow | R-HSA-1675939 (Reactome) | ||
PI3P | Arrow | R-HSA-1675961 (Reactome) | ||
PI3P | Arrow | R-HSA-1676005 (Reactome) | ||
PI3P | Arrow | R-HSA-1676020 (Reactome) | ||
PI3P | Arrow | R-HSA-1676024 (Reactome) | ||
PI3P | Arrow | R-HSA-1676162 (Reactome) | ||
PI3P | Arrow | R-HSA-1676164 (Reactome) | ||
PI3P | Arrow | R-HSA-1676174 (Reactome) | ||
PI3P | R-HSA-1675795 (Reactome) | |||
PI3P | R-HSA-1675910 (Reactome) | |||
PI3P | R-HSA-1675921 (Reactome) | |||
PI3P | R-HSA-1675994 (Reactome) | |||
PI3P | R-HSA-1676114 (Reactome) | |||
PI3P | R-HSA-1676134 (Reactome) | |||
PI3P | R-HSA-1676141 (Reactome) | |||
PI3P | R-HSA-1676145 (Reactome) | |||
PI3P | R-HSA-1676168 (Reactome) | |||
PI4K2A/2B | mim-catalysis | R-HSA-1675780 (Reactome) | ||
PI4K2A/2B | mim-catalysis | R-HSA-1675974 (Reactome) | ||
PI4KA/2A/2B | mim-catalysis | R-HSA-1676185 (Reactome) | ||
PI4KA/2B | mim-catalysis | R-HSA-1675813 (Reactome) | ||
PI4KB | R-HSA-1676152 (Reactome) | |||
PI4P | Arrow | R-HSA-1675780 (Reactome) | ||
PI4P | Arrow | R-HSA-1675813 (Reactome) | ||
PI4P | Arrow | R-HSA-1675815 (Reactome) | ||
PI4P | Arrow | R-HSA-1675824 (Reactome) | ||
PI4P | Arrow | R-HSA-1675883 (Reactome) | ||
PI4P | Arrow | R-HSA-1675974 (Reactome) | ||
PI4P | Arrow | R-HSA-1676149 (Reactome) | ||
PI4P | Arrow | R-HSA-1676177 (Reactome) | ||
PI4P | Arrow | R-HSA-1676185 (Reactome) | ||
PI4P | Arrow | R-HSA-1676204 (Reactome) | ||
PI4P | R-HSA-1675815 (Reactome) | |||
PI4P | R-HSA-1675928 (Reactome) | |||
PI4P | R-HSA-1675988 (Reactome) | |||
PI4P | R-HSA-1676082 (Reactome) | |||
PI4P | R-HSA-1676109 (Reactome) | |||
PI4P | R-HSA-1676124 (Reactome) | |||
PI4P | R-HSA-1676133 (Reactome) | |||
PI4P | R-HSA-1676206 (Reactome) | |||
PI5P | Arrow | R-HSA-1675810 (Reactome) | ||
PI5P | Arrow | R-HSA-1675866 (Reactome) | ||
PI5P | Arrow | R-HSA-1676065 (Reactome) | ||
PI5P | Arrow | R-HSA-1676105 (Reactome) | ||
PI5P | Arrow | R-HSA-1676203 (Reactome) | ||
PI5P | R-HSA-1675776 (Reactome) | |||
PI:PITPNB | Arrow | R-HSA-1483219 (Reactome) | ||
PI:PITPNB | Arrow | R-HSA-1483229 (Reactome) | ||
PI:PITPNB | R-HSA-1483087 (Reactome) | |||
PI:PITPNB | R-HSA-1483229 (Reactome) | |||
PI | Arrow | R-HSA-1483087 (Reactome) | ||
PI | Arrow | R-HSA-1675795 (Reactome) | ||
PI | Arrow | R-HSA-1675988 (Reactome) | ||
PI | Arrow | R-HSA-1675994 (Reactome) | ||
PI | Arrow | R-HSA-1676114 (Reactome) | ||
PI | Arrow | R-HSA-1676124 (Reactome) | ||
PI | Arrow | R-HSA-1676133 (Reactome) | ||
PI | Arrow | R-HSA-1676141 (Reactome) | ||
PIK3(2) | mim-catalysis | R-HSA-1676109 (Reactome) | ||
PIK3C(1) | mim-catalysis | R-HSA-1676048 (Reactome) | ||
PIK3C2A/3 | mim-catalysis | R-HSA-1675939 (Reactome) | ||
PIK3C2A/3 | mim-catalysis | R-HSA-1675961 (Reactome) | ||
PIK3C2A/3 | mim-catalysis | R-HSA-1676024 (Reactome) | ||
PIK3C2A/G | mim-catalysis | R-HSA-1675928 (Reactome) | ||
PIK3C2A:Ca2+/Mg2+ | mim-catalysis | R-HSA-1676206 (Reactome) | ||
PIKFYVE:VAC14:FIG4 | mim-catalysis | R-HSA-1675866 (Reactome) | ||
PIKFYVE:VAC14:FIG4 | mim-catalysis | R-HSA-1675910 (Reactome) | ||
PIKFYVE:VAC14:FIG4 | mim-catalysis | R-HSA-1675921 (Reactome) | ||
PIKFYVE:VAC14:FIG4 | mim-catalysis | R-HSA-1676005 (Reactome) | ||
PIKFYVE:VAC14:FIG4 | mim-catalysis | R-HSA-1676020 (Reactome) | ||
PIKFYVE:VAC14:FIG4 | mim-catalysis | R-HSA-1676168 (Reactome) | ||
PIKFYVE:VAC14:FIG4 | mim-catalysis | R-HSA-1676174 (Reactome) | ||
PIP4K2/5K1 | mim-catalysis | R-HSA-1676145 (Reactome) | ||
PIP4K2A/B | mim-catalysis | R-HSA-1675776 (Reactome) | ||
PIP5K1A-C | mim-catalysis | R-HSA-1675773 (Reactome) | ||
PIP5K1A-C | mim-catalysis | R-HSA-1676082 (Reactome) | ||
PIP5K1A/B | mim-catalysis | R-HSA-1675810 (Reactome) | ||
PIP5K1A/B | mim-catalysis | R-HSA-1676134 (Reactome) | ||
PI | R-HSA-1483219 (Reactome) | |||
PI | R-HSA-1675780 (Reactome) | |||
PI | R-HSA-1675810 (Reactome) | |||
PI | R-HSA-1675813 (Reactome) | |||
PI | R-HSA-1675866 (Reactome) | |||
PI | R-HSA-1675883 (Reactome) | |||
PI | R-HSA-1675939 (Reactome) | |||
PI | R-HSA-1675961 (Reactome) | |||
PI | R-HSA-1675974 (Reactome) | |||
PI | R-HSA-1676024 (Reactome) | |||
PI | R-HSA-1676185 (Reactome) | |||
PTEN:Mg2+ | mim-catalysis | R-HSA-1676149 (Reactome) | ||
PTEN:Mg2+ | mim-catalysis | R-HSA-1676191 (Reactome) | ||
Pi | Arrow | R-HSA-1675795 (Reactome) | ||
Pi | Arrow | R-HSA-1675824 (Reactome) | ||
Pi | Arrow | R-HSA-1675836 (Reactome) | ||
Pi | Arrow | R-HSA-1675949 (Reactome) | ||
Pi | Arrow | R-HSA-1675988 (Reactome) | ||
Pi | Arrow | R-HSA-1675994 (Reactome) | ||
Pi | Arrow | R-HSA-1676005 (Reactome) | ||
Pi | Arrow | R-HSA-1676020 (Reactome) | ||
Pi | Arrow | R-HSA-1676065 (Reactome) | ||
Pi | Arrow | R-HSA-1676105 (Reactome) | ||
Pi | Arrow | R-HSA-1676114 (Reactome) | ||
Pi | Arrow | R-HSA-1676124 (Reactome) | ||
Pi | Arrow | R-HSA-1676133 (Reactome) | ||
Pi | Arrow | R-HSA-1676141 (Reactome) | ||
Pi | Arrow | R-HSA-1676149 (Reactome) | ||
Pi | Arrow | R-HSA-1676162 (Reactome) | ||
Pi | Arrow | R-HSA-1676164 (Reactome) | ||
Pi | Arrow | R-HSA-1676174 (Reactome) | ||
Pi | Arrow | R-HSA-1676177 (Reactome) | ||
Pi | Arrow | R-HSA-1676191 (Reactome) | ||
Pi | Arrow | R-HSA-1676203 (Reactome) | ||
Pi | Arrow | R-HSA-1676204 (Reactome) | ||
R-HSA-1483087 (Reactome) | At the Golgi membrane, phosphatidylinositol (PI) is exchanged for phosphatidylcholine (PC) within the phosphatidylinositol transfer protein beta isoform (PITPNB) complex (Tilley et al. 2004, Yolder et al. 2001, Carvou et al. 2010, Schouten et al. 2002, Vordtriede et al. 2005, Shadan et al. 2008). | |||
R-HSA-1483211 (Reactome) | The complex between phosphatidylcholine (PC) and phosphatidylinositol transfer protein beta isoform (PITPNB) transports from the Golgi membrane to the ER membrane (Carvou et al. 2010, Shadan et al. 2008). | |||
R-HSA-1483219 (Reactome) | At the ER membrane, phosphatidylcholine (PC) is exchanged for phosphatidylinositol (PI) within the phosphatidylinositol transfer protein beta isoform (PITPNB) complex (Tilley et al. 2004, Yolder et al. 2001, Carvou et al. 2010, Schouten et al. 2002, Vordtriede et al. 2005, Shadan et al. 2008). | |||
R-HSA-1483229 (Reactome) | The phosphatidylinositol transfer protein beta isoform (PITPNB) bound to phosphatidylinositol (PI) complex transports from the endoplasmic reticulum (ER) membrane to the Golgi membrane (Carvou et al. 2010, Shadan et al. 2008). | |||
R-HSA-1675773 (Reactome) | At the plasma membrane, phosphatidylinositol-4-phosphate 5-kinase type-1 alpha (PIP5K1A), beta (PIP5K1B), and gamma (PIP5K1C) phosphorylate phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) to produce phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). This is a minor reaction, however, and its physiological role is uncertain. The following lists the above proteins with their corresponding literature references: PIP5K1A (Zhang et al. 1997, Tolias et al. 1998), PIP5K1B (Zhang et al. 1997, Tolias et al. 1998), and PIP5K1C (Wenk et al. 2001, Di Paolo et al. 2002, Krauss et al. 2003). | |||
R-HSA-1675776 (Reactome) | At the plasma membrane, phosphatidylinositol-5-phosphate 4-kinase type-2 alpha (PIP4K2A) and beta (PIP4K2B) homodimers and heterodimers (Clarke et al. 2010) phosphorylate phosphatidylinositol 5-phosphate (PI5P) to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The following lists the above proteins with their corresponding literature references: PIP4K2A (Rameh et al. 1997, Clarke et al. 2008) and PIP4K2B (Rameh et al. 1997). | |||
R-HSA-1675780 (Reactome) | At the plasma membrane, phosphatidylinositol 4-kinase type 2-alpha (PI4K2A) (Balla et al. 2002, Minogue et al. 2001) and beta (PI4K2B) (Balla et al. 2002, Wei et al. 2002) phosphorylate phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P). | |||
R-HSA-1675795 (Reactome) | At the late endosome membrane, myotubularin (MTM1), myotubularin-related protein 2 (MTMR2), myotubularin-related protein 4 (MTMR4), and myotubularin-related protein 7 (MTMR7) dephosphorylate phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol (PI). The following lists the above proteins with their corresponding literature references: MTM1 (Cao et al. 2007, Cao et al. 2008, Tsujita et al. 2004, Tronchere et al. 2004, Kim et al. 2002); MTMR2 (Cao et al. 2008, Kim et al. 2002); MTMR4 (Lorenzo et al. 2006); and MTMR7 (Mochizuki & Majerus 2003, Lorenzo et al. 2006). | |||
R-HSA-1675810 (Reactome) | At the plasma membrane, phosphatidylinositol-4-phosphate 5-kinase type-1 alpha (PIP5K1A) and beta (PIP5K1B) phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 5-phosphate (PI5P) (Tolias et al. 1998). | |||
R-HSA-1675813 (Reactome) | At the endoplasmic reticulum (ER) membrane, phosphatidylinositol 4-kinase alpha (PI4KA) (Wong et al. 1997, Gehrmann et al. 1999) or phosphatidylinositol 4-kinase type 2-beta (PI4K2B) (Wei et al. 2002) phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P). | |||
R-HSA-1675815 (Reactome) | Phosphatidylinositol 4-phosphate (PI4P) translocates from the Golgi membrane to the plasma membrane via a secretory vesicle mechanism (Szentpetery et al. 2010, Godi et al. 2004, Hammond et al. 2009). | |||
R-HSA-1675824 (Reactome) | At the Golgi membrane, phosphatidylinositol 4-phosphate (PI4P) inositol polyphosphate 5-phosphatase OCRL-1 (OCRL) (Choudhury et al. 2009, Suchy et al. 1995, Zhang et al. 1995) and 72 kDa inositol polyphosphate 5-phosphatase (INPP5E) (Bilas et al. 2009) dephosphorylate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to form phosphatidylinositol 4-phosphate (PI4P). INPP5E is located in the Golgi membrane, mediated by its N-terminal proline-rich domain (Kong et al. 2000). | |||
R-HSA-1675834 (Reactome) | In mice, phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) translocates from the plasma membrane to the early endosome membrane (Watt et al. 2004). A similar event has also been detected in cells from Chlorocebus sabaeus (Green Monkey) (Ivetac et al. 2005). In humans this event is inferred from the other two occurrences. | |||
R-HSA-1675836 (Reactome) | At the plasma membrane, synaptic inositol-1,4,5-trisphosphate 5-phosphatase 1 aka synaptojanin-1 (SYNJ1) (Guo et al. 1999, Mani et al. 2007) and -2 (SYNJ2) (Malecz et al. 2000) dephosphorylate phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) to phosphatidylinositol 3-phosphate (PI3P). | |||
R-HSA-1675866 (Reactome) | At the late endosome membrane, the PAS complex, consisting of FYVE finger-containing phosphoinositide kinase (PIKFYVE), yeast VAC14 homologue (VAC14), and polyphosphoinositide phosphatase aka SAC3 (FIG4), binds to the membrane via PIKFYVE's FYVE finger. The PIKFYVE kinase component phosphorylates phosphatidylinositol (PI) to phosphatidylinositol 5-phosphate (PI5P) (Sbrissa et al. 1999, Sbrissa et al. 2002). The PAS complex is present in the cytosol and is recruited to the membrane. | |||
R-HSA-1675883 (Reactome) | At the Golgi membrane, activated phosphatidylinositol 4-kinase beta (PI4KB) complexed to ADP-ribosylation factor 1/3 (ARF1/3) phosphorylates phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P) (Suzuki et al. 1997). | |||
R-HSA-1675896 (Reactome) | Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) translocates from the early endosome membrane to the Golgi membrane (Rutherford et al. 2006). | |||
R-HSA-1675910 (Reactome) | At the late endosome membrane, the PAS complex, consisting of FYVE finger-containing phosphoinositide kinase (PIKFYVE), yeast VAC14 homologue (VAC14), and polyphosphoinositide phosphatase aka SAC3 (FIG4), binds to the membrane via PIKFYVE's FYVE finger (Sbrissa et al. 2002, Cao et al. 2007). The PIKFYVE kinase component phosphorylates phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol 3,5-bisphosphate PI(3,5)P2 (Sbrissa et al. 1999). The PAS complex is present in the cytosol and is recruited to the membrane (Sbrissa et al. 2007). | |||
R-HSA-1675921 (Reactome) | At the Golgi membrane, the PAS complex, consisting of FYVE finger-containing phosphoinositide kinase (PIKFYVE), yeast VAC14 homologue (VAC14), and polyphosphoinositide phosphatase aka SAC3 (FIG4), binds to the membrane via PIKFYVE's FYVE finger (Sbrissa et al. 2002). The PIKFYVE kinase component phosphorylates phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol 3,5-bisphosphate PI(3,5)P2 (Sbrissa et al. 1999, McEwen et al. 1999). The PAS complex is present in the cytosol and is recruited to the membrane (Sbrissa et al. 2007). VAC14 acts as a scaffolding protein via its C-terminal domain (Sbrissa et al. 2008). | |||
R-HSA-1675928 (Reactome) | At the Golgi membrane, phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) (Domin et al. 2000, Arcaro et al. 2000) and phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing subunit gamma (PIK3C2G) (Ono et al. 1998, Rozycka et al. 1998, Misawa et al. 1998) phosphorylate phosphatidylinositol 4-phosphate (PI4P) to phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). PIK3C2G phosphorylates phosphatidylinositol (PI) and PI4P but not phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). | |||
R-HSA-1675939 (Reactome) | At the early endosome membrane, phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) aka VPS34 binds to phosphoinositide 3-kinase regulatory subunit 4 (PIK3R4). The PIK3C3:PIK3R4 complex and phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) phosphorylate phosphatidylinositol (PI) to phosphatidylinositol 3-phosphate (PI3P). The following lists the above proteins with their corresponding literature references: PIK3C3:PIK3R4 complex (Panaretou et al. 1997, Volinia et al. 1995, Cao et al. 2007) and PIK3C2A (Arcaro et al. 2000, Domin et al. 2000). | |||
R-HSA-1675949 (Reactome) | At the plasma membrane, phosphatidylinositol 5-phosphatases dephosphorylate phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) to phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). The phosphatidylinositol 5-phosphatases involved are: inositol polyphosphate 5-phosphatase K (INPP5K) aka SKIP (Ijuin et al. 2000, Gurung et al. 2003), phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (INPP5J) aka PIPP (Gurung et al. 2003, Mochizuki & Takenawa 1999), phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 (INPP5D) aka SHIP1 (Drayer et al. 1995, Kavanaugh et al. 1996, Dunant et al. 2000), and phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 2 (INPPL1) aka SHIP2 (Habib et al. 1998, Wisniewski et al. 1999, Pesesse et al. 2001). | |||
R-HSA-1675961 (Reactome) | At the Golgi membrane, phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) aka VPS34 is bound to phosphoinositide 3-kinase regulatory subunit 4 (PIK3R4). This PIK3C3:PIK2R4 complex and phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) phosphorylate phosphatidylinositol (PI) to phosphatidylinositol 3-phosphate (PI3P). The following lists the above proteins with their corresponding literature references: PIK3C3:PIK2R4 (Panaretou et al. 1997, Volinia et al. 1995) and PIK3C2A (Arcaro et al. 2000, Domin et al. 2000). | |||
R-HSA-1675974 (Reactome) | At the early endosome membrane, phosphatidylinositol 4-kinase type 2-alpha/beta (PI4K2A/B) (Balla et al. 2002) phosphorylates phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P). | |||
R-HSA-1675988 (Reactome) | At the plasma membrane, synaptic inositol-1,4,5-trisphosphate 5-phosphatase 1 aka Synaptojanin-1 (SYNJ1) (Guo et al. 1999, Mani et al. 2007, Johenning et al. 2004) and -2 (SYNJ2) (Malecz et al. 2000) dephosphorylate phosphatidylinositol 4-phosphate (PI4P) phosphatidylinositol (PI). The SAC1 domains of SYNJ1 and SYNJ2 demonstrate 4-phosphatase activity. | |||
R-HSA-1675994 (Reactome) | At the plasma membrane, synaptojanin-1 aka Synaptic inositol-1,4,5-trisphosphate 5-phosphatase 1 (SYNJ1) (Guo et al. 1999), -2 (SYNJ2) and some myotubularins (MTMs) dephosphorylate phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol (PI). The MTMs involved are: myotubularin (MTM1) (Cao et al. 2007, Tronchere et al. 2004, Schaletzky et al. 2003, Laporte et al. 2002, Kim et al. 2002) and myotubularin-related proteins 1 (MTMR1) (Kim et al. 2002, Tronchere et al. 2004), 3 (MTMR3) (Kim et al. 2002, Zhao et al. 2001, Walker et al. 2001, Lorenzo et al. 2005), 6 (MTMR6) (Schaletzky et al. 2003, Kim et al. 2002, Choudhury et al. 2006), and 14 (MTMR14) (Tosch et al. 2006). | |||
R-HSA-1676005 (Reactome) | At the Golgi membrane, the PAS complex, consisting of FYVE finger-containing phosphoinositide kinase (PIKFYVE), yeast VAC14 homologue (VAC14), and polyphosphoinositide phosphatase aka SAC3 (FIG4), binds to the membrane via PIKFYVE's FYVE finger. The FIG4 phosphatase component dephosphorylates phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) to phosphatidylinositol 3-phosphate (PI3P) (Sbrissa et al. 2007, Sbrissa et al. 2008). | |||
R-HSA-1676020 (Reactome) | At the late endosome membrane, the PAS complex, consisting of FYVE finger-containing phosphoinositide kinase (PIKFYVE), yeast VAC14 homologue (VAC14), and polyphosphoinositide phosphatase aka SAC3 (FIG4), binds to the membrane via PIKFYVE's FYVE finger. The FIG4 phosphatase component dephosphorylates phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) to phosphatidylinositol 3-phosphate (PI3P) (Sbrissa et al. 2007, Sbrissa et al. 2008). | |||
R-HSA-1676024 (Reactome) | At the late endosome membrane, phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) aka VPS34 binds to phosphoinositide 3-kinase regulatory subunit 4 (PIK3R4). The PIK3C3:PIK3R4 complex and phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) phosphorylate phosphatidylinositol (PI) to phosphatidylinositol 3-phosphate (PI3P). The following lists the above proteins with their corresponding literature references: PIK3C3:PIK3R4 (Panaretou et al. 1997, Volinia et al. 1995, Cao et al. 2007) and PIK3C2A (Arcaro et al. 2000, Domin et al. 2000). | |||
R-HSA-1676041 (Reactome) | The presence of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) in the early endosome membrane stimulates the vesicle maturation into the late endosome (Cabezas et al. 2006, Ikonomov et al. 2006, Ikonomov et al. 2001). | |||
R-HSA-1676048 (Reactome) | At the plasma membrane, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunits form complexes with regulatory subunits. These complexes phosphorylate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) (Stephens et al. 1997). The PI(4,5)P2 3-kinase complexes involved are: PI(4,5)P2 3-kinase catalytic subunit alpha isoform (PIK3CA) bound to PI 3-kinase regulatory subunit alpha/beta/gamma (PIK3R1/2/3); beta (PIK3CB) bound to PIK3R1/2/3; delta (PIK3CD) bound to PIK3R1/2/3; and gamma (PIK3CG) bound to PI 3-kinase regulatory subunit 5 (PIK3R5) or 6 (PIK3R6). The following lists the above proteins with their corresponding literature references: PIK3CA:PIK3R1, PIK3CA:PIK3R2, PIK3CA:PIK3R3 (Dey et al. 1998, Vanhaesebroeck et al. 1997, Meier et al. 2004); PIK3CB:PIK3R1, PIK3CB:PIK3R2, PIK3CB:PIK3R3 (Meier et al. 2004); PIK3CD:PIK3R1, PIK3CD:PIK3R2, PIK3CD:PIK3R3 (Vanhaesebroeck et al. 1997, Meier et al. 2004); and PIK3CG:PIK3R5, PIK3CG:PIK3R6 (Voigt et al. 2006, Suire et al. 2005, Stoyanov et al. 1995). | |||
R-HSA-1676065 (Reactome) | At the late endosome membrane, myotubularin (MTM1), myotubularin-related protein 2 (MTMR2), myotubularin-related protein 4 (MTMR4), and myotubularin-related protein 7 (MTMR7) dephosphorylate phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) to phosphatidylinositol 5-phosphate (PI5P). The following lists the above proteins with their corresponding literature references: MTM1 (Cao et al. 2007, Cao et al. 2008, Tsujita et al. 2004, Tronchere et al. 2004), MTMR2 (Cao et al. 2008), MTMR4 (Lorenzo et al. 2006), and MTMR7 (Mochizuki & Majerus 2003, Lorenzo et al. 2006). | |||
R-HSA-1676082 (Reactome) | At the plasma membrane, phosphatidylinositol-4-phosphate 5-kinase type-1 alpha (PIP5K1A), beta (PIP5K1B), and gamma (PIP5K1C) phosphorylate phosphatidylinositol 4-phosphate (PI4P) to produce phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The following lists the above proteins with their corresponding literature references: PIP5K1A (Halstead et al. 2006, Zhang et al. 1997), PIP5K1B (Zhang et al. 1997), and PIP5K1C (Di Paolo et al. 2002). This reaction is of particular interest because its regulation by small GTPases of the RHO and ARF families, not yet annotated here, ties the process of phosphatidylinositol phosphate biosynthesis to regulation of the actin cytoskeleton and vesicular trafficking, and hence to diverse aspects of cell motility and signalling (Oude Weernink et al., 2004, 2007). | |||
R-HSA-1676105 (Reactome) | At the early endosome membrane, myotubularin (MTM1), myotubularin-related protein 2 (MTMR2) and myotubularin-related protein 4 (MTMR4) dephosphorylate phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) to phosphatidylinositol 5-phosphate (PI5P). The following lists the above proteins with their corresponding literature references: MTM1 (Cao et al. 2007, Cao et al. 2008), MTMR2 (Cao et al. 2008), and MTMR4 (Lorenzo et al. 2006). | |||
R-HSA-1676109 (Reactome) | At the plasma membrane, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) 3-kinase catalytic subunits form complexes with regulatory subunits. These complexes along with phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing subunits alpha (PIK3C2A), beta (PIK3C2B), and gamma (PIK3C2G) phosphorylate phosphatidylinositol 4-phosphate (PI4P) to phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). The PI(4,5)P2 3-kinase complexes involved are: PI(4,5)P2 3-kinase catalytic subunit alpha isoform (PIK3CA) bound to PI 3-kinase regulatory subunit alpha/beta/gamma (PIK3R1/2/3); beta (PIK3CB) bound to PIK3R1/2/3; delta (PIK3CD) bound to PIK3R1/2/3; and gamma (PIK3CG) bound to PI 3-kinase regulatory subunit 5 (PIK3R5) or 6 (PIK3R6). The following lists the above proteins with their corresponding literature references: PIK3C2A (Arcaro et al. 2000); PIK3C2B (Arcaro et al. 2000, Arcaro et al. 1998); PIK3C2G (Misawa et al. 1998, Ono et al. 1998); PIK3CA:PIK3R1, PIK3CA:PIK3R2, PIK3CA:PIK3R3 (Vanhaesebroeck et al. 1997); PIK3CB:PIK3R1, PIK3CB:PIK3R2, PIK3CB:PIK3R3 (Meier et al. 2004, Guo et al. 1997); PIK3CD:PIK3R1, PIK3CD:PIK3R2, PIK3CD:PIK3R3 (Vanhaesebroeck et al. 1997); and PIK3CG:PIK3R5, PIK3CG:PIK3R6 (Suire et al. 2005, Stoyanov et al. 1995). | |||
R-HSA-1676114 (Reactome) | At the Golgi membrane, phosphatidylinositide phosphatase SAC1 (SACM1L) dephosphorylates phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol (PI) but not as efficiently as phosphatidylinositol 4-phosphate (PI4P) dephosphorylation. No significant activity of this enzyme towards phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was detected (Rohde et al. 2003). | |||
R-HSA-1676124 (Reactome) | At the endoplasmic reticulum (ER) membrane, transmembrane protein phosphatidylinositide phosphatase SAC1 (SACM1L) efficiently dephosphorylates phosphatidylinositol 4-phosphate (PI4P), and to a lesser extent phosphatidylinositol 3-phosphate (PI3P), to phosphatidylinositol (PI). No significant activity of this enzyme towards phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was detected (Rohde et al. 2003). | |||
R-HSA-1676133 (Reactome) | At the Golgi membrane, phosphatidylinositide phosphatase SAC1 (SACM1L) efficiently dephosphorylates phosphatidylinositol 4-phosphate (PI4P), and to a lesser extent phosphatidylinositol 3-phosphate (PI3P), to phosphatidylinositol (PI). No significant activity of this enzyme towards phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was detected (Rohde et al. 2003). | |||
R-HSA-1676134 (Reactome) | At the plasma membrane, phosphatidylinositol-4-phosphate 5-kinase type-1 alpha (PIP5K1A) and beta (PIP5K1B) phosphorylate phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) (Tolias et al. 1998). | |||
R-HSA-1676141 (Reactome) | At the early endosome membrane, myotubularin (MTM1), myotubularin-related protein 2 (MTMR2), and myotubularin-related protein 4 (MTMR4) dephosphorylate phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol (PI). The following lists the above proteins with their corresponding literature references: MTM1 (Cao et al. 2007, Cao et al. 2008, Kim et al. 2002), MTMR2 (Cao et al. 2008, Kim et al. 2002), and MTMR4 (Lorenzo et al. 2006, Zhao et al. 2001). | |||
R-HSA-1676145 (Reactome) | At the plasma membrane, phosphatidylinositol-5-phosphate 4-kinase type-2 alpha (PIP4K2A) and beta (PIP4K2B) homodimers and heterodimers (Clarke et al. 2010), along with phosphatidylinositol-4-phosphate 5-kinase type-1 alpha (PIP5K1A), beta (PIP5K1B), and gamma (PIP5K1C) phosphorylate phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). The following lists the above proteins with their corresponding literature references: PIP4K2A (Zhang et al. 1997, Rameh et al. 1997, Clarke et al. 2008), PIP4K2B (Zhang et al. 1997, Rameh et al. 1997), PIP5K1A (Zhang et al. 1997, Tolias et al. 1998), PIP5K1B (Zhang et al. 1997, Tolias et al. 1998), and PIP5K1C (Wenk et al. 2001, Di Paolo et al. 2002). | |||
R-HSA-1676149 (Reactome) | At the plasma membrane, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase aka phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) to phosphatidylinositol 4-phosphate (PI4P) (Myers et al. 1998, Das et al. 2003). | |||
R-HSA-1676152 (Reactome) | At the Golgi membrane, ADP-ribosylation factor 1 and 3 (ARF1 and ARF3) complexed to GTP bind to phosphatidylinositol 4-kinase beta (PI4KB) and activate it (Haynes et al. 2007, Wong et al. 1997, Godi et al. 1999). | |||
R-HSA-1676161 (Reactome) | Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) translocates from the late endosome membrane to the Golgi membrane (Rutherford et al. 2006). | |||
R-HSA-1676162 (Reactome) | At the early endosome membrane, type I (INPP4A) (Norris et al. 1995, Ivetac et al. 2005) and type II inositol-3,4-bisphosphate 4-phosphatase (INPP4B) (Norris et al. 1997) colocalise with early and recycling endosomes through their C2 domains which bind to the phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) present in these membranes. It is here that phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) is dephosphorylated by INPP4A/B to phosphatidylinositol 3-phosphate (PI3P). | |||
R-HSA-1676164 (Reactome) | At the plasma membrane, type I and type II inositol-3,4-bisphosphate 4-phosphatase (INPP4A) (Norris et al. 1995, Ivetac et al. 2005) and (INPP4B) (Norris et al. 1997) dephosphorylate phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) to phosphatidylinositol 3-phosphate (PI3P). | |||
R-HSA-1676168 (Reactome) | At the early endosome membrane, the PAS complex, consisting of FYVE finger-containing phosphoinositide kinase (PIKFYVE), yeast VAC14 homologue (VAC14), and polyphosphoinositide phosphatase aka SAC3 (FIG4), binds to the membrane via PIKFYVE's FYVE finger (Sbrissa et al. 2002, Cao et al. 2007). The PIKFYVE kinase component phosphorylates phosphatidylinositol 3-phosphate (PI3P) to phosphatidylinositol 3,5-bisphosphate PI(3,5)P2 (Sbrissa et al. 1999). The PAS complex is present in the cytosol and is recruited to the membrane (Sbrissa et al. 2007). | |||
R-HSA-1676174 (Reactome) | At the early endosome membrane, the PAS complex, consisting of FYVE finger-containing phosphoinositide kinase (PIKFYVE), yeast VAC14 homologue (VAC14), and polyphosphoinositide phosphatase aka SAC3 (FIG4), binds to the membrane via PIKFYVE's FYVE finger. The FIG4 phosphatase component dephosphorylates phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) to phosphatidylinositol 3-phosphate (PI3P) (Sbrissa et al. 2007, Sbrissa et al. 2008). | |||
R-HSA-1676177 (Reactome) | At the plasma membrane, Synaptojanin-1 (SYNJ1) and -2 (SYNJ2), inositol polyphosphate 5-phosphatase K (INPP5K) aka SKIP, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (INPP5J) aka PIPP dephosphorylate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to form phosphatidylinositol 4-phosphate (PI4P). SYNJ1/2 both have an N-terminal Sac1-like domain, a central 5-phosphatase domain and a C-terminal proline-rich segment, with this latter part being the most divergent part of the protein sequence. The following lists the above proteins with their corresponding literature references: SYNJ1 (Johenning et al. 2004, Haffner et al. 1997, Guo et al. 1999, Mani et al. 2007), SYNJ2 (Malecz et al. 2000), INPP5K (Injuin et al. 2000, Gurung et al. 2003), and INPP5J (Gurung et al. 2003, Mochizuki & Takenawa 1999). | |||
R-HSA-1676185 (Reactome) | At the Golgi membrane, phosphatidylinositol 4-kinase alpha (PI4KA) (Gehrmann et al. 1999, Godi et al. 1999), or phosphatidylinositol 4-kinase type 2-alpha/beta (PI4K2A/B) (Balla et al. 2002, Minogue et al. 2001, Wei et al. 2002) phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P). | |||
R-HSA-1676191 (Reactome) | At the plasma membrane, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase aka phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) (Maehama & Dixon 1998, Myers et al. 1998, Das et al. 2003). | |||
R-HSA-1676203 (Reactome) | At the plasma membrane, synaptojanin-1 aka Synaptic inositol-1,4,5-trisphosphate 5-phosphatase 1 (SYNJ1) (Guo et al. 1999), -2 (SYNJ2) and some myotubularins (MTMs) dephosphorylate phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) to phosphatidylinositol 5-phosphate (PI5P). The MTMs involved are: myotubularin (MTM1) (Cao et al. 2007, Tronchere et al. 2004, Schaletzky et al. 2003, Laporte et al. 2002) and myotubularin-related proteins 1 (MTMR1) (Tronchere et al. 2004), 3 (MTMR3) (Walker et al. 2001, Lorenzo et al. 2005), 6 (MTMR6) (Schaletzky et al. 2003, Choudhury et al. 2006), and 14 (MTMR14) (Tosch et al. 2006). | |||
R-HSA-1676204 (Reactome) | At the Golgi membrane, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (TPTE2) aka TPIP dephosphorylates phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) to produce phosphatidylinositol 4-phosphate (PI4P) (Tapparel et al. 2000, Walker et al. 2001). The transmembrane phosphatase TPTE2 gamma isoform colocalises in the Golgi and the endoplasmic reticulum (Tapparel et al. 2000). | |||
R-HSA-1676206 (Reactome) | At the early endosome membrane, phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) (Kraq et al. 2010, Arcaro et al. 2000) phosphorylates phosphatidylinositol 4-phosphate (PI4P) to phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). | |||
SACM1L | mim-catalysis | R-HSA-1676114 (Reactome) | ||
SACM1L | mim-catalysis | R-HSA-1676124 (Reactome) | ||
SACM1L | mim-catalysis | R-HSA-1676133 (Reactome) | ||
SYNJ/INPP5(1) | mim-catalysis | R-HSA-1676177 (Reactome) | ||
SYNJ/MTM(1) | mim-catalysis | R-HSA-1675994 (Reactome) | ||
SYNJ/MTM(1) | mim-catalysis | R-HSA-1676203 (Reactome) | ||
SYNJ | mim-catalysis | R-HSA-1675836 (Reactome) | ||
SYNJ | mim-catalysis | R-HSA-1675988 (Reactome) | ||
TPTE2-like proteins | mim-catalysis | R-HSA-1676204 (Reactome) |